
Auralization of Movement
Flora Valentina Latz

Institute for Data Processing
Technische Universität München

Bachelor’s thesis

Auralization of Movement

Flora Valentina Latz

29. September 2017

Flora Valentina Latz. Auralization of Movement. Bachelor’s thesis, Technische Uni-
versität München, Munich, Germany, 2019.

Supervised by Prof. Dr.-Ing. K. Diepold and Stefan Röhrl; submitted on 29. Septem-
ber 2017 to the Department of Electrical Engineering and Information Technology of
the Technische Universität München.

c© 2019 Flora Valentina Latz

Institute for Data Processing, Technische Universität München, 80290 München,
Germany, http://www.ldv.ei.tum.de/.

This work is licenced under the Creative Commons Attribution 3.0 Germany License.
To view a copy of this licence, visit http://creativecommons.org/licenses/b
y/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300,
San Francisco, California 94105, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/3.0/de/
http://creativecommons.org/licenses/by/3.0/de/

Abstract

The system proposed in this thesis deals with auralization of movement. A Microsoft
Kinect sensor is used to extract motion data from a user by using depth and color
information provided by the infrared and Red-Green-Blue Color Space (RGB) cam-
era of the Kinect. Therefore, the user can move freely without having any sensors
attached to his body which disturb his kinetic flexibility. The movement data is trans-
ferred to harmonious sounding musical output based on defined mapping criteria.
The sound output is influenced and based on the user’s input and can thus be ac-
tively controlled by him. As a result of the harmonious sounding aural output, the
user himself is animated in his movement leading to a creativity inspiring circle. In
order to implement the entire process, a python algorithm was programmed using
the pykinect, SQLite, pydub and playsound libraries. The specifics of the system as
well as the algorithm itself and its development are the elements for this thesis.

3

Contents

Abstract 3

1. Introduction 7
1.1. Motivation . 7
1.2. Problem Statement . 8
1.3. Thesis’s Structure . 9

2. State of the Art 11
2.1. Instrument Based Sound Output Systems 11

2.1.1. Theremin . 11
2.1.2. Virtual Instrument Inspired Sound Output Systems 12

2.2. Generative Sound Output Systems 16
2.2.1. Systems to control Ableton Live 16
2.2.2. Sound Generation through frequency modulation 16
2.2.3. Sound Generation through a mapping function 16
2.2.4. Sound Generation through combined methods 17

2.3. Thesis’s Objective . 20

3. Music Theory 23
3.1. Musical Terms Definition . 23
3.2. Human Perception of Rhythm . 24

4. Implementation 25
4.1. System’s Components . 25

4.1.1. Hardware Elements . 25
4.1.2. Software Elements . 27

4.2. Structure of the Algorithm . 30
4.2.1. Calibration Phase Structure 31
4.2.2. Sound Generation Phase Structure 35

4.3. Approach . 35
4.3.1. Version Evolution Outline 35
4.3.2. Motion Tracking Methods 37

4.4. Problems and Solutions . 39
4.4.1. Calibration Phase . 39
4.4.2. Sound Generation Phase 39

5

Contents

5. Evaluation 43

Acronyms i

Bibliography v

A. Appendix vii
A.1. Extended Algorithm Explanation . vii

A.1.1. Calibration Phase Structure vii
A.1.2. Sound Generation Phase Structure viii

A.2. Extended Version Evolution Description ix

6

1. Introduction

1.1. Motivation

One cannot not interact.

(Paul Watzlawick)

Humans are bound to communicate, even trying to do nothing or more precisely
trying not to communicate is a specific form of interaction. As computers and ma-
chines are attributed a greater and greater part in our daily life, Human Computer
Interaction is getting an important aspect which results in a lot of research and
evaluation concerning this area. The goal is to make Human Computer Interac-
tion more intuitive, smarter, faster and more comfortable e.g. interacting without
being restricted to any input devices resulting in systems like gesture recognition,
body tracking and motion detection. As our world is a 3D space, Human Computer
Interaction is bound to be able to understand and handle three dimensions in order
to interact properly with physical objects.

A considerable component of communication consists of non-verbal communi-
cation including kinesics which is the movement of the body [1]. A human body
consists of 206 bones which results in over 230 moving parts. Every joint again has
up to three degrees of freedom, with respect to the torso these degrees of freedom,
however, add up resulting in a total of 17 degrees of freedom for a distant finger
of a hand according to Jones et al. [2]. Considering all these different possibilities
to move, there is a tremendous amount of possible change in position. Correctly
identifying this wide range of movement, however, is a challenge itself. It can be
established through sensors placed on specific parts of the body which can track
velocity and acceleration or through video recordings. The former has the disadvan-
tage of restricting the user’s movement and diminishing his comfort, but the later is
limited through camera angle, camera view field and frames per second. This devel-
opment in tracking sensors enables a new platform for interaction between scientists
and artists considering music, dance and drama. Electronic music for instance is the

7

1. Introduction

art to define the relationship between sound generation and gesture analysis. This
allows for a new field for creativity combining technology and conventional art and
also serves as a rising application area for the music entertainment industry.

The proposed system in this thesis also deals with this kind of creativity. The user
creates music interactively through his body movement tracked through a Kinect
sensor, which observes depth and color information using infrared cameras and an
RGB array. This tracking method enables the user to move freely in the physical
3D space without restrictions allowing for more expressiveness and it permits full
body motion tracking, more specific skeleton tracking. As a result, the Kinect sensor
serves as a real time music controller, extracting movement data and transforming it
to musical output. The user should be able to understand his influence on the output
to actively control the music via his motion input. Furthermore, the generated sound
should always sound harmonic to inspire the user in a positive way. As a result,
the system establishes a creativity inspiring circle because the user’s creativity is
animated through the output of the system which itself is influenced by the user’s
creativity. The creative act itself is carried out, on the one hand, by the user and,
on the other hand, by the one creating the mapping between motion capture and
sound.

1.2. Problem Statement

The system can be divided into two parts: First, the motion analysis and, second, the
sound generation. The motion analysis extracts the user’s movement data from the
Kinect and defines features, which are significant for human movement. Questions
leading this part of the system are:

• Which data is provided by the Kinect?

• How can the data be stored?

• How can the data be processed for further usage?

• How should the data be used to ensure real time usage?

The sound generation system has the purpose to create the sound output. Ques-
tions concerning this part are:

• How is a harmonic acoustic pattern created?

• What are the essential parts of a music piece?

• How can these parts be created and combined?

• Which music elements should be used reaching from individual notes over
chords to whole melodies?

8

1.3. Thesis’s Structure

The interface between motion analysis and sound generation consists of the map-
ping between the movement features extracted from the motion analysis and the
music data generated by the sound generation system. The basis of this interface
are the following questions:

• Which movement features are mapped to which kind of music elements?

• Should the system mimic a music instrument or provide music in a more gen-
erative way?

• How can be guaranteed that the user has influence on the musical output?

This system belongs to the area of research for computer and creativity which ex-
amines methods how creativity can be implemented in technical systems and algo-
rithms. Furthermore, it is affiliated with the scope of data processing as movement
data, on the one hand, and music data, on the other, have to be processed to accom-
plish the systems objective. The research topic concerning computer and creativity
is not only relevant for electrical engineering but also for informatics. Moreover, it
is also a matter of interest for the art division concerning dance, music and drama.
These subject areas are more and more interweaving with the technical world as
technical art approaches like generative adversarial networks for creating art seen
at Ahmed Elgammal et. al. [3] get further attention and are considered as forward-
looking and trendsetting methods. The proposed system is therefore combining the
fields of electrical engineering and informatics in the sense of data processing as
well as the fields of music and art concerning the sound generation and creativity
process.

1.3. Thesis’s Structure

The remainder of this thesis is organized as follows: The second chapter elaborates
about the current State of the Art and presents papers and projects which deal with
similar problems and tasks. Furthermore, it analyzes the difference with respect
to the proposed system and defines this thesis’s objective. The third chapter is
devoted to the music theory and definition of musical terms needed as theoretical
background, whereas the fourth chapter presents the system itself, describes which
hardware and software components are used as well as the reasoning for that and
explains how the algorithm itself is constructed. Chapter five discusses the results
taking into account different evaluation criteria.

9

2. State of the Art

Concerning related work to express music based on motion capture systems one
can differentiate between two major approaches. On the one hand, there are sys-
tems based on an instrument imitating e.g. a percussion instrument or a guitar. On
the other hand, one can define systems which create music in a more generative
way, not comparable to any existing common instrument.

2.1. Instrument Based Sound Output Systems

2.1.1. Theremin

As stated in [4] and [5, pp.139 ff.] the Theremin is an instrument invented 1920 by
Leon Theremin, a Russian physicist. It is played without any physical contact but
through the movement of one’s hands in the near range of two antenna which built
the main part of the instrument displayed in Figure 2.1. The proximity to the verti-
cal antenna controls the pitch, whereas the proximity to the horizontal one controls
the volume. The principle of the Theremin is based on the overlap of oscillations
emitted from two beat-frequency generators. To change the beat frequency one of
the frequencies of the two oscillators is altered slightly. As the electromagnetic field
is influenced even by little movements, playing the Theremin is considered to be
difficult and therefore only few people are able to control pitch and volume in that
way. The act of playing is based on continuous aural feedback, which is similar to
the proposed system of the thesis.

Figure 2.1.: Theremin setup [6]

11

2. State of the Art

2.1.2. Virtual Instrument Inspired Sound Output Systems

Furthermore, one can produce music by imitating instruments which results in virtual
instruments. This method will be explained at the example of Mu-Hsen Hsu et al.
[7]. Furthermore, differences to other approaches shall be elaborated.

