
Causal Regularization in
Deep Learning Using the

Average Causal Effect
Kathrin Khadra

Chair of Data Processing
Technische Universität München

Master’s thesis

Causal Regularization in Deep Learning
Using the Average Causal Effect

Kathrin Khadra

19. November 2021

Kathrin Khadra. Causal Regularization in Deep Learning Using the Average Causal
Effect. Master’s thesis, Technische Universität München, Munich, Germany, 2021.

Supervised by Prof. Dr.-Ing. Klaus Diepold and M.Sc. Matthias Kissel; submitted on
19. November 2021 to the Department of Electrical and Computer Engineering of the
Technische Universität München.

© 2021 Kathrin Khadra

Chair of Data Processing, Technische Universität München, 80290 München, Ger-
many, http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Moun-
tain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

Causal Interpretability aims to make decisions of algorithms interpretable by investigat-
ing what would have happened under different circumstances. These varying circum-
stances can be manipulations on the algorithm to assess its causality. In this thesis, I
include the causal interpretability mechanism called the Average Causal Effect (ACE)
into the training of a neural net. To assess the causality of the model, the ACE uses
so-called interventions to manipulate the neural net. The goal is to determine more
causal weights and biases during the model training. Using this approach, I evaluate
whether including a causal interpretability mechanism as a regularization increases
the overall causality of the model. Moreover, I investigate whether this improvement in
causality also impacts the generalization ability of the neural net. The developed ap-
proach is compared to a standard neural net as well as L1 and L2 regularized neural
nets. Furthermore, I conduct these experiments with well-balanced datasets, datasets
with a prior probability shift, and datasets with a covariate shift. For all datasets, the
results show that the presented causal regularization approach is able to improve the
overall causality of the neural net. However, the distribution of the shifted training data
highly affects the generalization ability. With an increasing variance of the distribution,
the developed approach shows significantly lower test Mean Squared Errors than for
training data with less variance. This is because the interventions applied by the ACE
depend on the variance of the training data distribution.

3

Contents

Abstract 3

1 Introduction 7

2 Literature Review 9
2.1 Causal Mechanisms Built in Model Training 9
2.2 Explainable and Interpretable Model Training 11
2.3 Causality Mechanisms Used on Trained Models 12
2.4 Interpretability and Explainability of the Trained Model’s Inner State . . . 14
2.5 Interpretability and Explainability of Trained Models 16

3 Background 19
3.1 Deep Learning . 19

3.1.1 Deep Feedforward Neural Nets 19
3.1.2 Mean Squared Error as a Loss Function 21
3.1.3 Neural Net Regularization . 22
3.1.4 Datasetshift in Deep Learning 24

3.2 Causal Modelling and Learning . 25
3.2.1 Structural Causal Models . 26
3.2.2 Causal Inference . 29

4 Methodology 35
4.1 The Training Algorithm with the Negative Causal Effect (NCE) 35
4.2 Feedforward Neural Nets as Structural Causal Models (SCM) 36
4.3 Applying the Average Causal Effect (ACE) to Neural Nets with Continu-

ous Values . 40
4.3.1 Choosing the Interventional Values 42
4.3.2 Calculating the Interventional Expectation 43

4.4 Introducing the ACE as a Neural Net Regularization 47

5 Experiments and Results 51
5.1 Preparation and Conduct of Experiments 51

5.1.1 The Boston Housing Dataset 51
5.1.2 Experiment Set-Up . 56

5

Contents

5.2 Results and Discussion . 57
5.2.1 Development of the Causal Effect (CE) 57
5.2.2 Causal Effect (CE) Relative to the Test Mean Squared Error . . . 61
5.2.3 The Relative Test Mean Squared Error 64
5.2.4 Training Error Developement 70
5.2.5 Summary and Discussion of Results 73

6 Conclusion 75

6

1 Introduction

Interpretable Machine Learning has been a huge field of interest to the research com-
munity for several years. Overall, having insights into the way Machine Learning al-
gorithms make choices, can have a number of benefits and help in many ways. Par-
ticularly, training algorithms could benefit from interpretable learning. Right now, the
current state of training algorithms is based largely on trial and error as well as past
experience. This can make them incomprehensible. Furthermore, the resulting model
suffers from the risk of making unexpected decisions. This means, with interpretable
learning trustworthy models can be generated. Thus, for use cases where decisions
can affect people’s survival, like healthcare or autonomous driving, interpretable pro-
cesses can be a game-changer. Furthermore, by enhancing the understanding of the
training process, researchers, engineers, and data scientists can make sure that the
generated models follow fairness, security and human understanding. This is impor-
tant due to the European Union passing the "Rights to Explanation" regulation as well
as the recent call for diversity and inclusion in AI [14].

In general, interpretable learning falls under the area of explainable artificial intelli-
gence (XAI) [12]. XAI aims to make the models generated by artificial intelligence
more trustworthy and understandable [12]. Gilpin et al. state that while XAI might
be able to describe the reasoning of a system, interpretable learning makes AI more
trustworthy without describing that reasoning [12]. Furthermore, Pearl claims that to
achieve explainability one needs a causal model of the environment, as explainability
cannot be achieved only by association [34]. Generally, one can explain causality with
two variables X and Y . The variable X is a direct cause of the variable Y if a manipu-
lation on X exists, so that X and Y are associated [47]. All other variables are fixed at
some value for this scenario [47]. Taking the definition for interpretability and causal-
ity one arrives at the subcategory causal interpretability. Causal interpretability aims
to answer the question of why a decision was made by a system instead of another
[29]. This means, it makes decisions interpretable by gaining insights on what decision
would have been made under alternative circumstances [29]. One can achieve that in
two ways. First, one can make already trained models interpretable [29]. Secondly,
one can create inherently interpretable models by making them interpretable during
the training [29].

Within this thesis, I develop an approach that falls into the second category. Thus,
I aim to create a causal neural net through a change in the model training. To my

7

1 Introduction

knowledge, most work in this field aims to analyze already trained models. Thus,
they fall into the first category. As mentioned before, in the standard case models
are trained for correlations or association. Thus, they could find patterns that are not
representing the real world. This makes it difficult to trust the created machine learning
models. Furthermore, by also including patterns that are not causal, standard machine
learning models might be worse at generalizing than a causal machine learning model.
This leads to two research questions for this thesis:

1. Is a causal interpretability mechanism, that is applied to the training of a neural
net, able to enhance its causality?

2. Is a neural net with an enhanced causality able to generalize better?

Within this thesis, I aim to answer these questions by incorporating the Average Causal
Effect (ACE) into the model training [7]. I achieve that by including the ACE into a reg-
ularization term added to the loss function of the training. The ACE analyzes the inner
state of the model. Thus, it examines neuron activation to determine causal model pa-
rameters. To my knowledge, most of the work done in the field of causal interpretability
does not analyze the inner state. By doing this, the regularization mechanism within
the training should maximize the overall causality of the machine learning model. Fur-
thermore, the investigated model is a model solving a regression problem, as most
interpretability research work investigates classification problems. The developed al-
gorithm is tested on a well-balanced dataset, a dataset with prior probability shift, and
a dataset with covariate shift. Lastly, the results are compared to the results of a model
with L1 and L2 regularization in its model training. This is due to the fact that Janz-
ing found the indication that L1, as well as L2 regularizations, can enhance the model
causality [18].

In the following Chapter 2, I discuss related work and the still existing gap in this re-
search field. Afterward, in Chapter 3, I provide some definitions in the area of deep
learning as well as causal modeling and learning. Furthermore, I explain the developed
method in Chapter 4 and discuss the results in Chapter 5.

8

2 Literature Review

In the following section, I explore related work connected to this thesis. The prop-
erties of each paper can be found in Table 2.1. There, the methods are sorted into
four categories: Model Training, Causality, White Box, and Regression. The category
Model Training represents that the authors apply the method during model training.
This means the method takes influence on the training process and does not analyze
an already trained model. Furthermore, the category Causality stands for methods
that are implemented based on a causality mechanism. So, methods that make use
of mathematical theories that depend on the principle of causality. Approaches that
fall into the category White Box are approaches that open the black box of the model
that they analyze. Thus, an approach that analyzes the inner state of the model they
investigate. The last category Regression applies for approaches that are able to an-
alyze models solving regression problems. Using the mentioned categories, one can
sort the papers into five sections. First, methods applied within the model training that
are based on causality. Those approaches apply to the categoriesModel Training and
Causality. Then, methods which alter model training but are not based on a causality
mechanism. Hence, approaches falling into the category Model Training. The third
section belongs to the category Causality and deals with approaches that are based
on causality but analyze already trained models. After that I introduce authors that
analyze the inner state of a trained model using approaches not based on causality.
Thus, they apply to categoryWhite Box. Lastly, I discuss papers which analyze trained
models regarding explainability or interpretability. In this thesis, I develop an approach
which fullfills all the mentioned categories: Model Training, Causality, White Box, and
Regression. Hence, my approach falls into the first section. Therefore, I first introduce
approaches which developed methods based on causality mechanisms and applied
them in model training. Then, I work my way through the other sections.

2.1 Causal Mechanisms Built in Model Training

During this thesis, I apply a method based on causality in the model training. So, I
analyze the papers [3, 18, 22, 27], which fall into the category Model Training and
Causality.

Bahadori et al., in [3], developed a regularization method for neural nets to make the

9

2 Literature Review

overall model more causal. The regularization method uses a causality score within
the cost function of the training. This improves the causality of the overall model. The
authors interpreted the mentioned causality score as a probability, which shows how
likely it is that a feature Xi does not cause the output Yi. As a next step, Bahadori et
al. included the probability into the cost function of the training to control the influence
of the weights wi of Xi. This means, that if Xi is less likely to cause Yi, the weight
of Xi will have less influence in the cost function. Subsequently, this makes features
with a larger causal effect more influential. Therefore, it improves the overall causality
of the model. Using causal clinical data, the authors were able to show that their
algorithm interprets the right features as causal. Furthermore, the results show that
one can achieve an improvement of 20% in the overall causality score of a neural
net using this method. Looking at Table 2.1, one can see that the approach belongs
to category Model Training, Causality, White Box, and Regression. I also include a
causality mechanism into a regularization term to improve the overall causality. Thus,
this approach is the most similar method to my approach. However, I maximize the
overall causality directly during training. In contrast, the authors here increase the
influence of causal weights and features.

In the next two papers, [18, 27], the developed approaches apply to category Model
Training, Causality, and Regression. In [27], Kyono, Zhang and van der Schaar in-
troduced the algorithm Causal Structured Learning (CASTLE). CASTLE is a causal
regularization method for models. In detail, the method uses a causal directed acycli-
cal graph (DAG) to reconstruct only the features which act as an optimal predictor. This
means that the feature has a causal relationship to the target variable, which indicates
that the feature is causal. In order to achieve that, the DAG acts as an adjacency matrix
within the input layer of the neural net. CASTLE achieves better out-of-sample predic-
tions compared to other common benchmark regularizers. During the experiments, the
authors used multiple synthetic and real life datasets. Similarly, in [18], Janzing found
the indication that standard neural net regularization improves the causality of mod-
els. Table 2.1 shows that this work is more an analysis rather than a newly developed
approach. However, one can still classify it as an approach used within model train-
ing. In this work, the author used the standard L1 and L2 regularization to reduce over
fitting. Subsequently, he was able to decrease the confounding effect. Furthermore,
Janzing determined the size of the regularization parameter of the L1 and L2 regular-
ization. For that, he estimated the strength of confounding beforehand. By reducing
the confounding effect of the model, the model is able to generalize from observational
distributions to interventional distributions. Through that Janzing was able to show an
indication that the L1 and L2 regularization improves the causality of a model. During
this thesis, I also develope an approach for causal regaulrization. However, I look at
the inner state of the model and take the inner state into account during my analysis.

In [22], the goal is to make the computation of the steering angle of an autonomous
car explainable. As displayed in Table 2.1, the authors applied their method inside

10

2.2 Explainable and Interpretable Model Training

the training process and based the method on causality. To be more precise Kim and
Canny used visual attention to highlight image regions that influence the model’s out-
put. Then, the authors applied the principle of causal attention. That means, they
covered up the identified regions in the picture in order to explain which elements have
a causal effect on the model. The results show that the proposed framework does not
degrade the model performance. Furthermore, the model demonstrates causal be-
havior. In detail, the algorithm concentrates on features used by humans while driving.
I draw from the mentioned approaches regarding the application during training and
the used causality mechanism (see Table 2.1). However, I also analyze at the internal
state of the model. In contrast. the authors here only look at the input and output
relationship. Furthermore, in [22] classification models where analyzed. I apply my
method to regression problems.