Mu-Hsen Hsu et al. in [7] introduced three virtual instruments based on the Kinect:
a drum, a guitar and a newly invented instrument named Spider King. For this
system’s approach, input areas are defined e.g. strings of the guitar or cymbals
of the drum. When these input areas are triggered detected through the Kinect,
a Musical Instrument Digital Interface (MIDI) event message is generated which
causes a sound through an audio library, in this case Virtual Studio Technology
1. The MIDI message defines pitch, notation and velocity, which is then realized
through the Virtual Studio Technology simulating the sound of real instruments.

For the virtual drum, four input areas are defined: Kick, Snare, Cymbal and Hi-Hat
as displayed in Figure 2.2. To trigger the proposed areas, right hand, left hand and
right knee are captured by the Kinect. “When the coordinate of the triggering point
is larger than a specified threshold with respect to the defined regions of the virtual
drum sets, program triggers MIDI signals, and then MIDI signals triggers the sound
in audio library” [7].

Figure 2.2.: Virtual drum setup with trigger points [7]

For the guitar, however, the input areas as it can be seen in Figure 2.3 consist of
a chord selection of six areas set in front of the user’s left hand supplemented by a
virtual guitar string in front of the user’s right hand.

The last instrument, the Spider King, is implemented through a virtual circle

1https://www.steinberg.net/de/products/vst.html, Accessed: 11.8.19

12

2.1. Instrument Based Sound Output Systems

Figure 2.3.: Virtual guitar setup with chord selection position [7]

around the user shown in Figure 2.4. The sound can be triggered through the
hand movement, while the degree of the circle is mapped to notes and the distance
from the circle’s center specifies the low, mid and high tones of the specific note. The
volume is altered dependent on the distance of the hand from the Kinect Sensor.

Figure 2.4.: Spider King setup [7]

13

2. State of the Art

Furthermore, Enkhtogtokh Togootogtokh et al. [8] invented a virtual cello and a
virtual piano. The visualization of the system can be seen in Figures 2.5 and 2.6.

Figure 2.5.: Virtual cello and virtual piano setup [8]

Figure 2.6.: Virtual cello setup [8]

The difference to the system of Mu-Hsen Hsu et al. is that they used Senz3D 2

and Leap Motion 3 instead of the Kinect as they yield the advantage of tracking hand
gestures more precisely. In addition, they used a Neural Network or detecting finger
gestures for the virtual piano.

In [9, pp.80 ff.] Abassin Sourou Fangbemi and Yanxiang Zhang present a virtual
percussion instrument. However, the instrument obtains the disadvantage to use a
wireless body-worn inertial measurement unit which decreases the user’s freedom
in motion.

Shuyao Li et al. realized in [10] a virtual Chinese instrument, named Guzheng.
The unusual instrument led to the additional work to prerecord the sound of the
Guzheng strings and establish a timbre database.

Athanasia Zlatintsi at al. in [11] concentrates on a virtual air guitar and an up-
right bass. The characteristics of this system’s approach, contrarily to the already
proposed ones, are the visual aids invented to help interact with the virtual instru-
ments, e.g. “colored bars accompanied with letters, which show the user which note

2https://de.creative.com/p/web-cameras/blasterx-senz3d, Accessed: 11.8.19
3https://www.leapmotion.com, Accessed: 11.8.19

14

2.1. Instrument Based Sound Output Systems

is going to be generated if he performs a sound activation gesture” [11] illustrated in
Figure 2.7. Furthermore, the air guitar differs from the approach of Mu-Hsen Hsu et
al. [7] as the air guitar mode can be altered between two modes, either consisting
of single notes or of complete chords.

Figure 2.7.: Visual aids of the virtual air guitar and upright bass [11]

Sarika U. Aswar at al. in [12] realized several virtual instruments using a Kinect
sensor: a drum, xylophone and a piano. However, the drum is, contrarily to Mu-Hsen
Hsu’s et al. [7], based on the less reliable approach of color and contour tracking.
Instead of motion tracking, the different colored drumsticks are detected and the
centroid of the tip is identified as it can be seen in Figure 2.8.

Figure 2.8.: Visualization of the drumstick detection [11]

In conclusion, considering these different virtual instrument approaches, the
method of Mu-Hsen Hsu’s et al. [7] and Enkhtogtokh Togootogtokh et al. [8] are
the best developed ones among them.

15

2. State of the Art

2.2. Generative Sound Output Systems

2.2.1. Systems to control Ableton Live

There are systems which enable communication of the Kinect with Ableton Live, a
software music sequencer 4. In [13, ch. 4] Jared St. Jean explains step-by-step how
to use the Kinect sensor to regulate specific audio units. The system is based on
OSCeleton 5, which is used to send the Open Natural Interaction (OpenNi) skeleton
data as Open Sound Control (OSC) messages to the music application.

Other than that mentioned OSCeleton, there also exists another software called
Synapse 6. Similar to OSCeleton it is used to control systems like Ableton Live 7 on
the basis of the data extracted by the Kinect Sensor.

2.2.2. Sound Generation through frequency modulation

Tamara Berg et al. [14] introduced a system which maps human motion onto musi-
cal notes. To track the human motion, a Kinect is used for skeleton tracking which
yields 15 joint coordinates. In order to accomplish a mapping between movement
and sounds, several features of every joint contribute to generate a certain note.
These features consist of velocity, acceleration and change of location of specific
body parts. In order to work with the skeleton coordinates, OpenNi framework [15]
and NITE Middleware from PrimeSense [16] is used. The sound generation is real-
ized through frequency modulation, which takes a carrier frequency, a modular fre-
quency and an amplitude as input and gives a complex waveform as output. Each
joint differs in its frequency modulation and therefore representing its own unique
instrument. “The goal was that each joint should have its own customizable sound
source and that the performer and audience should easily be able to discern the
sound changing and have a general idea of which sounds are coming from which
joints” [14].

2.2.3. Sound Generation through a mapping function

Min-Joon Yoo et al. in [17] have a similar approach using OpenNi and NITE [15, 16]
but they divide the skeleton into 5 parts e.g. left arm and right arm. Every segment
is assigned to one sound being described through several parameters. These pa-
rameters are mapped to the velocity of the joints out of which one body segment
consist e.g. left hip, left knee, left ankle and left food yielding the left leg. As a result,
the sound is an outcome of position and velocity of the body movement. Instead of

4https://www.ableton.com/de/live/, Accessed: 12.8.19
5https://github.com/Sensebloom/OSCeleton, Accessed: 12.8.19
6https://synapsekinect.tumblr.com/post/6307790318/synapse-for-kinect, Accessed: 22.6.19
7https://www.ableton.com/de/live/, Accessed: 12.8.19

16

2.2. Generative Sound Output Systems

working with frequency modulation like Tamara Berg et al. [14] they implemented a
mapping function: the speed of the sound is mapped to the velocity of each joint,
whereas the pitch of the sound corresponds to the position, e.g. the relative position
of the end joints, meaning “if the end-joints [. . .] [are] closer to each other than the
normal pose" [17, Eco], the scale gets more tense.

Kevin Clark used the mentioned Synapse software 6 to build a different sound
generation system 8. Contrary to Min-Joon Yoo et al. in [17], he mapped certain
gestures to music output, implementing two applications: Point Wellness and Puppet
Master. The former maps different skeleton positions like lifting both arms to specific
sound effects, which influence the underlying wellness sound as it can be seen in
Figures 2.9 and 2.10. Puppet Master enables the user to control for example the
drum beat or groove through certain gestures. The system is mainly used for health
and wellness applications e.g. for enrichment of children at risk or diagnosed with
developmental delays.

Figure 2.9.: Visualization of the Point Motion’s gestures 1 9

2.2.4. Sound Generation through combined methods

Lisa Naugle et al. [18] enhanced the generative system by implementing several
mapping possibilities instead of only one like Tamara Berg et al. [14] and Min-Joon
Yoo et al. in [17]. On the one hand, the stage can be separated in various parts,
each of them mapped to particular sounds played when the dancer is detected in
that particular area. In addition, change of direction is used to produce rhythmic
sound. On the other hand, preexisting soundtracks can be altered by parameters in-
fluenced through the dancer’s movement. This can be implemented using frequency
modulation like Tamara Berg et al. in [14] did. As a third mapping option, the pitch

8http://www.pointmotioncontrol.com/pilotprogram, Accessed: 24.6.19
https://www.bostonmagazine.com/health/2016/05/09/point-motion/, Accessed: 24.6.19

9https://www.youtube.com/watch?v=CYzH4JxKaGQ, Accessed: 12.8.19

17

2. State of the Art

Figure 2.10.: Visualization of the Point Motion’s gestures 2 9

and/or timbre can directly be mapped to the extracted movement characteristics like
Min-Joon Yoo et al. in [17]. Mapping the pitch, however, is stated to sound me-
chanical. In order to implement the whole system, three libraries are established:
One motion capture library for movement characteristic, one sound library and one
mapping library for the various mapping possibilities.

Nagual Sounds by Artur Reimers and Mark Moebius 10 achieved the most har-
monic sounding output with their system and therefore, the dancer again is inspired
by the music inducing a creativity supporting loop.

Figure 2.11.: Visualization of feet functionality of Nagual Sounds 11

To control the music the functionalities of legs and arms are separate as seen in
Figures 2.11 and 2.12. The legs control the trumpet and piano, can switch between

10https://www.heise.de/tr/artikel/Der-Koerper-macht-die-Musik-2797589.html, Accessed: 22.6.19
https://www.golem.de/news/kinect-traumtaenzer-1402-104581.html, Accessed: 22.6.19

11https://youtu.be/4Tgz1AMLyvg, Accessed: 12.8.19

18

2.2. Generative Sound Output Systems

Figure 2.12.: Visualization of hand functionality of Nagual Sounds 11

several ton modules and create a melody. The left hand controls the drums, whereas
the right hand influences the guitar sounds.

Furthermore, the dance-floor itself is divided in four different parts displayed in
Figure 2.13, where one can switch between chords and tempo in order to implement
quiet as well as ecstatic parts in one song.

Figure 2.13.: Visualization of Nagual Sounds’s dance floor 12

Additionally, as illustrated in Figure 2.13 the software also supports two user
dancing at the same time, where the music is divided into melody instruments and
rhythmic instruments. The user gets visual feedback in order to better understand
his influence on the music. In addition, the user can change between electronic
music genres like house, ambient and dubstep. The basis of the song is predefined
in the system, the user, however, has the possibility to interact with the predefined
song through his movement. The goal for the future is to enable other developer to
create sound packages for the Nagual Sounds software, which will be included as
additional packages.
12https://www.youtube.com/watch?v=cd34a7v68BI, Accessed: 12.8.19

19

2. State of the Art

Concluding, one can say, that Lisa Naugle et al. [18] and Artur Reimers and Mark
Moebious with Nagual Sounds 13 invented the best developed wholesome systems,
combining features of Tamara Berg et al. [14] and Min-Joon Yoo et al. in [17].

2.3. Thesis’s Objective

The objective of the proposed system is not to build a new kind of instrument like the
Theremin. The hardware components are limited to the Kinect sensor-based motion
detection and should not include antennas, strings or other instrument components.
Furthermore, there is no specific instrument to serve as a basis for the sound gener-
ation system like it can be seen at Shuyao Li et al. in [10] with the Chinese Guzheng
or Athanasia Zlatintsi at al. [11] with the air guitar and upright bass.

As a conclusion, the sound generation system pursues a more generative ap-
proach for implementing the musical output like Tamara Berg et al. [14] and Min-
Joon Yoo et al. in [17] did. Similar to the mentioned approaches, the motion analy-
ses system of this thesis is based on the entire body instead of only focusing on the
hand or hands like Enkhtogtokh Togootogtokh et al. in [8] and other similar meth-
ods implementing virtual instruments, which like their real counterparts are played
by hand(s). The scope of the proposed system is to use the whole body’s motion
as input for the musical output. Therefore, the motion tracking system has to be
capable to track the entire body. Nonetheless, it does not have the requirement, to
be as specific as the motion tracking system where single finger motion is crucial for
the musical output like it is needed for the system of Enkhtogtokh Togootogtokh et
al. [8]. This thesis does not cover any other tracking devices apart from the Kinect,
therefore, space and accuracy of the movement analysis are limited.

Furthermore, the thesis’s project is not web based like the approach of Athanasia
Zlatintsi at al. in [11] but a desktop application with a locally stored library. It does
not rely on other projects like OpenNi and NITE Middleware to communicate with
the Kinect as Min-Joon Yoo et al. [17] and Jared St. Jean [13, ch. 4] with their
projects do, but uses a python library called pykinect to ensure more flexibility in the
way the motion data is stored and used.

The system is not based on the recognition of several predefined gestures but
takes the body as a whole entity to produce the sound. There are systems like
Enkhtogtokh Togootogtokh et al. in [8] and Athanasia Zlatintsi at al. in [11] scan-
ning the motion data for certain determined hand gestures which then event-based
trigger some sound. Furthermore, there are systems e.g. Sarika U. Aswar at al. in
[12] and Mu-Hsen Hsu et al. in [7] which use a combination of gesture recognition
and location tracking. When a specific gesture is observed by the system, a sound
is played, however, the location where the gesture has taken place defines which

13https://www.heise.de/tr/artikel/Der-Koerper-macht-die-Musik-2797589.html, Accessed: 22.6.19
https://www.golem.de/news/kinect-traumtaenzer-1402-104581.html, Accessed: 22.6.19

20

2.3. Thesis’s Objective

kind of note is played. In contrary, the proposed algorithm is not triggered by any
prescribed hand gestures but tries to extract a rhythm from the movement of the
entire body. The system of point motion 14 uses whole body gestures like standing
straight arms reaching to the side instead of single hand gestures which resembles
more the whole-body approach proposed here.

Moreover, some projects implement a continuous approach like Tamara Berg et
al. [14] and Min-Joon Yoo et al. in [17] where each joint or the velocity of the
joint is mapped to a sound. As a result, the music output is a result of position and
velocity of the body’s movement. This method, however, does not strive for an overall
harmonic sound pattern or a musical output which at itself is enjoyable. This forms
the difference between this continuous approach and the outcome implemented by
the presented algorithm.

The first part of the proposed system tries to derive a rhythmic pattern from the
body’s movement, which is similar to one of the methods of Lisa Naugle et al. in
[18], where the change of direction is used as an indicator to define a beat through
pendular movement. The reminder of the system seeks to implement a harmonic
music piece. Visual feedback like it was realized by Tamara Berg et al. [14] or any
user interface exceeding the aural feedback from the system is out of the scope of
this thesis.

In conclusion the objective of this thesis’s system opposed to the already existing
state of the art projects can be expressed as follows: In order to create a harmonic
sound pattern as an output to generate a creativity inspiring circle, the system im-
plements an approach using the whole body instead of only body parts. In contrary
to recognizing certain gestures mapped to specific sounds, a rhythm is detected.
The user should be able to actively influence the musical output, which should be
generated in real time. Therefore, three criteria can be extracted, further evaluated
in Chapter 5: Firstly, a real time approach should be implemented, secondly, the
user ought to be able to influence the musical output by his entire body motion and
thirdly, the aural output shall sound harmonious and creativity inspiring.

14http://www.pointmotioncontrol.com/pilotprogram, Accessed: 24.6.19
https://www.bostonmagazine.com/health/2016/05/09/point-motion/, Accessed: 24.6.19

21

3. Music Theory

3.1. Musical Terms Definition

Music theory is used to differ between various music pieces and categorize them
into different genres where the music elements are similar or the same. Rhythm
and pitch are the most basic elements music is built with 1. Among these, there are
harmony, timbre and texture which define a music piece [19].

In the following the terms needed for this thesis will be explained: Catherine
Schmidt-Jones and the website “Deciphering Music Theory” explain a rhythm as
follows: [19]1 Music is dependent on time, therefore, without time there is no music.
Rhythm is the placement of pulses in time. A rhythm is hence a repeating pattern
organizing the music into bars and phrases. It is created through a repetitive pulse.
Visualizing speaking the rhythm is “the part of the song your toes tap along to and
your head nods to” 2.

The beat can have different meanings but in this thesis is referred to as a repetitive
rhythmic pattern which maintains a steady pulse. However, there does not have to
be a pulse on every beat. [19]. One beat can have different values e.g. quarter
notes or eighth notes. The beats are organized in bars, which usually contain the
same amount of beats with a leading stronger beat at the beginning [19]. The time
signature indicates how many beats are grouped into one bar by the upper number,
whereas the lower number displays the beats value 3.

The tempo is the velocity in which the rhythmic pattern or the beat is played. It
is measured in Beats per Minute (bpm). The genre is also widely influenced by the
tempo as e.g. hip-hop has a bpm ranging from 60-100 and techno from 120-140 4.

The musical output of the proposed system is based on loops. A loop is a short
piece of music which can be repeated seamlessly and therefore be used to build
up an entire song. It is especially useful to create a drum rhythm as this usually
consists of a 1- or 2-bar rhythm repeated over time throughout the music piece 5.

According to Catherine Schmidt-Jones [19] harmony is established through more

1http://decipheringmusictheory.com/?page_id=662, Accessed: 25.7.19
2https://www.dummies.com/art-center/music/how-to-establish-rhythm-in-music-theory/, Accessed:

25.7.19
3https://music.tutsplus.com/tutorials/the-theory-of-rhythm-in-music–cms-19823, Accessed: 25.7.19
4https://learningmusic.ableton.com/de/make-beats/tempo-and-genre.html, Accessed: 25.7.19
5https://www.dummies.com/art-center/music/recording-music/creating-musical-loops/, Accessed:

25.7.19

23

3. Music Theory

than one pitch playing at the same time. It is defined through the relationship of
the notes that happen in parallel. “Harmony does not have to be particularly ‘har-
monious’” [19], however, in this thesis the goal is to create a harmonious sounding
harmony consisting of a drum line and a melodic line, which in this case is a guitar
line. The melodic line “is just another term for the string of notes that make up the
melody” [19].

3.2. Human Perception of Rhythm

As stated by Sam Brinson [20] “a good rhythm is imperfect”. Sound generated by
computers without the help of neural networks lack a certain humanoid effect to be
as enjoyable as human fabricated music. This fact is also encouraged by Taylor Beck
[21] who researched in this area with the intend to find a better way to humanize
computer-generated music.

Furthermore, Bruno Repp elaborates in his article [22] that mistakes in musical
performances, like a note played wrong, a left out note or a played note where none
was written, often go unnoticed. In his study only 38% of the errors were detected
by musicians themselves.

These facts built an important factor for this system’s real time evaluation further
explained in Chapter 5. As imperfections and mistakes in the rhythm are not dis-
turbing the harmonic perception of a sound pattern but somehow can enhance the
musical experience, the system is left with enough time to detect a beat and output
it.

24

4. Implementation

4.1. System’s Components

4.1.1. Hardware Elements

Microsoft Kinect

For this thesis a Microsoft Kinect was used as motion capture system. Developed
primarily for a gaming console, measurements are “affected by some unavoidable
error sources” [23]. However, the accuracy still satisfies the requirements for the pro-
posed purpose. In order to assure more precise skeleton tracking, a Kinect version
2 is used, which outruns the version 1 in precision [24]. The Xbox One model 1520
used in this thesis was released on November 22, 2013 1.Together with a universal
serial bus adapter it is used as a Kinect for Windows v2.