In sum, the above mentioned approaches belong to the category Model Training and
Causality. Some, as [3], also fall into category White Box and Regression. In this the-
sis, the approach has all the mentioned attributes. However, I directly maximize the
overall causality of the model. Thus, I include the causality measurement, as a regu-
larization term, in the training’s cost function. In contrast, the other papers concentrate
on regulating the influence of causal features or non-causal features. Or rather, they
focus on choosing the right features or simply making the model explainable.

2.2 Explainable and Interpretable Model Training

As I mentioned before, one goal for this thesis is to develop an approach which falls
into the category Model Training. In the following papers [1, 20, 46], the authors in-
cluded their methods into the model training. This way, they aim to make the model
interpretable or explainable. In contrast to the section before, they do not apply to
category Causality.

In [46], the authors used Cook’s distance on large scale datasets. Cook’s distance is a
classical statistical technique to estimate the influence of data points [46]. Using that,
they evaluated the influence of training samples on regression models. This means,
they can identify samples with an extraordinary strong influence on the training of the
model. In order to use Cook’s distance on a large and high-dimensional dataset, Wo-
jnowicz et al. introduced the method influence sketching to identify influential training
samples. Influence sketching applies random projections within the influence com-
putations. The authors tested their algorithm on a malware detection dataset. The
dataset included over 2 million executable files with almost 100, 000 features. They
showed that the impactful samples tend to be mislabeled. When testing with the mis-
labeled data, the results show that deleting the impactful samples brings the accuracy
down to 90.24% from 99.47%. Deleting the same number of random samples only

11

2 Literature Review

brings the accuracy down to 99.45%. This additionally proofs how impactful the sam-
ples are. Their approach is also applicable to other datasets. The authors in [1] used
the attention mechanism sequential attention. Here, Arik and Pfister applied a deep
tabular learning architecture, called TabNet, in order to select the most salient features.
The results show that TabNet outperforms other similar methods on multiple synthetic
and real-world tabular datasets. Furthermore, the method achieves interpretable fea-
ture attributions. Both methods connect to my work, as they belong to the category
Model Training and Regression. Yet, the authors used their methods for sample se-
lection and feature selection.

Kim, Shah and Doshi-Velez addressed feature selection and extraction in [20]. The
Mind the Gap Model (MGM) embeddeds interpretability criteria into the model design.
This way, they could tweak interpretability parameters and generate identifiable dimen-
sions. Then, the authors used that for data exploration and hypothesis generation.
The method obtains identifiable features on a range of diverse real-life datasets. My
approach is similar, because the authors influenced the model training directly.

In sum, all three papers use their approaches for feature or sample selection. Addi-
tionally, they take influence on the model training and some of them are applicable to
regression problems. However, my approach concentrates on influencing the model
training to directly improve the overall causality.

2.3 Causality Mechanisms Used on Trained Models

Next, I analyze approaches belonging to category Causality. Thus, those methods
analyze already trained models. This connects to my work, as I also develope an
approach based on causality.

The following papers [6, 16] fall into the category Causality andWhite Box. First, Caw-
ley investigated a regression problem to select causal features in [6]. Here, the author
used inference of the Markov Blanket, of direct causes and of direct effects. For the
non-causal case, Cawley derived the non-causal feature selection from logistic regres-
sion. For that, he used Laplace prior based Bayesian regularisation. Cawley then eval-
uated linear classifiers regarding their difference between the training and test data.
For this, he utilized the causal relationship of input and response variables as a mea-
surement. The causal feature selection method shows no significant enhancement
regarding the predictive accuracy of the classifiers over a non-causal feature selection
and/or using all features provided. In sum, the causality mechanism applied has no
positive effect on the accuracy of the model. Furthermore, Harradon, Druce, and Rut-
tenberg, in [16], built a causal machine learning model utilizing salient concepts within
CNNs. The authors used a human-understandable representation of network activa-
tions to extract the salient concepts. For that, they trained autoencoders to extract the

12

2.3 Causality Mechanisms Used on Trained Models

human-understandable representations of network activations. Using the extracted
salient concepts, they developed a Bayesian causal model to make the classification
interpretable. Lastly, the authors tested the algorithm for image classification. This
way, they could identify and visualize features with significant causal influence. The
results show that they could provide a novel approach to building causal models. Next,
I look at papers applying to category Causality and Regression.

In [7, 35, 40, 49], the authors analyzed trained models using a method based on
causality. First I look at the approach in [40]. Schwab and Karlen derived a causal ex-
planation model (CXPlain). CXPlain estimates the impact of machine learning inputs
on the respective outputs. Here, the authors calculated the uncertainty of the model’s
feature importance. For that, they used Bootstrap ensembling. This way, a model with
high-dimensional data can be made explainable by estimating the importance of each
feature. The results show that CXPlain is more accurate and faster than compara-
ble algorithms in the field of estimating feature importance. Within the next approach
[7], Chattopadhyay et al. used the average causal effect (ACE) to compute the influ-
ence features have on the output. To compute the causal effect, the authors viewed
a neural net as a Structural Causal Model. The described algorithm can efficiently
compute the ACE even for large dimensional data. Furthermore, Chattopadhyay et al.
tested themethod for a standard classification task with a real-life dataset and an LSTM
structure with a synthetic dataset. For both cases, causal effects could be calculated
making the causality of the neural nets more transparent. In [35], Peter, Bühlmann,
and Meinshause described a causal model as a model which remains invariant under
interventions. The interventions consist of different changes in the model environment.
This means they applied different interventional real-life datasets to the models. The
authors then classified a model as causal, if it showed invariance in their predictive
accuracy. The result is a confidence interval for the causality of the model. The results
show that, especially for Gaussian structural equation models, the method can identify
the set of causal models. Furthermore, in [49], the authors used counterfactual ex-
planation to built fair decision-making systems. They developed three measurements:
the counterfactual direct effects (Ctf-DE), the counterfactual indirect effects (Ctf-IE),
and the counterfactual spurious effects (Ctf-SE). These measurements show the level
of fairness of the decisions made by the respective models. All of the quantifications
use counterfactuals for their assessment. The Ctf-DE measures the natural direct ef-
fect between the input X and target Y . This means it assesses the effect of the direct
causal path between X → Y . Furthermore, the Ctf-IE quantifies the natural indirect
effect between X → Y . In detail, it measures the underlying causal effect between
X → Y caused by another variable in the system. Lastly, the Ctf-SE assesses the
spurious effects between X and Y . This means, it calculates effects caused by back-
door paths of X and Y . Backdoor paths are paths only pointing at and not coming out
of X or Y . In sum, the authors were able to provide a measurable approach to build a
fair decision-making system. The papers above unite the fact that they use causality

13

2 Literature Review

mechanisms to analyze trained models. Furthermore, one can apply them to regres-
sion problems. The next paper falls into the categoryCausality but the analyzed model
solves a classification problem.

In order to measure the causal effect within a neural net, the authors in [15] used
the Causal Concept Effect (CaCE) as a basis of their method. The CaCE provides
the opportunity to evade mistakes caused by confounding. As one cannot simulate a
do (·) operator effortlessly, simulating the CaCE has its challenges. That’s why, Goyal
Shalit and Kim use Variational Auto Encoder (VAE) to develope the VAE-CaCE. The
results show that the VAE-CaCE can measure the CacE effect for various number
of datasets. Looking at Table 2.1, the main difference is that this approach is only
applicable to classification problems.

In sum, the approaches in this section are based on causality and analyze already
trained models. Additionally, most of them are applicable for regression problems. In
my thesis, I use the average causal effect (ACE), mentioned in [7]. The main difference
is that I apply this mechanism inside the model training creating a causal model from
the start. In the next section, I cover approaches that analyze the inner state of the
model with regards to interpretability and explainability.

2.4 Interpretability and Explainability of the Trained Model’s
Inner State

So far, I have looked at papers that fall into one of the following or both categories
Causality and Model Training. Within this section, I analyze work that deals with non-
causality mechanisms outside of the training process. They belong to the category
White Box, as they analyze the inner state of the model. In my thesis, I investigate the
inner state of the model as well.

In [4, 45], the authors analyze an already trained model regarding interpretability or ex-
plainability. As one can see in Table 2.1, they also inspect the inner state of the model.
Additionally, both approaches are suitable for regression problems. One way to make
machine learning models explainable is to extract rules or interpretable models from
them. In [4], the authors extracted Decision Trees from neural nets, to make the neural
nets explainable. They generated the Decision Trees using DecText. DecText utilizes
the algorithm C4.5 which applies the concept of information entropy. Furthermore,
DecText is also able to work with continuous features. The previous work only con-
centrates on MofN type Decision Trees. Their splits follow a m-of-n rule, which means
for a split m of n Boolean conditions need to be satisfied. As MofN Decision Trees are
only suitable for MofN problems, the authors provide an alternative method for regular
high dimensional real-world problems. The authors of [45] also measured feature im-

14

2.4 Interpretability and Explainability of the Trained Model’s Inner State

portance through counterfactuals. Sundararajan, Taly, and Yan generated the counter-
factuals by scaling down the original inputs. Then, they analyzed the counterfactual’s
gradient, called interior. Using the gradient, they measured the importance of the re-
spective feature. The authors then applied the algorithm to an LSTM language model
and a GoogleNet for image object recognition. Furthermore, they chose to test it on
a ligand-based virtual screening network with categorical features. With this method,
they were able to calculate interior gradients as efficiently as standard gradients. Fur-
thermore, the algorithm applies to various neural nets. The results conclude that the
feature importance improves the prediction score. For both papers, they analyzed an
already trained model by looking at the inner state. Furthermore, they were able to
apply their methods to regression problems. In the following, the approaches also fall
into the categoryWhite Box. However, they are only applicable for classification tasks.

In the following papers [21, 42], the authors analyzed the inner state of an already
trained model using non-causality mechanisms. In [42], Shirkumar, Greenside, and
Kundaje took the activations of each neuron into account to interpret the model. Called
DeepLIFT, the algorithm backpropagates the influence of each neuron to every feature.
This way, DeepLIFT generates a contribution score of each neuron. For that, the al-
gorithm compares the neuron’s current activation to its reference activation. Through
that, DeepLIFT identifies features with the largest contribution to the output. The au-
thors applied the approach to neural nets trained with MNIST and genomic data. The
results show, that compared to other methods, DeepLIFT reveals novel dependencies
within the model. Moreover, in [21], Kim et al. used Concept Activation Vectors (CAVs)
to explain the internal state of a model. The authors developed a testing framework
with CAVs (TCAV), which uses directional derivatives. TCAV quantifies the importance
of the model’s features for the result of the model. To test TCAV, Kim et al. evaluated
image classification models. The results show that CAVs can give insights regarding
the model’s prediction via the internal state. Furthermore, CAVs apply from standard
image classifications to models solving specialized medical problems. As mentioned
before, both papers analyze the inner state of the model with methods not based on
causality. Additionally, they can perform on classification tasks only.

In sum, the work above analyzes the inner state of a trained model regarding inter-
pretability or explainability, so fall into the category White Box. In this case, the ap-
proaches in [4, 45] can handle regression problems. On the contrary, the algorithms
presented in [21, 42] are only applicable to classification tasks. In this thesis, the ap-
proach also belongs to the category White Box and Regression. The next section
covers other relevant explainability or interpretability methods for machine learning.

15

2 Literature Review

2.5 Interpretability and Explainability of Trained Models

Up to this point, I looked at papers that fall into one or a number of the following cat-
egories: Model Training, Causality and White Box. Lastly, I look at approaches that
provide other interesting methods that aim to make models more explainable or inter-
pretable without falling into the categories Model Training, Causality and White Box.
Those papers are relevant as I also intend to make a model more interpretable.