Figure 4.1.: Hardware structure of Kinect version 2

The technical details are as follows [23, 10]: The Kinect version 2 consists of
two cameras, a depth sensor and a microphone. The two cameras can be seen in
Figure 4.1: an RGB camera on the left and an infrared (IR) camera to the right of
the RGB camera. The IR camera is supported by three projective pulse modulated

1https://www.spiegel.de/netzwelt/gadgets/microsoft-konsole-xbox-one-erscheint-am-22-november-
im-deutschland-a-920421.html, Accessed: 17.7.19

25

4. Implementation

infrared projectors situated to the right of the infrared camera. These illuminate the
examined space and rough objects, pervade glass and form speckles which can
be read by the IR camera. The RGB camera provides a full high definition color
picture with 1920 x 1080 pixels at a maximum of 30 frames per second, whereas
the IR camera resolution is 512 x 424 pixels. The depth sensor is based on Range
Camera technology provided by PrimeSense. It applies the Time of Flight method to
generate the depth image from the information of the IR spectrum. “The depthmaps
are 2D images 16 bits encoded in which measurement information is stored for
each pixel” [23]. The depth map origins from the same lense as the IR camera and
provides the same resolution.

The speech recognition and sound source location are based on four micro-
phones. The sound system supports 3D stereo speech, digital signal processing
and filters the background noise at the same time. The set of quaternion micro-
phone arrays is located at the bottom of the Kinect as it can be seen in Figure 4.1.

Functions provided by the Kinect version 2 are dynamic motion capture, image
recognition, speech recognition and aural input. The sensor is able to track six
skeletons parallel, each supporting 25 skeletal body joints. In addition, the player’s
heart rate and facial expression can be observed as well as the weight put on each
limb and the velocity of these. Furthermore, the Kinect version 2 also supports
thumb tracking and can therefore be used to identify hand gestures. The operative
measuring range reaches from 0.5 m to 4.5m and has an angle of view of 70 x 60
degrees. A summary of the technical details can be seen in Table 4.1.

Table 4.1.: Technical Features of Kinect version 2 Sensor [23]
Description Value
Infrared (IR) camera resolution 512×424 pixels
RGB camera resolution 1920 × 1080 pixels
Field of view 70×60 degrees
Framerate 30 frames per second
Operative measuring range from 0.5 to 4.5 m
Object pixel size (GSD) between 1.4 mm (@ 0.5 m range)

and 12 mm (@ 4.5 m range)

The sensor provides skeleton tracking based on an algorithm developed by the
Microsoft Research Institute of Cambridge using the depth image. The technology
is based on the Time of Flight method which works as follows: the observed scene
is illuminated by the infrared projectors. The camera measures for every image point
the time needed for the light to travel from emitter to target and back. Considering
that the measured time is proportional to the distance-to-object measurement, for
every image point the distance of the observed object can be calculated.

The Kinect version 2 supports point clouds as well as colorized point clouds. The

26

4.1. System’s Components

first step to generate a point cloud is to create a pixel matrix with depth values
based on the depth map. To transform the two dimensional data into 3D data, the
provided mapping function from the Software Developement Kit (SDK) can be used
or an implementation using perspective projection can be applied, both methods
resulting in a list of X,Y,Z – coordinates. The list can then be represented as a point
cloud. In order to obtain a colorized point cloud, the color image has to be used.
However, it has to be transformed first as it supports a different resolution. For the
transformation of the colorimetric information a mapping function from the SDK is
applied returning a pixel matrix with color information for ever pixel of the depth map.
In the last step the list of X,Y,Z – coordinates is combined with the color information
and displayed as a colorized point cloud. The whole process is illustrated in Figure
4.2.

Figure 4.2.: Schematic representation of input and output of Kinect version 2

4.1.2. Software Elements

Kinect Data Processing

For the proposed system the programming language Python was used to imple-
ment the algorithm explained further in Section 4.2. Python provides an extensive
number of libraries which can be included to limit the complexity of the code. As a
result, the code not only gets simpler but also shorter, which assists to keep a better
overview over the code’s structure. Furthermore, it is simple to use and compar-
atively easy to learn. In addition, for implementing a virtual environment the open

27

4. Implementation

source distribution Anaconda was used as well as PyCharm by JetBrains 2 as inte-
grated development environment.

To interact with the Kinect on programming level, the open source library pykinect2
was included available on GitHub 3. For working with this library, Anaconda 32-bit
version, including NumPy, the comtypes library and the Kinect for Windows SDKis
needed. Anaconda 4, on the one hand, is a Python and R programming language
distribution for data science and machine learning. It facilitates libraries, package
and environment management. The SDK, on the other hand, "enables develop-
ers to create applications that support gesture and voice recognition, using Kinect
sensor technology on computers running Windows 8, Windows 8.1, and Windows
Embedded Standard 8"5. The library itself can easily be installed with the aid of
pipinstall. As written on the project’s website the library “Enables writing Kinect ap-
plications, games, and experiences using Python” 3.

Alternatively to the pykinect2 library, one could also use OpenNi and NITE as
Tamara Berg et al. in [14]. “OpenNI (Open Natural Interaction) is a multi-language,
cross-platform framework that defines APIs [Application Programmin Interface] for
writing applications utilizing Natural Interaction” [15, Eco].It enables the communi-
cation between visual and aural sensors. It provides e.g. a representation of the full
body calculated out of the sensor’s input data. The NITE middleware provides the
functionality of gesture and skeleton tracking [16]. OpenNi and NITE, however, need
a lot of setup beforehand resulting in a lot of time-consuming work, which makes
pykinect2 preferable in terms of effectiveness. Furthermore, there is Libfreenect
with OpenKinect 6 which is a “userspace driver for the Microsoft Kinect” and sup-
ports RGB, Depth Images, Motors, Accelerometer and Audio. In spite of all that,
it does not support any skeleton tracking and is therefore also inapplicable for this
system. The last alternative is to use the Microsoft Kinect SDK with C++, which
also requires more setup and, in addition, involves a more complex programming
language by using C++. As a result, the pykinect2 library was estimated to be the
best choice to implement this thesis’s system.

The library provides certain functions which were used for the algorithm’s imple-
mentation: The PyKinectRuntime class yields several methods, on the one hand, to
get information about the status, and on the other hand, to get data. Former, for ex-
ample, indicates if there is a new color frame or body frame detected by the Kinect,
later returns the data to the color or body frames itself. Furthermore, there are
methods e.g. body_joint_to_color_space() which can convert the joint coordinates
to color space returning all skeletal joints. 26 joints are supported by the Kinect and
also by the pykinect2 library. The PyKinectV2 file assigns numbers to joints, as a

2https://www.jetbrains.com/pycharm/, Accessed: 1.8.19
3https://github.com/Kinect/PyKinect2, Accessed: 1.8.19
4https://www.anaconda.com/distribution/, Accessed: 1.8.19
5https://www.microsoft.com/en-us/download/details.aspx?id=44561, Accessed: 1.8.19
6https://github.com/OpenKinect/libfreenect, Accessed: 1.8.19

28

4.1. System’s Components

result, the number 16, for example, resembles the right hip joint. Every joint provides
its location as x- and y-values as well as its orientation.

The process of getting a x- or y-coordinate from a specific joint point is visualized
in Figure 4.3. Firstly, a Kinect object has to be instantiated, secondly, the last
body frame has to be requested with the get_last_body_frame() method, thirdly, the
bodies of the requested frame have to be saved, which results in an array with all
six available skeletons. The appropriate index for the one tracked skeleton has to be
used to store the needed skeleton and then its joints can be extracted. These joints
are given to the body_joints_to_color_space() method to get all 26 joint coordinates
as an array. The last step is to choose the right index for the needed joint and decide
if the x- or y-coordinate is needed.

Figure 4.3.: Schematic representation of acquiring coordinates from joint points via
pykinect2

Components of the Sound Output System

The sound output system is displayed in Figure 4.4 and Figure 4.5, differentiating
between a simple and a more complex one applied by different versions of the al-
gorithm. For version evolution, please refer to Section 4.3.1. The audio output of
Version 1 and 2 uses the winsound library to output a beep noise displayed in Figure
4.4. The winsound library provides a function called Beep() which takes a certain
duration and frequency as input and then outputs the defined sound through the
computer’s audio output device.

The sound output system from Version 3 ongoing, visualized in Figure 4.5, is
more complex. Sound samples from Looperman 7 are stored in a local file on the
computer. Using the SQLite a local database is created. The database consists of
the bpm of the sound loops, which serves as primary key, and four paths stored as

7https://www.looperman.com, Accessed: 7.8.19

29

4. Implementation

Figure 4.4.: Schematic representation of the simple sound output system

strings. These paths lead to a drum loop file in a Waveform Audio File Format (WAV)
matched to the bpm as well as three guitar loops with the identical bpm. Working
with the pydub library, the individual loops are altered and combined as needed
and stored again. To combine two loops, they are first compared by their length.
Afterwards, the shorter loop is overlaid by the longer one, which automatically cuts
the longer loop to the length of the shorter and therefore results in a combined loop
where drum and guitar sound are audible until the end. These combined loops
are then played with the aid of the playsound library which provides a playsound()
method. This method takes in a path and outputs the audio file, which is stored at
that path, via the sound output device of the computer.

4.2. Structure of the Algorithm

In this chapter it will be elaborated how the underlying algorithm of the system works
concentrating on the latest version of the algorithm: Version 6: Constant Drum Loop
and Variable Guitar Loop. The next section, however, will discuss the differences to
former versions.

The entire process can be divided into two phases as it can be seen in Figure
4.6: the calibration phase and the sound generation phase. The objective of the
calibration phase is to calculate the mean value between two consecutive detected
beats, whereas in the sound generation phase a harmonic musical output should be
generated based on the mean time value provided by the calibration phase.