First, I analyze work that falls into the category Regression. Riberio, Singh, and
Guestrin developed the framework LIME in [38]. LIME trains an interpretable model
locally around the prediction. The authors showed that interpretability is useful for mul-
tiple models in trust-related tasks. In detail this means in text and image domains as
well as both expert and non-expert users. In [41], Sharma, Hendersion andGhosh built
CERTIFAI to test anymachine learningmodel regrading robustness, transparency, fair-
ness and interpretability. The paper introduces a genetic algorithm to generate coun-
terfactuals. The results show that the genetic algorithm brings flexibility to the model,
by generating custom counterfactuals. Furthermore, the authors developed CERScore
to quantify the robustness of the tested machine learning model. CERScore uses the
generated counterfactuals. The algorithm is able to perform equivalently to similar
methods. For another approach dealing with counterfactual explanation, the authors
of [25] used an influence function. The influence function computes the neural net
input’s effect on the output. In this case, Koh and Liang tested linear regression and
a CNN using image data. With that, they determined the effect of the input on the
output. Using the proposed method, the authors were able to understand the model
behavior and debug models. Furthermore, they could detect dataset errors and create
visually indistinguishable training-set attacks. In sum, as one can see in Table 2.1,
the approaches above are able to provide a method that analyzes an already trained
regression model regarding explainability or interpretability.

Lastly, I analyze papers that are only able to analyze methods solving classification
tasks. The authors in [8] introduced Quantitative Input Influence (QII) using interven-
tions. QII quantifies the influence the inputs of a model have on the output. The
measurement can make decisions, made by a model on individuals or groups, trans-
parent. Furthermore, the method measures the joint influence of inputs, while it can
account for correlated inputs. Additionally, the authors quantified the marginal influ-
ence of individual inputs as well. For that, they used principled aggregation measures,
like Shapley values. A Shapely value can show the average expected marginal contri-
bution of one neuron. Overall, QII can generate explanations of correlated inputs and
can be approximated efficiently. In [28], the authors made interpretability of predic-
tions, with high-dimensional vectorized features, possible. Here, Le et al. use expla-
nation by intervention to elucidate the labels generated by the prediction. The created
framework, GRACE, generated 60% more accurate post-explanation decisions than

16

2.5 Interpretability and Explainability of Trained Models

the competing baseline method LIME. Both of the methods can be applied to models
solving classification tasks.

In this section, I explored approaches that make already trained models interpretable
or explainable. The papers are relevant, as they aim to make machine learning models
explainable or interpretable.

To conclude, looking at Table 2.1, most authors applied their approaches outside of
the training process. This means, they analyzed already trained models. I suspect
that intervening with the training process to make the model causal can be a more
efficient approach. Hence, I aim create a causal model directly. Furthermore, methods,
that fall into the category Model Training, mainly engineer the feature selection not
the model itself (see Table 2.1). Additionally, the authors mostly treated the model
as a black box without analyzing the inner state. In this thesis, I directly influence
the overall causality of the model by analyzing the inner state. Thus, I create causal
weights during the training process which increase the overall causality of the model.
Furthermore, the approaches belonging to the category White Box often do not fall
into the category Causality. The authors used other interpretability or explainability
approaches to analyze the inner state. However, I analyze the inner state of the model
with a method based on causality. The paper which is most similar to my approach is
[3]. Yet, the main difference is that Bahadori et al. regulated the influence of weights
using a causality score. The causality score, as mentioned before, is a soft-score
that rates the causality of each weight. In contrast, I directly stir the weights into a
causal direction by enhancing the overall causality of the model. All in all, the unique
contribution here is to directly create causal weights during the training process by
looking at the inner state of the model. Next, I dive deeper into the background of this
thesis. As I apply my method to neural nets, I first give a brief overview of the definition
of neural nets.

17

2 Literature Review

Papers Objective of Method

M
od

el
Tr
ai
ni
ng

C
au

sa
lit
y

W
hi
te

Bo
x

Re
gr
es

si
on

Causal Mechanisms Built in Model Training

[3] Model Causality Measured

[27] Feature Selection

[18] Model Causality Measured

[22] Feature Selection

Explainable and Interpretable Model Training

[46] Training Sample Selection

[1] Feature Selection

[20] Feature Selection

Causality Mechanisms used on Trained Models

[6] Feature Selection

[16] Feature Selection

[7] Feature Selection

[35] Model Causality Measured

[49] Model Explainability

[15] Training Sample Selection

Interpretability and Explainability of the Trained Model’s Inner State

[4] Model Explainability

[45] Feature Selection

[42] Model Explainability

[21] Feature Selection

Interpretability and Explainability of Trained Models

[38] Model Explainability

[41] Model Explainability

[25] Training Sample Selection

[8] Feature Selection

[28] Model Explainability

Table 2.1: Approaches aremainly used outside of model training and often do not pair causality
with an analysis of the inner state

18

3 Background

In this section, I explain the methods this thesis is based on. First, I introduce models
and concepts of deep learning used throughout thesis. Second, I present the concept
of causal modelling and learning as well as causal inference. This serves as a foun-
dation of the methods proposed in this thesis. In the following section, I discuss the
concepts of deep learning.

3.1 Deep Learning

One main model of deep learning are deep feedforward neural nets. In the following,
I introduce the definition of deep feedfoward neural nets used in this thesis. Further-
more, I review the main loss function used throughout this thesis, the Mean Squared
Error. Lastly, I introduce the mechanism of neural net regularization and the concept
of datasetshifts.

3.1.1 Deep Feedforward Neural Nets

In this thesis, I define a neural net like Nielsen in [30]. Thus, a neural net is a model that
makes predictions using data. There are two kinds of predictions: classification and
regression. Classification takes the inputs and sorts them into a category. If one uses
pictures as an input, for example, the neural net would determine the objects within
that picture. Regression, on the other hand, uses the inputs to predict a numerical
value. So for example, taking the location of a house, the size of a house, and the
year they built the house, the neural net can predict the house price. Within this thesis,
I concentrate on regression problems.

As displayed in Figure 3.1, a neural net consists of layers. The layers, in turn, contain
neurons. The neurons form a weighted sum of their inputs and apply a, so-called,
activation function to that weighted sum. In Figure 3.1, the neurons are displayed as
circles. Furthermore, the neurons are connected between the layers. Generally, each
neural net has an input layer and an output layer. Between them are one to several
hidden layers. When performing computation with the neural net, the input layer brings
the initial data samples into the neural net. After that, the hidden layers perform the

19

3 Background

computations and the output layer presents the result. The result in turn represents
a prediction or classsification. Throughout this thesis, I only used feedforward neural
nets. They are the easiest form of neural nets, as they only pass information from one
layer to its following layer. Hence, there are no cycles or recurrent connections in the
network. For simplicity when referring to neural nets, I mean only the feedforward type.

Input 1

Input 2

Input 3

Input 4

Prediction

Hidden
layer

Input
layer

Output
layer

Figure 3.1: A feedforward neural net has several layers which consist of neurons

To train the neural net, one uses the, so-called, training data. During the training, the
training algorithm adjusts the neural net to represent the input-output relationship of the
training data as good as possible. For that, the training algorithm tunes the parameters
of the neural net. The mentioned parameters are weights and biases. The training
algorithm assigns these weights and biases to the neurons in each layer [30]. In more
detail, given a set of inputs x = x1, x2, ..., xn, the parameters w = w1,w2, ...,wn are
the respective weights to the inputs xi. Furthermore, each neuron has a bias b. Using
the weights, inputs, and the bias, the activation z of each neuron becomes

z = w · x + b =
n∑
i

wixi + b (3.1)

with n being the number of inputs x = x1, x2, ..., xn.

As each neuron of a hidden layer has multiple inputs, the input xi is passed to the
neuron with its respective weight wi. Then, then the bias b of the neuron is added.
Afterward, the model passes the result of this equation to the next layer.

As one can see, with Equation (3.1) the neuron is linear. In order, to introduce non-
linearity, one can use activation functions [39]. In this case, I use the Sigmoid function.
If one takes the inputs x = x1, x2, ..., xn, the weights w = w1,w2, ...,wn and the bias b
of each neuron, the computation of each neuron becomes

20

3.1 Deep Learning

f (w, x, b) =
1

1 + e−(w ·x+b)
(3.2)

Thus, Equation (3.2) makes sure that the output, the so-called activation, always stays
between 0 and 1. The Sigmoid has the advantage that it is continuously differentiable
[5]. This means, the neurons are differentiable. This is important to calculate the ACE
described in Section 4.3.

To be able to predict values a training algorithm uses data to train the model. In this
thesis, I use supervised learning. Supervised learning uses labels to train the model
[39]. The labels are the true labels of the dataset. First the training data is inserted
into the model and the model computes a prediction. Then, using a loss function the
training error is calculated. The training error is the difference between the current
prediction and the training label. Afterward, the backpropagation algorithm updates
the model parameters to minimize the training error. For that, the partial gradient of
the loss function with respect to the model parameters is calculated for the last layer.
The last layer is analyzed first because the parameters of the last layer do not influence
the other model parameters. That calculated gradient, then, shows how to update the
weights and biases to minimize the training error of the model. Afterward, the gradient
for the next layer is calculated progressing backwards until the algorithm arrives at the
beginning of the network. This way, the weights and biases are updated from the last
layer to the beginning of the network to minimize the training error according to the
gradient of the loss function.

3.1.2 Mean Squared Error as a Loss Function

I use the Mean Squared Error (MSE) as the loss function in this thesis. As written
above, the loss function, and in this case the MSE, computes the training error. For
that, the model takes the inputs x = x1, x2, ..., xn and predicts y = y1, y2, ..., yn. As
it is supervised learning, the dataset has labels ŷ = ŷ1, ŷ2, ..., ŷn. The labels are the
true labels of the dataset. Using the predictions y and labels ŷ the MSE becomes

L =
1

n

n∑
j=1

(
yj − ŷj

)2 (3.3)

with n being the number of training samples the neural net has.

According to Equation (3.3), the loss function computes the error between the current
prediction y and optimal prediction ŷ. It then squares that error. Afterward, the loss
computes the mean of all of the existing errors. Then, the training algorithm adjusts the
weightsw and biases b to minimize the MSE. The MSE is an appropriate loss function

21

3 Background

if one wants to penalize outliers. That is because the MSE squares the error. This
makes errors above 1 more impactful. Furthermore, it is one of the most commonly
used loss function, as it is very useful for normally distributed data [39].

3.1.3 Neural Net Regularization

One common problem in training neural nets is that they can overfit. This means, that
the model performs very well on the training data but not as good on the test data.
Thus, the model is not able to generalize. One way to improve this is regularization.
Goodfellow et al. defines regularization as any type of adjustment made to a learning
algorithm that aims to decrease the test but not the training error [13]. Thus, regular-
ization can be any adjustment to a learning algorithm that reduces overfitting. There
are multiple novel ways how to regularize a neural net. However, in the following, I
mention the most relevant regularization techniques for this thesis. Those are tech-
niques addressing the neurons and their activations directly. This means, they either
adjust the neuron’s parameters or deactivate neurons altogether. The most common
way to do so are dropout, L1 regularization, and L2 regularization [13].

Dropout Regularization

The dropout method randomly deactivates neurons within the hidden layers. With that,
the method lowers the model complexity as the network becomes smaller. Within a
network, neurons can balance out the mistakes of other neurons [43]. This leads to
complex co-adaptation between neurons. As this co-adapatations do not translate to
the test data, overfitting happens as a result [43]. Through randomly dropping nodes,
the dropout method avoids this co-adaptation. Therefore overfitting is reduced.

dropout ×

×

×

Figure 3.2: The dropout regularization randomly drops neurons through the training process
reducing co-adaptation of neurons

22

3.1 Deep Learning

L1 and L2 Regularization

The L1 and L2 regularization both reduce overfitting by keeping the values of the
weights small [13]. They do so by adding a component to the loss function penalizing
larger weights [13].

For the L2 regularization, LT2 is the new loss function that computes the training error
of the neural net. Furthermore, LD is the original loss function like the MSE. With λ
as a parameter to tune the regularization, with the weights w = w1,w2, ...,wm of the
neural net, and with LL2 as the L2 term, the loss function becomes

LT2 = LD + λLL2 =
1

n

n∑
j=1

LD

(
yj, ŷj

)
+ λ‖w‖22 =

1

n

n∑
j=1

LD

(
yj, ŷj

)
+ λ

m∑
l=1

w2
l (3.4)

Here, n is the number of training samples and m the total number of weights in the
neural net. As one can see in Equation (3.4), LD

(
yj, ŷj

)
is the original loss function,

using the predictions y and labels ŷ to determine the training error. The original loss
function can be the MSE, for example. The L2 term LL2 is the euclidean length of the
weights w. For the regularization, the euclidean length is squared. It should be noted
that the euclidean length is the 2-norm. This means, the LL2 results in the sum of
squared weights.

The L1 regularization is very similar to the L2 regularization. LT1 is the new loss func-
tion combining the original loss function LD and the L1 component LL1 [13]. As before,
LT1 determines the training error of the neural net [13]. Using λ as a tuning parameter
for the regularization the equation becomes

LT1 = LD +λLL1 =
1

n

n∑
j=1

LD

(
yj, ŷj

)
+λ‖w‖1 =

1

n

n∑
j=1

LD

(
yj, ŷj

)
+λ

m∑
l=1

|wl | (3.5)

with n being the number of labels and the weights w = w1,w2, ...,wm with the total
number of weights m. Looking at Equation (3.5), one can see that the original loss
function LD

(
yj, ŷj

)
uses the predictions y and labels ŷ to compute the training error.

However, the L1 term uses the 1-norm of the weights w. This results in adding up all
absolute values of the weights.

For both L1 and L2 regularization, the loss function keeps the absolute value of the
weights small. Throughout the training process, the training algorithm tries to minimize
the loss function. Thus, it also tries to minimize the regularization components within

23

3 Background

the loss. As the regularization component includes the weights, the absolute value of
the weights is driven down.

Looking at Equation (3.1), one can see that the smaller the values of the weights w,
the smaller the activation of the neuron z. If the algorithm reduces the activation by
keeping the weights small, the overall function fitted to the data can be less complex.
This might results in less overfitting [13].

Although both regularization techniques are quite similar, they have key differences.
In Table 3.1, I summarize the differences [13]. The L1 regularization handles outlier
better than its L2 counterpart [13]. The reason for that is the squared component in the
L2 regularization. It makes large error terms even more impactful. Furthermore, L1 is
able to reduce features [13]. Thus, provide us with a sparse model. This is because
L1 is able to reduce coefficience to 0. In constrast, L2 is only able to bring coefficience
to a small value. That means, by using L1, features could be entirely removed from the
model. Additionally, L1 only has one optimal solution and L2 can provide more than
one optimal solution [13].

L1 L2
Robustness to outliers + -
Sparsity + -

Table 3.1: L1 regularization is more robust to outliers and can provide sparsity [13]

In sum, the dropout regularization can reduce model complexity by randomly dropping
neurons. The L1 and L2 regularization might decrease the complexity of the functions
within a neural net by keeping the size of the weights small. For that L1 uses the
absolute norm and L2 the squared euclidean norm. Ultimately, all of the methods
modify the neural net to decrease the test error while not changing the training error.
This means, they can reduce overfitting.

3.1.4 Datasetshift in Deep Learning

One reason, that a neural net is unable to generalize, can be the concept of dataset-
shift. In general, datasetshift means that the distribution Ptra

(
x, y

)
of the training data(

x, y
)
is different to the distribution Ptst

(
x ′, y′

)
of the test data

(
x ′, y′

)
[37]. This is be-

cause the training algorithm uses the distribution of the training data to tune the model
parameters. Thus, the parameters are tuned for that training distribution. If the test
data then has a different distribution the parameters do not fit any longer and there-
fore the prediction quality declines. There are different types of datasetshift. The most
common are covariate shift, prior probability shift, and concept shift [26, 37].

24

3.2 Causal Modelling and Learning

Covariate Shift

In the case of covariate shift the distribution of the input x changes [10, 37]. However,
the relationship between input x and the corresponding output y stays the same [10,
37]. This means, relationship of the distribution of the training input Ptra (x) and the
distribution of the test input Ptst (x ′) is Ptra (x) , Ptst (x ′). But, the relationship of
input and output of the training data Ptra

(
y
��x) and test data Ptst

(
y′

��x ′) has no shift.

Prior Probability Shift

Prior probability shift is similar but here the distribution of the output y changes [10,
37]. Yet again, the relationship of input and output does not change [10, 37]. In detail,
the distribution of the test output Ptst

(
y′

)
and the distribution of the training output

Ptra

(
y
)
are giving the equation Ptst

(
y′

)
, Ptra

(
y
)
. Again, the relationship between

input and output is Ptra

(
x
��y) = Ptst

(
x ′

��y′) .
Concept Shift

In the case of concept shift, the relationship of input and output is different between
the training and test data [26, 37]. However, there are two cases. First the distri-
bution of the inputs can be the same [26, 37]. That means, Ptra (x) is the same
as Ptst (x ′). Then, the distributions of the relationship of input and output becomes
Ptra

(
y
��x) , Ptst

(
y′

��x ′) [26, 37]. The second case is that the distribution of the train-
ing outputs Ptra

(
y
)
is the same as the distribution of the test outputs Ptst

(
y′

)
[26, 37].

Similar here, the distributions of the relationship between input and output becomes
Ptra

(
x
��y) , Ptst

(
x ′

��y′) [26, 37].
In sum, datasetshift is caused by a difference between the distributions of training
and test data. The most common shift is either between the inputs, outputs or the
relationship of input and output. This causes a neural net to be worse at generalizing
from the training data.

3.2 Causal Modelling and Learning

In order to apply causal inference to a system, it is necessary to model the system
as a causal model. Thus, I also apply causal modelling and learning in this work. In
Chapter 1, I introduce the definition of causality that I use here. Essentially, a causal
model is a probabilistic model with additional information [36]. This is especially im-
portant when creating the causal models. Creating the models requires a learning

25

3 Background

process just like with probabilistic models. For causal models, one calls the learning
process causal learning [36]. Causal learning does not just draw from observational
data. It can additionally include data under interventions or uses distribution changes
for example [36]. These mechanisms provide additional information. In turn, this addi-
tional information ensures that the causal model represents causal relationships and
not correlations.

One definition for causal relationships is Reichenbach’s common cause principle [32].
It states that, if there is a correlation between two variables X and Y , then they either
have a common cause Z , X causes Y , or Y causes X (see Figure 3.3) [32].

Z

X Y X Y X Y

Figure 3.3: Reichenbach’s common cause principle defines the causal relationship between
X and Y

Thus, a causal model represents only causal relationships according to Reichenbach’s
common cause principle. It is able to do so because additional information, like data
under interventions, is provided throughout the learning process.

3.2.1 Structural Causal Models

For a causal model, I use structural causal models (SCMs) during this thesis. Like
other causal models it defines cause-effect relationships between random variables
[32]. By definition an SCM is a 4-tupel (X,U, f , Pu) [36]:

• Endogenous variables X : The observable deterministic variables within the sys-
tem.

• Exogenous variables U: The stochastic noise in the system.

• Set of functions f : The functions xi = fi(Par, ui) determining the causal mech-
anism within the SCM with ∀xi ∈ Xi, ui ∈ Ui, and Par being a subset of X − xi.

• Probability distribution Pu over U: The probability distribution determining the
noise U.

The SCMs that I consider in this thesis, are no feedback causal models. That means,
they do not have any feedback loops. Furthermore, not every variable in the SCM has
noise. Using this definition of an SCM one can construct a graphical model: a causal
Bayesian network.

26

3.2 Causal Modelling and Learning

Causal Bayesian Network

For an SCM M(X,U, f , Pu) one can construct a causal Bayesian network G = (V, E)
[32]. Figure 3.4 shows an example of a causal Bayesian network. Here, the variables
V are the vertices corresponding to the endogenous variables X [32]. In Figure 3.4, the
variables X are A, B, and C. The variables E are the edges of the graph symbolizing
the function f [32]. Thus,the connections in Figure 3.4. So, given a function xi =
fi(Par, ui) with ∀xj ∈ Par means that xj causes xi. Thus,this translates into a direct
edge from vj(xj) to vi(xi) within the graph. This also means that vj is a, so-called,
parent and vi a, so-called, child [36]. The local Markov Model property states that
the parent vertices are the only influence for the distribution of a child vertex within a
Bayesian network [19]. Furthermore, these parent and child vertices can create a, so-
called, path. A path is the sequence of unique vertices vi → vi+1 with edges between
them. In sum, an SCM consists of vertices and edges which represent endogenous
variables X and their functions f [36]. A path, consisting of vertices, symbolizes their
causal relationship.

A

B C

Figure 3.4: An SCM with the vertices A, B, and C as exogenous variables and the edges
symbolizing the causal function f

Conditional Independence

The variables within the SCM can be conditionally independent given random variables
Z [36]. This means, if two variables X and Y are conditionally independent, they do
not have a causal relationship [9]. Hence, they do not influence each other in a causal
way. In order to be conditionally independent, they need to be d-separated in the
causal Bayesian network G = (V, E) [31].

For two variables X and Y to be d-separated, their vertices vx and vy need to be d-
separated in G = (V, E) [31]. This means, all paths connecting va and vb are blocked
by a set of random variables Z [11]. The variable Z can be observed or unobserved.
Observed means that evidence regarding the variable Z is available. Here, all paths
means all paths directed in any way from X to Y [31]. If paths are blocked they are
considered not active and no active paths constitute conditional independence [11].

Paths between vx and vy are considered blocked by Z for the following cases:

27

3 Background

• Causal chain: There is an observed z ∈ Z on the path that is connected by an
incoming and outgoing edge: → z →

• Common cause: There is an observed z ∈ Z on the path that is connected by
two outgoing edges: ← z →

• Common effect: There is an unobserved z < Z on the path that is connected
by two incoming edges: → z ←. Furthermore, z cannot be connected to a
descendant of Z .

For the causal chain and the common cause z ∈ Z is observed. In both cases the
independence of X and Y can be proven given the conditional probability P(y |x, z) of
y under x and z. For a observed z ∈ Z with the joint probability P(x, z, y) of x, z, and
y the conditional probability becomes

P(y |x, z) =
P(x, z, y)
P(x, z)

=
P(x)P(z |x)P(y |z)

P(x)P(z |x)
= P(y |z) (3.6)

As the joint probabilities can be written as a product of the conditional probabilities,
P(y |x, z) becomes P(y |z). This equation holds for the case of a causal chain and the
common cause. Here the evidence of a random variable z ∈ Z eliminates the causal
influence of x. For the cause of common effect, the random variable z < Z needs to
be unobserved to block the path. Thus, if the path between X , and Y is blocked given
Z , X and Y are conditionally independent.

Interventions

A way to find causal effects in a given SCM is through interventions. Interventions
are different to observations [36]. With observations, one would observe a variable
y having the value 4 and then conclude the impact. On the contrary, interventions
change the variables to analyze their impact [36]. By intervening on a value, the system
receives another distribution that differs from the observational distribution [36]. The
goal is then to observe whether parts of the system change after the intervention [36].
In the case that any intervention can lead to an arbitrary change of system, the two
distributions become unrelated [36]. To execute these interventions, one uses the
do (·) operator.

The do (·) operator is a way to perform interventions on a given SCM [33]. For hard
interventions the intervened variable is set to a certain value. So for example, if one
intervenes on x, one sets do (x = 4) [36]. Given that x has a causal effect on y, the
corresponding SCM has a changed distribution P

(
y
��do(x = 4)

)
for y [36]. For soft

interventions on the other hand, one changes the function of x instead of setting a

28

3.2 Causal Modelling and Learning

fixed value [36]. This means, if x = gx
(
y
)
+ Nx , with Nx being a random noise and

gx
(
y
)
being the causal dependency between x and y, one can change only the noise.

So, x = gx
(
y
)
+ Nx becomes x = gx

(
y
)
+ Ñx [36]. Thus, with the do (·) operator,

one can perform hard as well as soft interventions.

It should be noted that the conditional expectation E
[
y
��x = 1

]
is not the same as the

interventional expectation

E
[
y
��do(x = 1)

]
(3.7)

In this equation, the expectation of the random variable y is taken over its interventional
distribution P

(
y
��do(x = 1)

)
and not the conditional distribution [33].

In sum, one can use interventions to asses the causal relationship of variables by
changing the distribution induced into the model. For that, soft and hard interventions
using a do (·) operator are suitable. Furthermore, soft interventions change the func-
tion of the variables while hard interventions set the variable to a fixed value.

Overall, structural causal models are a way to model causal relationships between
data. The structural causal model can then be translated into a graphical model which
is a Bayesian Network. To classify the relationship between the variables, one can
use conditional independence and interventions. Using SCMs, interventions, and the
do (·) operator, the causal effect of variables within a system can be determined.

3.2.2 Causal Inference

Another main concept in this thesis is causal inference. Essentially, causal inference
is the concept of determining the causal effects on an outcome of a system [31]. This
means, given

• Covariates X as background variables: e.g. features of a neural net

• Treatments T as actions: e.g. manipulation, intervention or additional feature of
a neural net

• Outcome Y as a result: e.g. predicition of a neural net

• Confounders Z as a causal effect on treatment and outcome determined outside
of the system: e.g. input samples of a neural net

causal inference determines whether the treatment has a causal effect on the system
[48]. In essence, causal inference learns the effect a treatment has on a system. The
causal effect measured with causal inference can then be used as a causal attribution.
A causal attribution is defined as an explanation for causal behavior [48]. The causal

29

3 Background

attribution in this thesis is the Average Causal Effect defined later in this section. Ac-
cording to [7], there is a uniform way to analyze causal attributions with the following
axioms.