30

4.2. Structure of the Algorithm

Figure 4.5.: Schematic representation of the complex sound output system

4.2.1. Calibration Phase Structure

The process of the calibration phase is displayed in the upper half of Figure 4.7. In
order to detect a beat, the coordinate joints of the hip have to be stored in a usable
way. The find() method of the Videostream class returns the needed joint point coor-
dinate of the hip joint. These are then used as a input for the calculations.velocity()
method which calculates the velocity of the hip joint in x-direction. Using this calcu-
lation, the beat() method, which is can be seen on the right hand sight, is able to

31

4. Implementation

Figure 4.6.: Schematic representation of the algorithm’s phases

detect if a beat occurred. Based on the output of this function, the main file outputs
a simple beep sound using winsound.

Afterwards, as shown on the left hand side, the mean time value between two
consecutive beats is calculated and returned by the ConstDrumBeat class method
calc_mean_time(), which results in the end of the calibration phase.

32

4. Implementation

Fi
gu

re
4.

7.
:F

lo
w

ch
ar

tr
ep

re
se

nt
at

io
n

of
th

e
al

go
rit

hm

34

4.3. Approach

4.2.2. Sound Generation Phase Structure

The first step in the sound generation phase is to calculate the bpm out of the mean
time value between two consecutive beats as it can be seen in the lower half of
Figure 4.7, presenting the sound generation phase. This can then be used to
choose the appropriate sound samples which are best fit to the movement speed of
the user. The bpm() method always returns a bpm value to which an appropriate
drum and guitar loop can be found in the database.

As displayed on the left hand side of Figure 4.7 this bpm is given as an input vari-
able to the playdrum() method of the DrumGuitarSample class, which then takes the
appropriate path string from the database and plays the drum loop via playsound.

The system is able to output three different guitar loops to every chosen drum
loop. In order to choose the right guitar loop to combine with the existing drum
loop, the hand position of the right hand has to be tracked. Therefore, like in the
calibration phase the method find() of class VideoStream provides the needed joint
coordinates, in this case the right hand middle joint. These coordinates are fed into
the get_line() method belonging to the calculations file which is a simple mapping
function. It maps the three guitar lines to upper, middle and lower area of the Kinect’s
tracking range and returns the guitar line variable.

The guitar line variable is used together with the bpm value to add in a guitar loop.
The process is illustrated in the lower right corner of Figure 4.7: The playguitar()
method of the DrumGuitarSample class takes both values as input and outputs with
the aid of the sample database the appropriate combination of drum and guitar loop.

After the loop is played, the main file checks again for the hand position using the
same cycle as before: getting joint coordinates from videostream.find() and updat-
ing the suited guitar line from caclulations.get_line(), which is then used to play a
different drum guitar combination with playguitar() if necessary. This loop process
is also visualized on the bottom of Figure 4.7. For a extended version on how the
algorithm works, please refer to Section A.1 in the appendix.

4.3. Approach

4.3.1. Version Evolution Outline

Figure 4.8 visualizes the different versions through which the algorithm developed.
The first version, an unsteady simple pulse, supports only a basic beat as the

only sound played is a beep noise with a defined frequency and duration. The beep
sound always occurs when a beat is detected and gives immediate aural feedback
to the user.

The second version, a steady simple pulse, introduces the two-phase system. In
the calibration phase the time between two consecutive detected beats is measured

35

4. Implementation

Figure 4.8.: Schematic representation of the algorithm’s version evolution

and a mean value is calculated representing the mean time between two consec-
utive beats in the user’s dance style. The mean time is used to generate a steady
pulse to form a beat usually as explained in Section 3.1. In Version 2 the steady
pulse is yet only a beep sound with defined frequency and duration.

Version 3 implements a constant drum beat. To change from a steady pulse to an
actual drum beat, the beep sound is exchanged with sound samples of hi-hat, snare
and drum. These single WAV files are ordered and combined to build a simple drum
beat.

In Version 4, drum loops instead of single note samples are used to create a
drum beat. After calibration phase, the mean time value is transferred to a bpm
value which indicates the tempo of a music piece, see Section 3.1. With SQLite a
database is generated, storing a different drum loop WAV file for various bpm values.
After the bpm value is calculated, the appropriate drum loop is chosen and played
continuously. As a result, the speed of the user’s movement influences the tempo of
the music piece because the beat detected in the motion data matches the rhythm
in the chosen drum loop as they have identical bpm.

Version 5 adds a guitar loop to the drum loop of Version 4. Therefore, the
database also stores a suited guitar loop for every stored bpm value.

To reach the last algorithm version, Version 6 (Constant Drum Loop and Variable
Guitar Loop), three different guitar loops are stored in the database for every saved
bpm value. The choice of the guitar loop is based again on the user’s movement
data to give the user more influence on the music.

For more details on how the algorithm evolved, please refer to Section A.2 in the
appendix.

36

4.3. Approach

4.3.2. Motion Tracking Methods

In order to find the best working motion tracking method for beat detection, different
approaches have been tested. The methods can be classified by the body joints
which were used to build the model. Three different body joints have been consid-
ered as it can be seen in Figure 4.9: Foot joint, hip joint and head joint.

Figure 4.9.: Block diagram of the different motion tracking methods

The method used for the proposed algorithm is the velocity method using the hip
joint. The idea of the approach is to detect a beat when the hip is at the most
outward location as this resembles how people dance when moving the hips to a
rhythm. To implement this, the velocity of the hip joint is tracked and searched for a
change in sign which indicates that the hip reached his most outward position. For
further information please refer to Section 4.2. This approach evaluated to work the
best as it, on the one hand, detected almost every expected beat and, on the other
hand, also worked for faster movements.

Another method evolved as some people dance to a beat through jumping every
time the pulse occurs. In order to track this “jumpstyle” dancing, several approaches
were implemented. On the one hand, the hip joint was used together with the same
approach as of the velocity method except for tracking the y-coordinate value in-
stead of the x-coordinate value (Jump_Velocity_Hip.py). In addition, the beat was
only detected for one of the sign changes resulting in the fact that the beat is only
identified when getting back on the ground or when reaching the maximum of the
jump in air depending on the chosen sign change. To improve this approach the

37

4. Implementation

if-clause, checking for velocities near zero and excluding beat detection in that case,
was deleted as jumping from the floor always starts with a velocity near zero.

A similar approach implemented the same idea, however, using a mean value of
the two feet joints instead of the hip joint (Jump_Velocity_Foot.py). This should avoid
the problem that the hip can move below its initial value because knees are getting
bent when absorbing the jump’s shock.

These two methods, however, did not catch all intended beats and furthermore,
detected some when nobody was jumping. Because of that unreliable output, it was
not conducted further.

On the other hand, another method, concerning the location instead of the veloc-
ity, was implemented once using the hip joint (Jump_Location_Hip.py) and once the
mean value of the two feet (Jump_Location_Foot.py). For that purpose, a standard
value was set in the beginning, indicating where hip or feet are positioned in the
initial state. A beat was said to be detected when the difference between current
value and standard value, called boundary value, got big enough, reached a maxi-
mum and was thus diminishing again. However, the user needed to jump very high
to trigger a detected beat. Another problem that occurred with this approach was
the dependency on the distance from user to the Kinect as a certain boundary value
worked best with only a constant distance from the Kinect. Because of these draw-
backs and the ones mentioned above for the method geared to the velocity method,
the jump tracking approaches all together got neglected in the further development
of the algorithm.

Considering that some people dance only by nodding their head, one ap-
proach tried to track the head joint using the velocity method on the y-coordinate
(Head_Noding.py). The results, nonetheless, were estimated as poorly, which might
be attributed to the fact that the head joint is only one joint, not moving extensive
enough to detect a change in velocity accurately.

An approach using one of the hip joints as well as both feet joints is the angle
method (Angle_Method.py). It is based on the angle between two vectors, one
reaching from the right foot to the left foot and the other from the left foot to the
left hip. The needed vectors were calculated through subtraction of the joint vectors
which were saved in a matrix ring buffer beforehand. Afterwards, the vectors were
normed using the linear algebra functions library from numpy. Applying the arccos
function, the angle between the two vectors was calculated. In the next step, the
change of angle was calculated and also stored in a ring buffer similar to the velocity
calculation in the velocity method. Furthermore, the current value was compared to
the recent one looking for a change in sign. This change in sign was triggering the
beat output sound as it indicated that the biggest deflection of the hip joint had been
reached. However, the method was also not detecting all intended beats and was
outperformed by the velocity method in terms of accuracy.

38

4.4. Problems and Solutions

4.4. Problems and Solutions

4.4.1. Calibration Phase

The first problem faced in the calibration phase was due to the Kinect’s ability to
track up to six skeletons parallel. Therefore, when the Kinect observed more than
one skeleton, a constant beep sound occurred indicating a permanent beat detec-
tion. In order to solve this problem, the find() method of the Videostream class got
adapted to only use the first tracked skeleton for any further calculations, all other
tracked skeletons get neglected. As a result, another person stepping in the Kinect’s
range does not disturb the process. When the Kinect loses track of the observed
skeleton, it outputs a “No body found” string and waits for 0.2 seconds before search-
ing again for this skeleton. Another consequence of the problem’s solution is that
only the same person which was observed when starting the algorithm will be iden-
tified as the tracked skeleton when stepping back into the Kinect’s range. Therefore,
to change the person being tracked by the algorithm, the program has to be rerun.

Another problem occurring at the calibration phase was that beats got detected
when moving only rarely or not at all. This was due to the algorithm motion tracking
method to detect the velocity sign change which occurs almost permanently when
standing still as every person always moves slightly or shifts weight. To solve that
problem, another if-clause was added checking if the change in velocity was greater
than a certain threshold. If the difference between the velocity before and after sign
change is sufficient, a beat gets detected otherwise it gets dismissed.

Furthermore, it should be ensured, that the time interval t after which a new skele-
ton frame is requested from the Videostream class is constant. As calculations take
different amount of time, depending on the fact whether a beat was detected, the
sleep time of the algorithm has to be adapted. To find a solution, first, the calculation
time was observed reaching from almost 0 seconds when no beat was detected to
around 0.3 seconds for a beat detection and output. In the next step, a sleep-time
function was created belonging to the Calculation class. It takes two time-stamps as
input, one before requesting the next skeleton frame and one after beat calculation
and beat output in case of detection. Taking the predefined time interval t invoked
with the implementation of the Calculation class, the method outputs the sleep-time
needed by subtracting the time difference from the time interval t. By this means, it
is guaranteed to have a constant time interval t between two successive used time
frames. However, in case of a chosen time interval which is shorter than the time
needed for calculations, a constant time interval cannot be assured.

4.4.2. Sound Generation Phase

The first problem occurred in the sound generation phase between Version 2,
Steady Simple Pulse, and Version 3, Constant Drum Beat. For the description of

39

4. Implementation

the different versions please refer to Section4.3.1. In the beginning the idea for Ver-
sion 3 was to exchange the Beep noise of the unsteady beat with WAV files of drum
samples every time a beat gets detected. This idea, however, stated two problems:
On the one hand, the length of the WAV files exceeded the duration of the beep
noise which was set to 300 milliseconds causing problems when beats got detected
fast after each other, on the other hand, an unsteady drum pattern which was the
sound output result of the idea did not match the systems objective of a harmonious
sounding output as a unsteady drum pattern is not a enjoyable aural experience.
To improve the former problem, the WAV files were shortened to the best possible
extend. As a result, faster beat rhythms could be established, yet the WAV files still
constituted an upper limit to the speed of the beat rhythm, which was eventually
solved through the use of complete drum loops in Version 4.

To solve the later problem of the unsteady drum pattern, Version 3 evolved, divid-
ing the process in a two stage system: The calibration phase with a unsteady beep
noise pulse and the sound generation phase which used a steady drum pattern with-
out changes in velocity, based on the mean time of the unsteady beep noise pulses
beforehand. The result was a harmonious sounding drum rhythm after calibration
phase which therefore met the objective’s requirements.

The second problem developed when trying to implement a guitar line suiting
the drum line. Research yielded the information that sound samples of guitar lines
consisted rather of complete loops instead of single note WAV files as used so far.
However, using complete guitar loops faced following problems: on the one hand,
a guitar loop had to be found which matched the outputted steady drum rhythm,
stating the question, what kind of matching criteria were appropriate. On the other
hand, the already existing drum rhythm consisted out of single WAV files so far. As
the one audio output device could not play two sounds in parallel, the drum rhythm’s
WAV files and the guitar loop WAV files respectively, the drum rhythms would first
have to be transferred to a single WAV file and subsequently combined with the
guitar loop file. As a result, the algorithm would have to create WAV files by itself.

The alternative was to use single note or chord sound samples for the guitar line
as well. Problems faced by this alternative were: Firstly, for building up a new guitar
line, extensive musical expertise and guitar knowledge would have been needed.
Secondly, the single note or chord sound samples could not create a fluently sound-
ing guitar line. This was caused through the fact that a string is usually still vibrating
and creating audio waves when the next string is played, but with single note files
the sound “played” before has no influence on the next WAV file which then cre-
ates a choppy sound. Thirdly, the various single note WAV files would have to be
combined beforehand, therefore, stating a calculation and programming effort which
would increase exponentially when another line e.g. a bass line would be added.

Considering advantages and disadvantages of both alternative, the first alterna-
tive, using loops, was further pursued. However, instead of creating a new WAV file
out of the drum rhythm, the single WAV files were exchange with a complete drum

40

4.4. Problems and Solutions

loop as well based on the mean time of the calibration phase. This yielded Version
4, a constant drum loop. For further details please refer to Section 4.3.1.

To match the drum and the guitar loop in an appropriate manner, they have to have
the same bpm, for technical music term definitions see Section 3.1. Therefore, the
bpm states the solution as a matching criterion to create a harmonious sounding
output. In order to output the drum and the guitar line on a single audio output
device, the two WAV files have to be combined to a single WAV file beforehand.
However, the calculation effort was decreased tremendously as only two files had to
be overlaid. This approach resulted in Version 5, a constant drum and guitar loop.

Another problem occurred because of the used pydub library. To combine two
WAV files, they are overlaid and afterwards exported. When exporting a file with the
same name twice in one program run, windows throws an error, because the file
gets opened twice without being closed in between. The first implementation idea
to always use the same combined file and store the right combination of drum and
guitar loop in this file before playing it via playsound, did throw the described error.
To avoid this error, the three combinations of the drum loop with the three different
guitar loops are generated and stored in the first iteration of playing and thencefor-
ward not altered anymore but merely chosen depending on the hand position. For
further explanations please refer to Section 4.2.

The last problem faced in the sound generation phase concerned the crossover
between the single loops. As a loop sample only consists of several seconds, it
eventually has to be looped. When using a perfect music loop, the end should
match the beginning perfectly. However, the used loops sometimes do not merge
perfectly, so there occurs a hear-able disruption when looping. To improve that aural
experience, one loop is appended at itself with a cross fade of 30 milliseconds. This
ensures a smoother transition and is yet a short enough cross fade period to avoid
suppressing the first beat in the next loop which usually is the most accentuated and
therefore crucial for the aural perception.

41

5. Evaluation

This chapter discusses the results of the proposed system taking into account three
predefined evaluation criteria. Firstly, the real time implementation, secondly, the
influence the user has on the system, and thirdly, the harmonious sounding output
criterion.

The system has a real time requirement as the motion data of the user should
be transformed to music output as fast as possible. This requirement ensures that
the user can more easily understand his influence on the aural output which states
the second evaluation criterion. The algorithm is coded with the help of python
which uses an interpreter instead of a compiler and is therefore limited in speed.
However, it is still sufficiently fast for this application. When calculating if a beat was
detected, maximum calculation time adds up to 0.3 seconds. A time interval of 0.3
seconds between two consecutive frames was tested to be sufficient to track beats
accurately. Choosing a even smaller time interval of less than 0.3 seconds did not
result in more exactness concerning beat detection. As a result, calculation is done
fast enough to ensure real time application given the findings of Section 3.2.

The beep noise occurring in the calibration phase, for further details please refer
to Section 4.1.2 and Section 4.2, serves as almost immediate aural feedback for
the user and also supports the real time criterion because the beat does not have
to occur exactly on point as stated in Section 3.2. After calibration phase, the bpm
is calculated and the appropriate drum loop is outputted without any concerning la-
tency disturbing the user’s experience which again satisfies the real time approach.
Similar to the drum loop, the guitar loop is added without hear-able latencies. The
drum and guitar loop are humanoid products and therefore, contain already some
rhythmic errors which makes them sound more enjoyable, for further information see
Section 3.2.

However, concerning the real time influence of the user on the guitar line through
his right-hand position some concessions had to be made. The hand position is not
checked permanently but only after one guitar line loop has ended as it would not
sound harmonious changing mid-line. Therefore, there is a tension between the real
time criterion and the harmonious sounding output criterion where an appropriate
balance has to be found. As a solution, after the entire loop has been played the
next guitar line is chosen and outputted in real time according to the hand position.
For the user’s experience, however, this might lead to the observation that he has
no immediate influence on the guitar line by moving his hand as it only influences
the guitar line at certain points in time. As a conclusion, one can say that the real

43

5. Evaluation

time criterion has been achieved, however, in the later part of the algorithm could be
improved.

The second criterion deals with the influence the user has on the actual output
and evaluates to which extend he can be aware of his influence. In the acclimatiza-
tion phase which is the beginning of the calibration phase, defined in length through
the variable acc, the user can generate a beep noise through is hip movement. The
acclimatization time is needed to give the user the possibility to understand his influ-
ence on the beat generation which he can observe by the immediate aural feedback.
Through his speed of motion, he can actively determine the bpm for the drum loop
and therefore the tempo of the complete sound output. However, once the tempo is
set, it stays steady as changing the tempo concurrent to the user’s movement speed
would interfere with the harmonious sounding output criterion. When the rhythm is
set, the user can still actively influence the melody by moving his right hand up and
down. However, there is no immediate aural feedback because the system checks
the hand position only in certain time intervals as described above.

Therefore, the user indeed has influence on the musical output, even real time
influence on a certain extent. His awareness of his influence is determined through
his own observations and realizations throughout the acclimatization time and by
the fact if he understands how to generate a detected beat. The user could also be
informed how the algorithm works to enable a better understanding of his influence.
This would decrease the time it takes for the user to figure out that his hip movement
is mapped to the beat detection and later on that his hand position determines the
guitar line. This would lead to a more natural usage of the system instead of a try and
error approach of the user. The system is missing a visual feedback implementation
which could further enhance the usability. In spite of the beneficial contribution of
a visual feedback, this implementation was out of the scope of this thesis objective.
Concluding one can say that the influence criterion is achieved with this system,
however, it could be further enhanced through a more real time approach in the
sound output phase or through a visual feedback system.