The Axioms for Causal Attributions

According to Chattopadhyay et al. in [7], five axioms were developed, in order to as-
sess the quality of causal attributions. The five axioms are conservativeness, sensitiv-
ity, implementation invariance, symmetry preservation, and input invariance [7]. The
quality and functionality of a causal attribution like the Average Causal Effect can be
determined by analyzing it with these five features.

The first axiom, conservativeness, states that the relevance of any neuron consists
of the sum of incoming messages [2]. The relevance in this case is how influential a
neuron is on the prediction [2]. Thus, the relevance score Ri j of neuron j in layer i is
defined as

Ri j =

K∑
k=0

R(i,i+1)(j←k)
(3.8)

where ∀k ∈ K is the indice of an incoming messages and R(i,i+1)(j←k)
is an incoming

message from the neuron k in layer i + 1 to neuron j in layer i. All of the summed up
incoming messages R(i,i+1)(j←k)

for ∀k ∈ K create the relevance score of neuron j in
layer i. In the case of causal attribution, the first axiom, conservativeness, would be
interpreted as ∑

i

atri = f (inp) − f (baseline) (3.9)

with atr being the causal effect of the input, which can be seen as a relevance score.
Furthermore, f (inp) is the neural net function with the input inp and f (baseline) is the
neural net function with a baseline baseline of the prediction [7]. The baseline should
be a neutral predicition that is set along the decision boundaries of the neural net [7].
Equation (3.9) shows how much the prediction changes against a neutral prediction
for all inputs. These changes should then summed up to be the causal effect.

The sensitivity assesses the sensitivity in regards of the features [44]. Given a system
with a predefined baseline and inputs, the number of features for any input is changed
in comparison to the baseline [44]. Then, the predictions of the inputs and baseline
are observed [44]. If the predicition of the inputs and the baseline differ, the differing
feature should have a non-zero attribution [44].

30

3.2 Causal Modelling and Learning

The axiom, implementation invariance, analyzes the models itself. Given two function-
ally equivalent models, the measured attribution should have the same value for both
models [44]. Functionally equivalent means that the outputs of the models are equal
for all inputs although the models might have a different implementation [44].

A causal measurement should also be symmetry preserving. This means, two vari-
ables

(
x, y

)
are symmetric with respect to a function F if and only if F

(
x, y

)
= F

(
y, x

)
for all values of x and y [44]. For attribution methods this means, if all inputs have
identical values for symmetric variables and all baselines have identical values for sym-
metric variables, then the symmetric variables receive identical attributions [44].

Lastly, input variance assess whether a model is invariant to a constant shift in input
[7]. Thus, does the output of the model y change for a linear shift of the model input x.
Given a model ∀i, f1

(
xi1

)
with the input xi1 ∈ X1 and a model with the identical weights

and biases ∀i, f2
(
xi2

)
with the input xi2 ∈ X2, a linear shift is performed for the input

xi1 making xi2 = xi1 + m2 with the linear constant m2 [23]. The neuron activation z2 of
model f2 becomes

z2 = wT x2 + b2 = wT
(
xi1 + m2

)
+ b1 − wTm2 = wT x1 + b1 = z1 (3.10)

with xi2 = xi1 + m2 and b2 = b1 − wTm2 the neuron activation of f2 is equal to the
neuron activation of f1 [23]. Thus, the output of f1 and f2 are equal making f2

(
xi2

)
=

f2
(
xi1 + m2

)
= yi = f1

(
xi1

)
[23].

The Average Causal Effect

The Average Causal Effect (ACE) is a mechanism, based on causal inference, to de-
termine the causal effect of a binary random variable x on another random variable y

within an SCM [36]. As defined in [36], given an SCM with a binary x and y the ACE
is

ACE = E
[
y
��do(x = 1)

]
− E

[
y
��do(x = 0)

]
(3.11)

This means, the ACE takes the concept of interventions to compute the interventional
expectation for y. The interventional expectation is computed with an intervention of
do(x = 1) and with an intervention of do(x = 0). Then, one subtracts them from one
another, which shows us the causal influence x has on y. For example, if x is a variable
to show whether a patient got a treatment (1 patient is treated, 0 patient is not treated)
and y would be the outcome of that treatment, E

[
y
��do(x = 1)

]
would be the average

31

3 Background

outcome a number of treated patients had. Furthermore, E
[
y
��do(x = 0)

]
would be

the average outcome a number of non-treated patients had. It should be noted that
the treatment itself is an intervention. By subtracting the two expectations, one can
see if the treatment had an effect relatively to non-treated patients. Thus, the ACE
shows the causal effect of a binary random variable x on another random variable y

[36]. In this thesis, the definition of the ACE is expanded to non binary variables.

Using the ACE on a causal Bayesian network means intervening with the graph itself
[36]. A causal Bayesian network G = (V, E) creates a joint distribution over its ver-
tices PV =

∏
vi ∈V P

(
vi
��parents(vi)

)
[36]. This means, if one intervenes with a ran-

dom variable xi, then xi depends on the intervention and not the original causal model
[36]. Thus, this process changes the distribution PV . By changing the distribution, the
structure of the causal Bayesian network G changes as well. Hence, intervening with
xi means removing incoming edges to the vertices Vxi of xi of the graph G [31]. The
changed distribution of G is defined as P(V |do(Vxi

)) =
∏

vi ∈V−Vxi
P

(
vi
��parents(vi)

)
,

with do(Vxi) being the intervention [36]. Furthermore, V − Vxi shows that the inter-
ventional distribution ignores the intervened random variable xi. Additonally, an in-
tervened causal Bayesian network automatically implies an intervened SCM. An in-
tervened SCM M i(X,U, f i, Pu) is identical to an SCM M(X,U, f , Pu) with the inter-
vention do(x = x̂) [36]. Here, one replaces the causal mechanism fx of x with the
constant function x̂ [36]. Thus, for f all the instances of x are replaced with the argu-
ments of x̂ creating f i [36]. Hence, using the ACE on causal Bayesian networks is the
equivalent of changing its structure and joint distribution.

Overall, the ACE uses interventions to evaluate the causal effect of a binary random
variable x. It does that by calculating the difference between both intervention scenar-
ios and therefore determining the relative causal effect of x. Furthermore, using the
ACE means intervening with the causal Bayesian network and the SCM of the system.
For the causal Bayesian network, the intervention changes the structure of the graph
and subsequently the graph’s joint distribution.

In sum, causal modelling means creating a structure to show the causal relationship
between various random variables like in Figure 3.3. For that SCMs can be used
and transferred into a graphical model the causal Bayesian networks. With SCMs and
causal Bayesian networks one can determine conditional independence. Furthermore,
interventions can asses the causal effect of a random variable x. Furthermore, using
interventions the ACE evaluates the average causal effect of a random variable x within
a model. Thus, utilizing SCMs, causal Bayesian networks, and interventions together
with the ACE the causal effect of random variables can be determined.

To conclude, during this chapter, I present the background of this thesis. This in-
cluded the structure and mathematical foundations of deep feedforward networks and
the Mean Squared Error as a neural net loss function. Furthermore, I explain neu-
ral net regularization. More specifically, I introduce dropout regularization and L1/L2

32

3.2 Causal Modelling and Learning

regularization as they directly influence the neurons in the network. Additionally, I
present a way to model causal relationships through structural causal models and
causal Bayesian networks. Lastly, I introduce interventions and the ACE to measure
causal relationships between random variables in a structural causal model. As I es-
tablish all main definitions, the state of the art in this area, and the background of this
thesis, I start with the approach of this thesis in the next chapter.

33

4 Methodology

The goal of the approach in this thesis is to answer the question whether creating
causal parameters during training enhances the generalization capabilities of the neu-
ral net. Thus, if I include a causal regularization mechanism in the neural net training, is
the neural net able to generalize even if data is subject to dataset shift. Within the next
chapter, I introduce the method developed during this thesis. First, I show the overall
system and general idea of the method. Afterwards, I explain how to use neural nets as
SCMs. Then, I discuss the Average Causal Effect component of the algorithm. Lastly,
I discuss the composed loss function and optimization technique for the parameters.

4.1 The Training Algorithm with the Negative Causal Effect
(NCE)

First, I introduce the overall methodology of the method. Thus, I explain the different
algorithm parts and how they interact with each other. In Figure 4.1, the overall proce-
dure of the neural net training is described. One can see that the neural net training
consists of 3 parts. First the training algorithm forwards propagates all training sam-
ples. Then, it calculates the ACEs. Afterward, the trainings algorithm calculates the
model parameters using the loss function with the negative causal effect (explained
in Section 4.4). Through that, the algorithm maximizes the causal effect of the neu-
ral net throughout the model training. Within the ACE calculation, the neural net is
sliced (explored in Section 4.2) and the ACEs are calculated for each layer (explained
in Section 4.3).

As one can see in Figure 4.1, the loss function consists of two parts. The goal is to
maximize the causal effect of each neuron. For that the training algorithm calculates
the ACEs of each neuron for each training step. With the ACEs the negative causal
effect NCE of the neural net is calculated. Then, the algorithm uses the original loss
function, the MSE, and the negative causal effect NCE of the neural net to calculate
the model parameters. Thus, I incorporate the ACEs into the regularization term. This
aims to make the overall causal effect of the net grow.

The method calculates the negative causal effect of the whole net by calculating the
ACEs of each neuron within the neural net. For this, the training algorithm takes the

35

4 Methodology

training data and the model in which the training data was forward propagated. Then,
the algorithm slices the neural net like in Figure 4.2. First, it calculates the ACEs of
each neuron in the first layer. Then, the first layer is cut away treating the remaining
layers as a new neural net. The outputs of the first layer become the new inputs. With
that, I calculate the ACEs of each neuron in the second layer. For the ACE calculation,
the interventional values, the output of the removed neurons before the activation, and
the remaining layers of the neural net are used. This is done for every layer within the
model. It should be noted that it makes no difference in which direction the neural net
is sliced. Afterwards, the algorithm takes the ACEs of each neuron and creates the
causal effect of each neuron, explained in Section 4.4. Then, the algorithm takes all
causal effects of all neurons and calculates the expectation. Afterward, the NCE is
created by changing the sign of that expectation. This way when being incorporated
into the loss function the ACE is maximized through the negative causal effect being
minimized. I provide more details on that in Section 4.3.

Overall, the ACE is included as a regularization mechanism within model training. For
that, the method calculates and averages the causal effect of every neuron in the
model. After that, it includes the MSE and the negative causal effect in the loss func-
tion. Here, the MSE is responsible for penalizing the difference between target output
and prediction of the model. The negative causal effect, on the other hand, has the
task to enhance the causality of the neural net. Then, the training algorithm chooses
the optimal parameters to minimize the MSE and the negative causal effect. The next
section provides more detail on how I use the neural net as an SCM in this method.

4.2 Feedforward Neural Nets as Structural Causal Models
(SCM)

Within Figure 4.1, one can see that the neural net is included into the calculation of
ACE. In order to do that one needs to interpret the neural net as an SCM. This is
because the ACE is based on the fundamentals of causal inference and interventions.
Causal inference and interventions need an SCM to be applicable. Thus, I interpret
the neural net as an SCM.

As other authors like [7, 24] have already stated, feedforward neural net can be inter-
preted as an SCM. Generally, a neural net can be seen as a directed acyclic graph
[7, 24]. One can write each neuron as a function of the previous layer [7]. So, for the
layer ∀li ∈ L the neuron’s activation ∀li, j ∈ li can be calculated using li, j = fi, j(li−1)
with fi, j being the function of li, j and li−1 being the previous layer. For the input layer
l1, one can view the input samples as independent noise variables u j ∈ U with the
probability distribution Pu [7]. Thus, the neurons ∀l1, j ∈ l1, in the input layer l1, can
ve calculated by l1, j = f1, j(u j) with f1, j being the function of l1. So, translating that

36

4.2 Feedforward Neural Nets as Structural Causal Models (SCM)

Forward Propagation
of Training Samples

ACE Calculation

Slice Neural Net

For each neuron
li, j ∈ L

ACEs for Neuron li, j ∈ L

Loss Function

Mean Squared
Error

Negative Causal Effect
of Neural Net

Parameters of
Neural Net [w, b]

For each
training epoch

Figure 4.1: The method incorporates the usage of SCMs and the calculation of the ACE in the
model training

1. Slice 2. Slice

Figure 4.2: Slicing the neural net creates multiple smaller neural nets

37

4 Methodology

to an SCM means that the layers li become the endogenous variables xi ∈ X . The
relationship fi between the layers become the causal function of X . Thus, one can
view a neural net as an SCM with the 4-tuple M

(
[l1, l2, ..., ln] ,U,

[
f1, f2, ..., fn

]
, Pu

)
[7]. Here, l1 is the input layer and ln is the output layer. Furthermore, for every layer
li there is a set of causal functions fi to determine each neuron within the layer li.
Additionally, the input variables U are the set of endogenous variables. It is important
to note that my goal is to only identify causal relationships within the SCM and not any
direction of the causality.

According to [7], one can reduce the SCM M
(
[l1, l2, ..., ln] ,U,

[
f1, f2, ..., fn

]
, Pu

)
to

the SCM M ′
(
[l1, ln] ,U, f ′, Pu

)
. This means, the input and output layer are directly

connected in the acylic graph and I neglect the edges between the hidden nodes.
Figure 4.3 shows an example of neglecting the edges of hidden nodes in the acyclic
graph. One can do so because the causal function between the output layer ln and
the input layer l1 depends on all causal functions within the graph. This means, for a
neuron ln,i ∈ ln the causal function fn,i(ln−1) is

fn,i(ln−1) = fn,i(fn−1,1(ln−2), fn−1,2(ln−2), fn−1,3(ln−2), ..., fn−1,N (ln−2)) (4.1)

The short description for that is ln,i = f ′n,i(ln−2). This shows that the layer ln can
also be written as a function of the layer ln−2. One can backpropagate this function to
the first layer transforming ln,i = fn,i(ln−1) into ln,i = f ′n,i(l1) for ∀ln,i ∈ ln. In sum,
the causal functions of the output layer is dependend on all the causal function in the
graph. This means, one can reduce the SCM to a acyclic graph including only the input
and output layer.

Reduction of SCM

Figure 4.3: The input and output layer can be directly connected in the acyclic graph

As mentioned before, in order to get all the ACEs within the neural net, I slice the
model as in Figure 4.2. For each iteration, I remove one layer beginning with l1. This
means, I remove the layer l1 to lk and the remaining layers ln−k to ln become the new

38

4.2 Feedforward Neural Nets as Structural Causal Models (SCM)

neural net. Thus, after each slice, I treat the remaining neural net like a new model.
The removed layers provide the new model with the exogenous variable U. In detail,
the output of the neurons within the removed layer become the input samples and
therefore the exogenous variable U. As I treat the remaining model as a new model,
each remaining neural net becomes its own SCM M

(
[ln−k, ln] ,U, f ′, Pu

)
for k being

the number of removed layers. This creates multiple SCMs of one model. Thus, each
hidden layer acts as an input layer once. Without slicing the neural net the causal
function of a hidden node would always depend on the original input layer l1. This is
because the neural net can be reduced down to an SCM only including the input and
output layer. With slicing the SCM and treating the output of the removed layers as
the exogenous variable U, the hidden layers become input layers. This means, I can
create the causal functions f ′ for each hidden node. In sum, with every iteration, I
remove a layer that provides new input samples. Furthermore, the remaining layers
create a new SCM.

In order to use the ACE, as described in Section 4.3, the neurons need to be d-
separated [36]. If they are not the neurons will influence each other. Hence, the inter-
ventions performed on the neurons are not separated from each other. This means,
if one manipulates neuron l1,i the other neurons [l1,1, l1,2, ..., l1,i−1, l1,i+1, ...l1,n] are
also influenced. A consequence would be that the intervention on neuron l1,i would
alter the activation of neuron l1,i−1, for example. With a changed activation, the then
calculated ACEs of neuron l1,i−1 would not have their true values, as they depend on
the activation of the neuron. This would mean that the ACE of l1,i−1 would not have its
true value. Thus, I make the same assumption as in [7]. For a given neural net with
a reduced SCM M

(
[ln−k, ln] ,U, f ′, Pu

)
and a causal Bayesian network G = (V, E)

the neurons are d-separated. This makes them conditional independent. I can make
this assumption because the features have common exogenous parent vertices V [7].
As mentioned before, if one views a neural net as an SCM the input samples become
the exogenous variables [7]. Thus, the input features all have the input samples as
exogenous parent vertices in the causal Bayesian network. Looking at the definition
of d-separation in Section 3.2.1, one can see that an observed random variable Z can
block the path between two variables. This holds if Z is an observed random variable
and the two variables on the path have a the common cause Z or are on a causal chain
with Z . Thus, as one can see in Figure 4.4, if Z is an input sample, and two neurons
would be connected, they would lie on a causal chain with Z or have the common cause
Z . The third case, common effect, would mean that the neurons would be the effect
of the input samples. Thus, this case can be neglected as the input samples are prop-
agated into the neurons. Here, the input samples are exogenous variables which are
observed random variables. Because of the fact that the input samples are observed,
the path between the neurons can be considered blocked. As the input samples are
observed variables, the features of a neural net can be considered d-separated.

As I produce multiple SCMs out of one network, I apply the assumption to each of the

39

4 Methodology

SCMs. For this, I use the output of the removed layer as the new inputs. After removing
a layer, the features of the remaining SCM M

(
[ln−k, ln] ,U, f ′, Pu

)
have observed

exogenous variables in the form of inputs as well. Hence, the new neurons in layer
ln−k also have a blocked path between them. In short, the features of a neural net are
d-separated due to the inputs blocking the path as exogenous variables. Furthermore,
the sliced neural nets do use inputs as exogenous variables as well which means I view
the input neurons as d-separated as well. With this, I apply the ACE to all the neurons
within the neural net.

Z

li, j li, j+1 li, j Z li, j+1

Figure 4.4: The SCM of the input neurons and the input samples acting as the random variable
Z

To conclude, each neural net can be viewed as an SCM with the neurons being the
endogenous variables X , the functions of the neurons being the causal functions, and
the input samples being the exogenous variables U. Due to the causal functions de-
pending on one another one can cut down the acyclic graph to the input and output
layer of the system. Additionally, I slice the neurons creating multiple SCMs out of one
neural net. This way I can isolate the causal functions for each hidden node. Fur-
thermore, I assume that the features of each created SCM are d-separated due to the
input variables acting as exogenous variables. As I can isolate the causal function of
each hidden node with an SCM, I calculate the ACE as state in the following section.

4.3 Applying the Average Causal Effect (ACE) to Neural
Nets with Continuous Values

Generally, one can apply the ACE to binary values as shown in Section 4.3. As the
data used here is continuous, one needs to alter the computation of the ACE, so it
can handle continuous data. Chattopadhyay et al., in [7], defined the ACE for the
continuous case as

ACEy

do(xi=α)
= E

[
y
��do (xi = α)

]
− baselinexi (4.2)

40

4.3 Applying the Average Causal Effect (ACE) to Neural Nets with Continuous Values

with y being the output, xi the intervened input, α the intervention on x, and the
baselinexi being a neutral prediction. The ACE calculates the causal effect of xi on
the output y [36]. Here, the ACE uses the interventional expectation E

[
y
��do (xi = α)

]
,

with the neutral prediction as a reference point [7]. The original definition of the ACE
uses a binary variable x. Bringing the medical example back to mind, x represents a
treatment. So, for x = 1 the doctor gave a treatment to the patient and for x = 0 the
patient remains untreated. Subtracting both of the cases shows if the treatment had
a causal effect, as the untreated patient acts as a ground truth. Thus, the effect of a
treatment is calculated relative to a non-treated patient. As other effects not related
to the treatment also occur for non-treated patients, these effects are taken out of ac-
count. For the continuous case, the baseline represents the ground truth [7]. That’s
why it should be a neutral prediction. After one calculates the interventional value of a
neuron, it is subtracted from that neutral prediction. This way, other side effects occur-
ring in the net are taken out of account. With this relative value, one can identify the
real impact of the neuron. In sum, the continuous ACE calculates the causal effect of
the intervened neuron xi has on the output y using a neutral prediction as a reference
point and the interventional expectation.

As mentioned before, the baseline should be a neutral prediction. In detail, a neutral
prediction would be a prediction along the decision boundary of the model [7]. Fur-
thermore, the baseline could be domain-specific [7]. So, in the case of image data,
it could be a fully black picture. However, a fixed baseline has disadvantages as the
ACE is dependent on the inputs [7]. Thus, features, which largely deviate from the
other features, can generate a high ACE without actually having a large causal effect.
Thus, I also make the baseline dependent on the feature xi. As in [7] the baseline
becomes

baselinexi = Exi
[
E

[
y
��do (xi = α)

]]
(4.3)

which means the interventional expectation E
[
y
��do (xi = α)

]
is averaged over all in-

terventional values of xi. By averaging the causal effect over all interventions, the side
effect occurring within the net during the interventions are taken out of accounts. This
way, the effect of the individual interventions can be measured by the ACE. Thus, if
the baseline is dependent on xi, one can avoid errors in the ACE for large differences
between the features.

One way to check whether one has a functioning baseline is to verify if it enables the
ACE to measure 0 causal effect [7]. If xi would have no causal effects on y, the in-
terventional expectation would not change [7]. This means, all of the interventional
expectations keep the value γ, for example. The mean of all of the interventional
expectations then becomes γ as well. Thus, the baseline becomes γ. With all inter-

41

4 Methodology

ventional values being γ and the baseline being γ as well the ACE becomes 0.Thus,
the baseline introduced in Equation (4.3) enables the ACE to measure 0 causal effect.

The ACE is suitable for this thesis for multiple reasons. First, the ACE provides a met-
ric to evaluate every single neuron and their activations regarding causality. As I aim to
tune the weights and biases of the neurons to improve their causality, I need to assess
the causality of each neuron separately. Furthermore, as explained in Section 4.4, I
use the ACE as a regularization term within the loss function. One way to do this is
by adding the ACE as a metric to the loss function. Furthermore, the ACE fulfills the
axioms in Section 3.2.2 except for axiom one [7]. Axiom one is relevant if one wants to
linearly approximate the neural net [7]. As explained in Section 3.2.2 for axiom one, the
subtraction of an input from a arbitrary baseline should be the overall causal attribution
of a linear system. However, as the ACEmeasures the causal strength of the individual
neurons, axiom one does not need to be fulfilled [7]. Looking at Equation (4.2), one
can see that the axiom sensitivity holds. The ACE gives a non-zero score to values
that change the prediction measured against the baseline. Furthermore, the imple-
mentation invariance and the symmetry preservation are fulfilled, as the ACE directly
calculates the interventional expectation. This means, the ACE does not depend on
the implementation of the model [7]. So, as long as the function of the model stays
equivalent the implementation does not matter [7]. Lastly, as derived in Section 3.2.2,
a non-linear model is invariant to a linear shift in inputs. Thus, the last axiom, input
invariance, holds as the ACE depends on the neural net function f . This means, the
ACE with a constant shift in inputs stays equal to the ACE without a shift.

To conclude, the one can define the continuous ACE as the the interventional expec-
tation subtracted from a neutral prediction. This way the relative effect of the features
can be determined. A robust baseline should be stable for large changes in features.
Thus, the baseline I chose here is individual for each feature. Furthermore, the ACE
fulfills four of the five axioms for causal attribution. In order to calculate the ACE, one
needs to intervene on the input features of the SCM.

4.3.1 Choosing the Interventional Values

As explained in Section 3.2.1, intervening on a variable means setting the variable
to a certain value. Due to the lack of prior information, like in [7], I assume that the
do (·) operator is equally likely to intervene xi over the whole domain of xi. Thus, the
intervention for any value between the lowest value lowi of xi and the highest value
highi of xi is equally likely [7]. Because of that, the intervention of xi becomes the
uniform distribution U

(
lowi, highi

)
.

Furthermore, like in [7], I only intervene on one feature at a time. So, given the neu-

42

4.3 Applying the Average Causal Effect (ACE) to Neural Nets with Continuous Values

ral net with the causal function y = f ′y (x1, x2, ..., xk) with y being the output and
x1, x2, ..., xk being the features, the intervened causal function becomes

y = f ′y |do(xi=α) (x1, x2, ..., xi−1, α, xi+1, ..., xk) (4.4)

with α being the intervention at the feature xi [7]. For simplicity, I shorten f ′
y |do(xi=α)

to f ′y in the following.