The last criterion evaluates the systems goal to output a harmonious sounding
musical output which therefore can inspire the user positively in his movement.
Thus, a creativity inspiring circle is generated where computer system and human
enhance each other. The sound output of the calibration phase is just a simple beep
noise of a certain duration and frequency which by itself cannot be described as
music. However, the calibration phase has no claim to inspire by itself but to set the
basics for the sound output phase which therefore is the creativity inspiring phase.
The drum loop generated in the first step of the sound output phase is combined of
different percussion instrument parts like hi-hat or cymbal and thus sounds not as
monotonous as the beep noise. As a loop is already a music piece itself as stated
in Section 3.1, the criterion is already achieved to a certain extend. Furthermore,
as there are drum loops for different tempos the likelihood of originating the same
drum loop twice in different program runs is rather small and results in a new aural

44

experience for the user every time the system is rerun. To counteract the monotony
which develops as the loop is continuously replayed, the guitar line is added. As
there are also three guitar lines for every bpm stored in the database, it supports
the concept to create a unique aural experience every time the system is rerun. The
guitar lines are matched according to their bpm which also results in a harmonious
sounding output and generates a music piece with a guitar melody underlined by
percussion sounds. To prevent the musical output of a single system’s run to get
to repetitious as guitar lines are also looped, the output switches between the three
lines depending on the user’s input and therefore creates three completely different
musical pieces. In summary, the harmonious sounding output criterion is accom-
plished in the output phase through a variety of drum loops and thrice as many
guitar loops matched appropriately.

In Table 5.1 is presented to which extend the three criteria are realized by the
different algorithm versions explained in Section 4.3.1. The amount to which the
criterion was achieved is estimated by a number reaching from one to five with five
stating that the criterion was fully accomplished and one resembling that the criterion
was fulfilled to a unsatisfying extend.

Table 5.1.: Accomplishment of the Evaluation Criteria in the Version Evolution
Real Time User’s Influence Harmonic

Output
Version 1 5 5 1
Version 2 4 3 2
Version 3 4 3 3
Version 4 4 3 4
Version 5 4 3 5
Version 6 5 5 5

As one can see, the real time criterion and the user’s influence were already
achieved in Version 1. However, as there exists tension between this two criteria and
the harmonic output criterion, they declined again as the harmonic output criterion
got improved with every version evolution up to Version 5. Despite the worsening
in Version 2 to 5, Version 6 achieves to balance out the three criteria and hence all
three criteria of the system’s objective have been achieved to as satisfying extend.

45

Acronyms

bpm Beats per Minute

IR infrared

Max/MSP Max/Max Signal Processing Software

MIDI Musical Instrument Digital Interface

OpenNi Open Natural Interaction

OSC Open Sound Control

RGB Red-Green-Blue Color Space

SDK Software Developement Kit

WAV Waveform Audio File Format

i

Bibliography

[1] A. Pennycook, “Actions speak louder than words: Paralanguage, communica-
tion, and education,” TESOL Quarterly, vol. 19, 06 1985.

[2] K. Jones and K. Barker, Human Movement Explained, ser. Physiotherapy
practice explained. Butterworth-Heinemann, 1996. [Online]. Available:
https://books.google.de/books?id=TGoPvgAACAAJ

[3] A. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone, “Can: Creative adversar-
ial networks, generating "art" by learning about styles and deviating from style
norms,” in Inproceedings of the eighth International Conference on Computa-
tional Creativity (ICCC), 06 2017.

[4] K. D. Skeldon, L. M. Reid, V. McInally, B. Dougan, and C. Fulton, “Physics of the
theremin,” American Journal of Physics - AMER J PHYS, vol. 66, pp. 945–955,
11 1998.

[5] K. Bijsterveld and J. v. Dijck, Sound Souvenirs - Audio Technologies, Memory
and Cultural Practices, 01st ed. Amsterdam: Amsterdam University Press,
2009.

[6] Y. Wu, P. Kuvinichkul, P. Y.K. Cheung, and Y. Demiris, “Towards anthropomor-
phic robot thereminist,” in 2010 IEEE International Conference on Robotics and
Biomimetics, ROBIO 2010, 01 2011, pp. 235 – 240.

[7] M. Hsu, W. G. C. W. Kumara, T. K. Shih, and Z. Cheng, “Spider king: Virtual mu-
sical instruments based on microsoft kinect,” in 2013 International Joint Con-
ference on Awareness Science and Technology Ubi-Media Computing (iCAST
2013 UMEDIA 2013), Nov 2013, pp. 707–713.

[8] E. Togootogtokh, T. K. Shih, W. G. C. W. Kumara, S.-J. Wu, S.-W. Sun, and H.-
H. Chang, “3d finger tracking and recognition image processing for real-time
music playing with depth sensors,” Multimedia Tools and Applications, vol. 77,
pp. 9233–9248, 05 2017.

[9] L. T. D. Paolis and P. Bourdot, Augmented Reality, Virtual Reality, and Computer
Graphics - 5th International Conference, AVR 2018, Otranto, Italy, June 24–27,
2018, Proceedings, 1st ed. Berlin, Heidelberg: Springer, 2018.

iii

https://books.google.de/books?id=TGoPvgAACAAJ

Bibliography

[10] S. Li, K. Xu, and H. Zhang, “Research on virtual guzheng based on kinect,” in
AIP Conference Proceedings, vol. 1967, 05 2018.

[11] A. Zlatintsi, P. P. Filntisis, C. Garoufis, A. Tsiami, K. Kritsis, M. Kaliakatsos-
Papakostas, A. Gkiokas, V. Katsouros, and P. Maragos, “A web-based real-
time kinect application for gestural interaction with virtual musical instruments,”
in Sound in Immersion and Emotion, 09 2018, pp. 1–6.

[12] S. U. Aswar, A. B. Deshmukh, and S. B. Rathod, “Creating musical instru-
ment using kinect sensor,” in Proceedings of WRFER-IEEEFORUM Interna-
tional Conference, 05 2017, pp. 50–54.

[13] J. Jean, Kinect Hacks: Tips & Tools for Motion and Pattern Detection,
ser. Hacks series. O’Reilly Media, 2012. [Online]. Available: https:
//www.oreilly.com/library/view/kinect-hacks/9781449332181/ch04.html

[14] T. Berg, D. Chattopadhyay, M. Schedel, and T. Vallier, “Interactive music: Hu-
man motion initiated music generation using skeletal tracking by kinect,” in Con-
ference: Society for Electro-Acoustic Music in the United States (SEAMUS), 02
2012.

[15] OpenNI User Guide, OpenNI organization, July 2011. [Online]. Avail-
able: https://github.com/OpenNI/OpenNI/blob/master/Documentation/OpenN
I_UserGuide.pdf

[16] Prime SensorTM NITE 1.3 Framework Programmer’s Guide, PrimeSense Inc.,
2010. [Online]. Available: https://andrebaltazar.files.wordpress.com/2011/02/ni
te-controls-1-3-programmers-guide.pdf

[17] M.-J. Yoo, J.-W. Beak, and I.-K. Lee, “Creating musical expression using kinect,”
in Proceedings of the International Conference on New Interfaces for Musical
Expression, 05 2011, pp. 324–325.

[18] L. Naugle, F. Bevilacqua, and I. Valverde, “Virtual dance and music environ-
ment using motion capture,” in In Proceeding of IEEE Multimedia Technology
And Applications Conference, 2001.

[19] C. Schmidt-Jones and R. Jones, Understanding Basic Music Theory.
OpenStax CNX, 2013. [Online]. Available: https://cnx.org/contents/KtdLe6cv@
3.74:_GmJ4ENa@7/Understanding-Basic-Music-Theory-Course-Introduction

[20] S. Brinson, “3 little facts about rhythm,” 11 2014, accessed: 12.8.19.
[Online]. Available: https://medium.com/world-of-music/3-surprising-facts-abo
ut-rhythm-49a9710ef38a

iv

https://www.oreilly.com/library/view/kinect-hacks/9781449332181/ch04.html
https://www.oreilly.com/library/view/kinect-hacks/9781449332181/ch04.html
https://github.com/OpenNI/OpenNI/blob/master/Documentation/OpenNI_UserGuide.pdf
https://github.com/OpenNI/OpenNI/blob/master/Documentation/OpenNI_UserGuide.pdf
https://andrebaltazar.files.wordpress.com/2011/02/nite-controls-1-3-programmers-guide.pdf
https://andrebaltazar.files.wordpress.com/2011/02/nite-controls-1-3-programmers-guide.pdf
https://cnx.org/contents/KtdLe6cv@3.74:_GmJ4ENa@7/Understanding-Basic-Music-Theory-Course-Introduction
https://cnx.org/contents/KtdLe6cv@3.74:_GmJ4ENa@7/Understanding-Basic-Music-Theory-Course-Introduction
https://medium.com/world-of-music/3-surprising-facts-about-rhythm-49a9710ef38a
https://medium.com/world-of-music/3-surprising-facts-about-rhythm-49a9710ef38a

Bibliography

[21] T. Beck, “When the beat goes off: Errors in rhythm follow pattern,
physicists find,” 7 2012, accessed: 12.8.19. [Online]. Available: https:
//phys.org/news/2012-07-errors-rhythm-pattern-physicists.html

[22] B. H. Repp, “The art of inaccuracy: Why pianists errors are difficult to hear,”
Music Perception: An Interdisciplinary Journal, vol. 14, no. 2, pp. 161–183,
1996. [Online]. Available: https://mp.ucpress.edu/content/14/2/161

[23] E. Lachat, H. Macher, T. Landes, and P. Grussenmeyer, “Assessment and cal-
ibration of a rgb-d camera (kinect v2 sensor) towards a potential use for close-
range 3d modeling,” Remote Sensing, vol. 7, pp. 13 070–13 097, 10 2015.

[24] O. Wasenmueller and D. Stricker, “Comparison of kinect v1 and v2 depth im-
ages in terms of accuracy and precision,” in Conference: Asian Conference on
Computer Vision Workshop (ACCV workshop), 11 2016.

v

https://phys.org/news/2012-07-errors-rhythm-pattern-physicists.html
https://phys.org/news/2012-07-errors-rhythm-pattern-physicists.html
https://mp.ucpress.edu/content/14/2/161

A. Appendix

A.1. Extended Algorithm Explanation

A.1.1. Calibration Phase Structure

The process of the calibration phase is displayed in the upper half of Figure 4.7. In
order to detect a beat, the coordinate joints of the hip have to be stored in a usable
way. To do so, the class Videostream is instantiated. It’s method find() takes as
input a joint_index, in this case 16 for the right hip joint, and a coordinate, x- or
y-coordinate or more specific a Boolean True or False respectively, and returns the
needed joint point coordinate.