4.3.2 Calculating the Interventional Expectation

In the previous chapter, I discussed the definition of the ACE for the continuous case.
That mentioned definition uses the interventional expectation, which I introduce in this
chapter. The general definition of the conditional expectation is E

[
Y = y

��X = x
]
=∑

y yP
(
Y = y

��X = x
)
. For the continuous case the sum can be written as an integral

and the conditional expectation becomes E
[
Y = y

��X = x
]
=

∫
y
yp

(
Y = y

��X = x
)

dy.
With this definition, like in [7], the interventional expectation is

E
[
y
��do (xi = α)

]
=

∫
y

yp
(
y
��do (xi = α)

)
dy (4.5)

As I intervene only one feature xi per iteration, the integral is calculated by going
through all other features xj keeping xi = α. For a large dataset that can be time-
consuming.

Due to that, I approximate the ACE with a Taylor expansion like in [7]. The value to
approximate around is the interventional mean

µj = E
[
xj

��do (xi = α)
]

(4.6)

of the features xj with ∀xj ∈ li [7]. The interventional mean is the observational mean
of the feature xj with an intervention performed in another feature xi. The Taylor ex-
pansion can be centered around that because, as described in Section 4.2, I assume
that the features are d-separated. This means, if the algorithm intervenes one fea-
ture in the neural net, the probability distributions of the other features do not change.
Hence, if the algorithm intervenes on the feature xi, for the other features xj , xi the
interventional probability distribution is P

(
xj

��do(xi = α)
)
= P(xj). Thus, the covari-

ance and the mean of the remaining features xj , xi are equal to the covariance and
mean of the input data. Those are the observational covariance and mean. Solely the
mean of the intervened feature

E
[
xi
��do (xi = α)

]
= E [α] = α (4.7)

43

4 Methodology

changed, as I set xi to the fixed value of α. Furthermore, as the features are d-
separated and the algorithm intervenes on xi, the feature xi has no joint variability
with the other features [7]. This means, the covariance Cov

(
xi, xj

��do (xi = α)
)
with

∀xj ∈ lk becomes 0. So, within this approximation, the intervened feature is set to
the interventional value, and the other features are set to the observational mean and
covariance. With this, the ACE can be measured without the values of other features
interfering with the intervention of xi.

In order to approximate the interventional expectation, Chattopadhyay et al. approxi-
mated the intervened causal function of the neural net [7]. In Section 4.3.1, the causal
function of the intervened neural net is f ′y . Furthermore, the general definition of a
Taylor expansion for a function f (x), and the approximation point x = a, is

Tf (x;a) =

inf∑
n=0

f (n)(a)
n!
(x − a)n (4.8)

with n being the order of derivatives. Thus, the second Taylor expansion for a function
f (x), and the approximation point x = a, is f (x) = f (a) + ∇T f (a)(x − a) + 1

2 (x −
a)T∇2 f (a)(x − a). Like in [7], using that the second Taylor expansion around the
interventional means µ =

[
µ1, µ2, ..., µk

]T of the input layer li, the causal function of
the layer li becomes

f ′y (li) = f ′y (µ) + ∇
T f ′y (µ)

(
li − µ

)
+
1

2

(
li − µ

)T
∇2 f ′y (µ)

(
li − µ

)
(4.9)

In order to get the interventional expectation, one applies the interventional expec-
tation on both sides of the equation. As the expectation is linear, the summands of
Equation (4.9) can be divided into seperate individual expectations. This means, I can
take the expectation of the first and second order term separately. For the first order
term f ′y (µ) the expectation becomes E

[
f ′y (µ)

���do (xi = α)
]
= f ′y (µ). For the second

order derivative the expectation is derived as

E
[
∇T f ′y (µ)

(
li − µ

) ���do (xi = α)
]
=

∇T f ′y (µ)
(
E

[
li
��do (xi = α)

]
− E

[
µ
��do (xi = α)

])
= 0

(4.10)

as ∇T f ′y (µ) is a fixed value and the expectation is linear, they can be put in front of
the expectation. The expectation E

[(
li − µ

) ��do (xi = α)
]
can also be divided into two

separate expectations, because the expectation is a linear operator. Moreover, by tak-
ing the interventional expectation of the input layer li, one gets the interventional mean

44

4.3 Applying the Average Causal Effect (ACE) to Neural Nets with Continuous Values

µ. This is because the interventional means µ are the means of the input features in
layer li. Furthermore, the interventional expectation of µ is µ itself. Thus, the first-order
derivative becomes 0. This results in the interventional expectation becoming

E
[

f ′y (li)
���do (xi = α)

]
= f ′y + E

[
1

2

(
li − µ

)T
∇2 f ′y (µ)

(
li − µ

) ����do (xi = α)
]

(4.11)

Next, to extracted the covariance, I apply the trace operator on the second-order term
[7]. The trace Tr(A) of a 1 × 1 matrix A is simply the 1 × 1 matrix A itself. So, it is
possible to use the trace, on the interventional expectation, because one can view the
expectation within the trace as a 1 × 1 matrix. Thus, the interventional expectation
from Equation (4.11) becomes

E

[
1

2

(
li − µ

)T
∇2 f ′y (µ)

(
li − µ

) ����do (xi = α)
]
=

1

2
∇2 f ′y (µ)Tr

(
E

[(
li − µ

)T (
li − µ

) ���do (xi = α)
])
=

1

2
∇2 f ′y (µ)E

[
Tr

((
li − µ

)T (
li − µ

) ���do (xi = α)
)]
=

1

2
∇2 f ′y (µ)E

[
Tr

((
li − µ

) (
li − µ

)T ���do (xi = α)
)]
=

1

2
Tr

(
∇2 f ′y (µ)E

[(
li − µ

) (
li − µ

)T ���do (xi = α)
])

(4.12)

Using the linearity of the trace operator and linearity of the expectation, 1
2 as well as

∇2 f ′y (µ) can be placed outside of the trace operator. The linearity of the trace opera-
tor allows us to push the expectation outside. Furthermore, the trace operator Tr(AB)
can also be written as Tr(BA). Generally, matrix multiplications are not commutative.
However, if A is of dimension m×n and B has the dimension n×m the property holds.
This is possible, as the trace is the sum of all diagonal elements of a matrix, thus
changing the order of the matrices does not change the result of the trace. For this
equation, viewing

(
li − µ

)T as A and
(
li − µ

)
as B, the order can be changed. The

property holds, as
(
li − µ

)T is the transpose of
(
li − µ

)
. Then again due to the lin-

earity of the trace operator, the expectation can be pushed inside again. Furthermore,
the covariance is defined as Cov(X) = E

[(
X − E [X]

) (
X − E [X]

)]
. Due to that, the

interventional expectation E
[(

li − µ
) (

li − µ
)T ���do (xi = α)

]
, in Equation (4.12), be-

comes the interventional covariance.

45

4 Methodology

Overall, the interventional expectation is approximated with the second Taylor expan-
sion. Due to using the trace and the linearity of the expectation one can reduce the
function to

E
[
y
��do (xi = α)

]
= f ′y (µ) +

1

2
Tr

(
∇2 f ′y (µ)Cov

(
li
��do (xi = α)

))
(4.13)

as f ′y (li) is the output y of the neural net [7].

Using the approximation and the interventional values from Section 4.3.1, the interven-
tional expectation is computed according to Algorithm 1 [7]. Here, the inputs are the
outcome y, the intervened neuron xi, the interventional values U

(
lowi, highi

)
, num-

ber of interventions m, the observational means µ, the observational covariance matrix
Cov(X |do (xi = α)), and the causal function of neural net f ′y . It should be noted that
the causal function of the neural net f ′y is the function of the neural net fy . Then, as
the covariances between the intervened input and all other inputs are 0, the algorithm
sets the corresponding values within the observational covariance matrix to 0 [7]. After
that, the algorithm intervenes the input neuron xi for values between the lowest value
lowi of xi and the highest value highi of xi. This is done over a uniform distribution
and for a number of interventions n.

This way, the variable xi is set to the fixed value of α throughout the interven-
tion. With the observational means and the interventional values the input µα =[
µ1, µ2, ..., α, ...µn−1, µn

]
is created for each iteration. Then, for each µα, the algo-

rithm computes the interventional expectation according to Equation (4.13).

Algorithm 1 Calculate the Interventional Expectation E
[
y
��do (xi = α)

]
for the inter-

vened neuron xi [7]
Input: outcome y, intervened neuron xi, interventional values α = [α1, α2, ..., αm],
observational means µ =

[
µ1, µ2, ...µn

]
, observational covariance matrix

Cov(X |do (xi = α)), causal function of neural net fy
Output: Interventional Expectation E

[
y
��do (xi = α)

]
for each interventional value

Require: Cov(xi, xj |do (xi = α)) = 0, ∀xj ∈ X
for α = [α1, α2, ..., αm] do
µα =

[
µ1, µ2, ..., α, ...µn−1, µn

]
E

[
y
��do (xi = α)

]
= f ′y (µα) +

1
2Tr

(
∇2 f ′y (µα) · Cov

(
X
��do (xi = α)

))
end for

In sum, the continuous ACE is the interventional expectation subtracted from a base-
line. That baseline is the average of the interventional expectation. Using that refer-
ence point, the ACE becomes a relative value to the neutral prediction. Furthermore,
the interventions done on the input neurons are along the uniform distribution within

46

4.4 Introducing the ACE as a Neural Net Regularization

the domain of the intervened values. Additionally, the interventional expectation is ap-
proximated with the second Taylor series due to large computation costs. This way,
the interventional expectation can be calculated using the observational mean, obser-
vational covariance with the interventional values of the intervened neuron xi.

4.4 Introducing the ACE as a Neural Net Regularization

The main goal of this thesis is to introduce a regularization technique for neural net
training, which should make the neural net more causal. I do this by using the neg-
ative causal effect NCE , as a regularization term. I construct the regularization term
similarly to the L1 and L2 regularization explained in Section 3.1.3. The new loss func-
tion LT consists of the original loss function LD and the regularization term LW with
the regularization parameter λ. Using the NCE as the regularization term the loss
function becomes

LT = LD + λLW = LD + λNCEN (4.14)

Generally, the training algorithm minimizes the loss function. Thus, it drives the loss
function against zero. This means, the NCE is minimized in this case as well.

For a better understanding, I dive deeper into the calculation of the NCE . Calculating
the NCE requires the causal effectCEy

xi of each neuron within the net. As described in
Section 4.2, I slice the the SCM of the neural net creating multiple SCMs with a hidden
layer as an input layer. Then, I calculate the causal effect using the interventional
expectation for each neuron of the input layers. That way, I can compute the CEy

xi for
every neuron in the neural net. Using the CEy

xi of every neuron, I estimate the overall
causal effect in the neural net as

NCEN = −Exi
[
CEy

xi

]
, ∀li, j ∈ li (4.15)

Here, I take the causal effect CEy
xi of each intervened neuron xi in every layer and

calculate their mean. As the negative causal effect is minimized in the loss function,
the CEy

xi would be minimized as well without a negative sign. That’s why I introduce
the minus in Equation (4.15). This way by minimizing the NCE the causal effect CEy

xi

of each neuron is maximized.

For the calculation of the causal effect CEy
xi of a single neuron, I use the ACEs ACEy

xi

of that intervened neuron for every interventional value. For the following, it is important
to understand that the individual ACEs ACEy

xi of the interventional values can be either
negative or positive in this case [36]. A positive ACE means the neuron affects the

47

4 Methodology

output in a positive causal way and a negative ACEmeans the neuron affects the output
in a negative causal way [36]. Let’s bring the medical example back to mind, where the
intervention is a treatment and the output is the outcome for the treated patients. If the
ACE for a performed treatment would be positive, the treatment would heal the patient.
On the contrary, if the ACE would be negative for a performed treatment, the treatment
would worsen the condition of the patient. Thus, a negative ACE, as well as a positive
ACE, show a causal relationship between the treatment and the outcome. In this case,
the treatments are the neuron activations and the outcome is the prediction. In order
to build a net with causal activations, the positive and negative causal relationships
should be fostered in order to predict the correct outcome. Thus, the CEy

xi becomes

CEy
xi =

��median(ACEy
xi)

�� , ∀α ∈ xi (4.16)

Here, I take the median of ACEy
xi for all interventional values α ∈ xi applied to the in-

tervened neuron xi. In this case, I use the median and not the mean because, through
testing, I discovered that the distribution of the ACEs of one neuron can be a skewed
distribution. With this, the mean would be dominated by the outliers. For this thesis,
I assume that the outliers are less representative of the causal relationship. Hence,
I use the median to calculate the ACE of a neuron. This median is either negative
or positive which shows if the input has a predominantly positive or negative causal
effect on the outcome. I assume that this shows a first indication of the final causal
relationship. As both, negative and positive causal relationships should be fostered
the absolute value is taken. Thus, for activations with a negative median of ACEy

xi ,
the median of ACEy

xi is minimized and for activations with a positive median of ACEy
xi ,

the median of ACEy
xi is maximized.