At the first execution time, the method also has to iterate through the six possi-
bly tracked skeletons and determine the one, which is currently tracked and there-
upon set the value of the tracked variable. This ensures that the system cannot
be disturbed by another person stepping the tracking range of the Kinect. The
Videostream class itself is initialized with a source src which indicates if the Kinect
should be used for motion data capturing or a mock-up version instead.

The mock-up version was implemented to enable working with the algorithm with-
out the Kinect. It consists of a pre-recorded dance sequence, where the hip joint
x-coordinate is saved every 0.1 seconds in an array which in case of need is de-
serialized with the pickle module. In order to provide the coordinates of the appro-
priate frame in time, the input variable t, indicating the time difference between two
consecutive requested frames, is divided by 0.1. This yields the amount by which
the mockup-array’s index has to be incremented. By this means, the Videostream
class can always provide a coordinate independent of the Kinect as a data capturing
source.

The captured joint coordinates are then saved in a ring buffer and the Calcula-
tion class produces a mean value out of three consecutive x-coordinate values to
ensure a smoother output and avoid errors through jitter. Furthermore, the calcu-
lations.velocity() method calculates the velocity of the hip joint in x-direction. Using
these calculations the beat() method is then able to detect if a beat occurred. To
identify a beat, the velocity ring buffer is searched for a change of sign. If one is ob-
served, it is additionally checked if the difference between the consecutive velocity
values is higher than a certain predefined threshold value to sort out beats produced
through trembling or very small movements. Furthermore, the first movement start-
ing from a velocity equaling null is also excluded. In conclusion, a beat should be

vii

A. Appendix

detected at the peak when the hip is changing direction. The beat-detecting method
returns a Boolean value to the main file which, based on that value, outputs a simple
beep sound using winsound as it can be seen in Figure 4.7.

The mean time value between two consecutive beats is calculated by the Const-
DrumBeat class method calc_mean_time(). After enough beats are passed, indi-
cated by the acclimatization variable acc, the method stores the time at every de-
tected beat. Using this stored time stamps, it calculates the mean value between five
consecutive beats and returns it, which results in the end of the calibration phase.

A.1.2. Sound Generation Phase Structure

The first step in the sound generation phase is to calculate the bpm out of the mean
time value between two consecutive beats as it can be seen in the lower half of
Figure 4.7, presenting the sound generation phase. This can then be used to
choose the appropriate sound samples which are best fit to the movement speed of
the user.

The Calculation class has a method called bpm(), which takes the mean time
value as an input and returns the bpm value by dividing 60 through the mean time
value. However, before returning the bpm value, it verifies if the calculated value
exists in the database by comparing the value to a bpm array provided by the
get_bpm_array() function of the sample_database file. If the value exists in the
database, the bpm value is simply returned. If it does not exist, the method evokes
another method called find_nearest() which takes the bpm value and array and re-
turns the nearest bpm value to the calculated one which exists in the array and
therefore in the database. As a result, the bpm() method always returns a bpm
value to which an appropriate drum and guitar loop can be found in the database.

As displayed on the left hand side of Figure 4.7 this bpm is given as an input vari-
able to the playdrum() method of the DrumGuitarSample class, which then takes the
appropriate path string from the database and plays the drum loop via playsound.

The system is able to output three different guitar loops to every chosen drum
loop. In order to choose the right guitar loop to combine with the existing drum
loop, the hand position of the right hand has to be tracked. Therefore, like in the
calibration phase the VideoStream class method find() provides the needed joint
coordinates, in this case number 11, which belongs to the right hand middle joint.
These coordinates are fed into the get_line() method belonging to the calculations
file which is a simple mapping function. It divides the Kinect tracking range vertically
in three spaces, resulting in a lower, a middle and an upper area. Depending on
where the right-hand joint is located, a number is assigned to the guitar line variable,
the upper area resulting in a one, the middle in a two and the lower in a three. As a
result, the guitar line can be chosen by the movement of the right hand.

The guitar line variable is used together with the bpm value to add in a guitar loop.
The process is illustrated in the lower right corner of Figure 4.7: The playguitar()

viii

A.2. Extended Version Evolution Description

method of the DrumGuitarSample class takes both values as input. Furthermore,
it takes the appropriate path strings from the sample database and stores them.
Using the overlay() function of the pydub library, it combines both loops checking
beforehand which one is the longer one to cut it to the right length.

As the other drum and guitar loop combinations might also be needed later on,
all three possible combinations are already created and stored separately at the
beginning of the method. Additionally, a flag variable called have_to_calculate is
set to False afterwards to prevent calculating the combined files again. This avoids
an error which is thrown by windows when opening up a file again which is already
opened. This happens because the pydub library does not close the files after
exporting the WAV data. In the end, however, only the drum guitar loop combination
corresponding to the tracked guitar line is outputted by the playguitar() method.

After the loop is played, the main file checks again for the hand position using the
same cycle as before: getting joint coordinates from videostream.find() and obtain-
ing the suited guitar line from caclulations.get_line(), which is then used to play a
different drum guitar combination with playguitar() if necessary. This loop process is
also visualized on the bottom of Figure 4.7.

A.2. Extended Version Evolution Description

The first version, an unsteady simple pulse, supports only a basic beat as the only
sound played is a beep noise with a defined frequency and duration. The beep
sound always occurs when a beat is detected and gives immediate aural feedback
to the user. The algorithm consists of only one phase and does not differ between
calibration and sound generation phase.

The second version, a steady simple pulse, however, introduces the two-phase
system. As a beat usually consists of a steady pulse as explained in Section 3.1,
the system has to establish a constant pulse. To base the time intervals of the
steady pulse on the input motion data from the user, there is a calibration phase
needed. In the calibration phase the time between two consecutive detected beats
is measured and a mean value is calculated representing the mean time between
two consecutive beats in the user’s dance style. The algorithmic approach to that
is elaborated in Section 4.2. After that calibration phase, the mean time is used to
generate a steady pulse. In Version 2 the steady pulse is yet only a beep sound with
defined frequency and duration.

Version 3 implements a constant drum beat. To change from a steady pulse to
an actual drum beat, the beep sound is exchanged with sound samples of hi-hat,
snare and drum. These single WAV files are ordered and combined to build a simple
drum beat. The drum beat consists of eight notes in the length of one bar, which
is repeated over and over again. For the musical terms definition please refer to
Section 3.1. The hi-hat plays eighth notes. Therefore, it is playing on every detected

ix

A. Appendix

beat like the beep noise in Version 2. The snare joins the hi-hat on every third and
seventh note of every bar, whereas the kick-drum is played on every first, second,
fifth and sixth note of every bar.

As it is difficult to output two WAV files at the same time with one sound out-
put device, the sound sample files first have to be combined. To implement the
simple drum beat following WAV files were created: a single hi-hat WAV file, a
combination of hi-hat and snare and a combination of hi-hat and kick-drum. In the
calc_drum_beat method of the ConstDrumBeat class a loop was build which out-
puts the appropriate WAV file depending on a beat_indicator variable displaying the
beat number of the bar. After one bar, thus eight beat numbers, the beat_indicator
is set to zero again to continue the drum beat from the beginning. Therefore, a
continuously looping simple drum beat is established out of single WAV files.

In Version 4, drum loops instead of single note samples are used to create a
drum beat. After calibration phase, the mean time value is transferred to a bpm
value which indicates the tempo of a music piece, see Section 3.1. With SQLite a
database is generated, storing a different drum loop WAV file for various bpm values.
After the bpm value is calculated, the appropriate drum loop is chosen and played
continuously. As a result, the speed of the user’s movement influences the tempo of
the music piece because the beat detected in the motion data matches the rhythm
in the chosen drum loop as they have identical bpm.

Version 5 adds a guitar loop to the drum loop of Version 4. Therefore, the
database also stores a suited guitar loop for every stored bpm value. When out-
putting the combination of drum and guitar loop, first a combined WAV file has to be
created with pydub. Afterwards, this WAV file can be played in a loop to create a
music piece fitting the user’s motion speed.

To reach the last algorithm version, Version 6 (Constant Drum Loop & Variable
Guitar Loop), three different guitar loops are stored in the database for every saved
bpm value. The choice of the guitar loop is based again on the user’s movement
data to give the user more influence on the music. As further explained in Section
4.2, the height of the user’s right hand is used as an input defining which of the three
guitar loops is chosen. Through moving the hand up and down while dancing the
guitar loop can be altered after one loop ends, giving immediate aural feedback to
the user. The six versions and alterations among them are visualized in Figure 4.8.

x

	Abstract
	Introduction
	Motivation
	Problem Statement
	Thesis's Structure

	State of the Art
	Instrument Based Sound Output Systems
	Theremin
	Virtual Instrument Inspired Sound Output Systems

	Generative Sound Output Systems
	Systems to control Ableton Live
	Sound Generation through frequency modulation
	Sound Generation through a mapping function
	Sound Generation through combined methods

	Thesis's Objective

	Music Theory
	Musical Terms Definition
	Human Perception of Rhythm

	Implementation
	System's Components
	Hardware Elements
	Software Elements

	Structure of the Algorithm
	Calibration Phase Structure
	Sound Generation Phase Structure

	Approach
	Version Evolution Outline
	Motion Tracking Methods

	Problems and Solutions
	Calibration Phase
	Sound Generation Phase

	Evaluation
	Acronyms
	Bibliography
	Appendix
	Extended Algorithm Explanation
	Calibration Phase Structure
	Sound Generation Phase Structure

	Extended Version Evolution Description