As discussed before, I aim to tune the weights w and biases b of the neurons by
minimizing NCE . This is possible because the ACEs ACEy

xi for each interventional
value are dependent on the weights and biases of each neuron. ACEy

xi is defined as

ACEy
xi = E

[
f ′y
���do (xi = α)

]
− Exi

[
E

[
f ′y
���do (xi = α)

]]
(4.17)

with f ′y being the function of the neural net [7]. As, f ′y depends on the weights w
and biases b, with the regularization the training algorithm determines weights and
biases minimizing the negative causal effect NCE of the neural net. By doing this, the
algorithm maximizes the causal effect CEy

xi of each neuron.

Thus, I include the negative causal effect NCE of the neural net as a regularization in
the loss function. This way the training algorithm determines w and biases b to maxi-
mize the causal effect CEy

xi for each neuron according to amount. This is necessary

48

4.4 Introducing the ACE as a Neural Net Regularization

because a positive, as well as a negative causal effect, should be accounted for, in
order to achieve a correct prediction.

To conclude, the neural net is viewed as an SCM with a causal Bayesian network.
With this model, the causal effect can be calculated for all input neurons using the
interventional expectation. In order to calculate the causal effect for all neurons, the
neural net is sliced into multiple SCMs. This way each hidden neuron can act as an
input layer and the causal effect can be calculated. Furthermore, the interventional
expectation is approximated with a Taylor expansion up to the second order. Lastly,
the overall negative causal effect of the neural net is used as a regularization term
within the loss function. Through that, the training algorithm maximizes the causal
effect of each neuron during model training determining causal weights and biases.
Next, the experiments and validation of the proposed method are discussed.

49

5 Experiments and Results

Within this chapter, I introduce the experiments performed with the developed ap-
proach. The goal of this chapter is to show the limitations and capabilities of the de-
veloped approach. First, I describe the set-up of the experiment. This entails the used
datasets, the applied training approaches, and the investigated model. Furthermore, I
discuss the results generated by this experimental set-up. Specifically, I evaluate the
test loss and training loss together with the causal effect of the neural net measured.
In the following, I discuss the experiment set-up.

5.1 Preparation and Conduct of Experiments

For this section, I summarize the data used on the developed approach. This includes
one well-balanced training set, three datasets with a covariate shift and three datasets
with a prior probability shift. Furthermore, the training methods are described. Besides
the approach developed in this thesis, I include an L1 as well as L2 regularization in
the model training. Lastly, I describe the model used for the mentioned methods and
data.

5.1.1 The Boston Housing Dataset

As mentioned before, there are three different types of datasets used in this thesis.
The datasets are a well-balanced dataset, three with covariate shift, and three with a
prior probability shift. For all datasets, the boston housing dataset from [17] is used.
The dataset can be used to predict house prices according to different properties of
the neighborhood, air pollution, structure of the building, and accessibility [17].

I use 14 variables of the boston housing dataset, which I describe in Table 5.1. From
these 14 variables, the neighborhood, the air pollution, the structural and the accessi-
bility variable are the features. Subsequently, the median value of property occupied
by owners in $10, 000, with the acronym MEDV, becomes the target variable. Further-
more, the dataset has 506 samples overall. For the training, I use 50 samples and
I test the model with the remaining samples. For the approach developed here, the
50 training samples need one week for the training. Additionally, as backpropagation

51

5 Experiments and Results

is used, all of the training gradients need to be saved. For the 50 training samples
the gradients use the 15GB computers, which are available for this thesis, to capacity.
Because of the RAM capacity and the time the experiments take the training samples
size is reduced. Furthermore, Boston Housing is considered to be a problem located
on the easier end when it comes to machine learning and the generalization of the
neural net is in the focus for this work. Thus, having a larger test set can be seen as
beneficial.

Name of Variable Description of Variable

Neighborhood Variable
CRIM The crime rate per capita by city
ZN The proportion of residential land zoned for properties over 25,000 sq.ft.
INDUS The proportion of business areas which are not retail per city
CHAS The Charles River variable (1 if on banks of the river, 0 if not)
TAX The rate of full-value property-tax calculated per $10,000
PTRATIO The rate of pupil-teacher per city
B With Bk being the proportion of people of color by city - 1000(Bk − 0.63)2

LSTAT The rate of people with lower status by percentage
Air Pollution Variable

NOX The nitric oxides concentration in parts per 10 million
Structural Variable

RM The average number of rooms per property
AGE The ratio of homes occupied by owners which where built before 1940

Accessibility Variable
DIS The distances to five Boston employment centres weighted
RAD The index of accessibility to access roads

Target Variable
MEDV The median value of property occupied by owners in $1000’s

Table 5.1: The variables of the boston housing dataset [17]

In Figure 5.1, one can see the importance of each feature for the model. I assess
the importance of each feature by leaving out each feature once in the model training.
Then I compare the test MSE afterward. If the feature is important the prediction with-
out this feature will be less accurate. This means, the test MSE is going to be higher.
If the feature is less important the accuracy of the prediction will suffer less. Thus,
the MSE is going to be lower. After randomly selecting the training and test split and
randomly intializing the neural net, I compute the test MSE three times for each feature
and then calculate the mean. The results are displayed in Figure 5.1. Here, one can
see that the shape of the curve first is concave and then goes into a convex form. As
the test MSEs over the value of 0.029 fall into the convex part of the graph, they are

52

5.1 Preparation and Conduct of Experiments

Figure 5.1: The feature TAX, CHAS and B seem to have the strongest influence on the result
of the neural net

considered the most important features. Thus, the features TAX, CHAS, and B are the
most important while the feature DIS is the least important.

As mentioned before, I use a well-balanced training set. However, I also create
datasets with a dataset shift. For the case of covariate shift, it means that the dis-
tribution of test and training data differ from one another. For that, a wide, a narrow,
and a skewed split are computed. According to Table 5.1, the wide split has a shift in
the feature TAX, B, LSTAT, RAD, INDUS, NOX, and RM. For the narrow and skewed
split, the shifts are in TAX, B, RAD, CRIM, INDUS, NOX, and RM. As one can see that
the wide split has one more important feature with a shift compared to the narrow and
skewed split.

Variable with shift more important Variable with shift less important

The Wide Split
TAX,B,LSTAT,RAD INDUS,NOX,RM

The Narrow Split
TAX,B,RAD CRIM,INDUS,NOX,RM

The Skewed Split
TAX,B,RAD CRIM,INDUS,NOX,RM

Table 5.2: The three splits and the respective variables with a shift divided by importance

53

5 Experiments and Results

Figure 5.2: The distribution of the TAX feature for different splits

Although, the wide, narrow, and skewed split have shifts in the same features the
quality of the prediction will still be influenced differently. A reason for that is how the
shifted training data is distributed. In Figure 5.2, one can see a well-balanced test and
training dataset as well as the test and training data of the three splits for the feature
TAX. All three have a dataset shift for this feature. However, the distributions of the
training data for the wide and skewed split are of more uneven shape than the training
data for the narrow split. Furthermore, the training data for the wide split for example is
distributed a bit wider than for the other splits for example. For feature B, in Figure 5.3,
the training data of the narrow and the skewed split are less widely distributed than for
the wide split. Generally, the distribution for the training data is of more uneven shape
for the wide and skewed split. Furthermore, the wide split has one more shift in an
important feature.

Besides the covariate shift, I also generate training data with a prior probability shift.
For this, I again generate 3 splits. Looking at Figure 5.4, which is the distribution of the
target variable, one can see the three sections for the dataset split. First, I only train
the data with the lowest house prices. This means, I take training data only out of the
blue section in Figure 5.4. Then I create a training set that only includes mid-range
house prices. Thus, I take the samples out of the red area. Lastly, the training samples
are taken out of the green section. Thus, they only include high house prices.

54

5.1 Preparation and Conduct of Experiments

Figure 5.3: The B feature distributed for a well-balanced, wide, narrow, and skewed split

Figure 5.4: The different sections of the target variable

55

5 Experiments and Results

5.1.2 Experiment Set-Up

In this thesis, I train a neural net with the given dataset. The neural net has 13 input
neurons and 2 hidden layers, which both have 50 neurons. The last hidden layer results
in a single output neuron. For each layer, the activation function used is a sigmoid, as I
assume smooth activation functions for the calculation of my method. For the training
of the neural net, I apply backpropagation and use the Mean Squared error as a loss
function. Furthermore, the Adam optimizer determines the step size for the training
process. With the remaining samples, the neural net is tested.

As one can see in Figure 5.5, I take each dataset and train four models with it. First,
I train a standard neural net three times. The resulting value from that training and
testing will act as a baseline. By running each experiment three times, the results are
more representative and reproducible. As the experiments take a week to finish for
one dataset, I consider three times to be appropriate in the time frame given for this
thesis. Then, I use L1 as well as L2 regularization in the model training. The neural
net is trained three times with L1 regularization and three times with L2 regularization.
Here, the goal is again to make the results more representative and reproducible. Fur-
thermore, I apply the L1 and L2 regularizations as a baseline as well, as Janzing found
the indication that L1 as well as L2 regularization can improve the causality of a neural
net [18]. Thus, for L1 and L2 regularization, the only lowest test MSE is displayed here
to benchmark my method against the best performing approaches. The last case is
that I train a neural net with the approach presented in this thesis. This is done for
regularization factors between e − 05 and 100. For each dataset and each model,
the CE values, the test MSE, as well as the training MSE are examined. For all the
cases above the CE is calculated with 10 interventions per feature. Here, again as the
experiments take a week and take up a sizable amount of RAM, 10 interventions are
chosen. Here the CE value of the whole net is the NCE with a changed sign.

56

5.2 Results and Discussion

Prior Probability Shift

High House Prices

Mid Range
House Prices

Low House Prices

Well-balanced
Dataset

Neural Net Training

L1 Regularization

L2 Regularization

CE Regularization
with Factor between

e − 05 and 100

No Regularization

Covariate Shift

Narrow Split

Skewed Split

Wide Split

Overall CE
of Neural Net

CE = sign(NCE)NCE

Training MSE

Test MSE

Figure 5.5: The experiment set-up generates the training MSE, the overall CE of the neural
net and the test MSE for seven different training sets

5.2 Results and Discussion

I run the described experiments three times for each dataset. For each case, I measure
the causal effect of the neural net, the standard deviation of the causal effect within
the net, the training MSE, as well as the test MSE. In the following section, I analyze
the values measured.

5.2.1 Development of the Causal Effect (CE)

As I mentioned before, the causal effect (CE) of the neural net should be increased
through the method developed in this thesis. In Section 4.4, I introduce the CE as a
regularization mechanism. The CE is a measurement for the causality of the whole
neural net. Thus, I discuss the values of the causal effect measured in the following.

Figure 5.6 shows the CE development over the training epochs for each training

57

5 Experiments and Results

method. I train each dataset three times. Then I calculate the standard deviation
as well as the mean of the CE. For the mean and standard deviation, I use the values
generated by all datasets. Then, I display the CE in Figure 5.6. As one can see, the CE
regularization with the factor 100 produces the largest CE value. The other cases gen-
erate CE values, which are very close together. However, the CE regularization with
factor 10 and the L2 regularization generate a slightly higher mean value compared
to the other training methods. Generally, the distribution of the generated CE values
has a high standard deviation (shown by the shadows around the lines). As a next
step, it is worth looking at the CE value, produced by the different kinds of datasets,
separately.

Figure 5.6: The causal effect for all datasets is the highest for the CE regularization with factor
100, factor 10, and the L2 regularization

As one can see in Figure 5.7, for the datasets with an introduced prior probability shift
the CE regularization with the factor 100 as well as 10 also provides the largest CE
value. Furthermore, the L2 and L1 regularization do not seem to enhance the CE
value of the neural net significantly more than not applying a regularization at all. For
a dataset with a covariate shift, displayed in Figure 5.8, the CE regularization with the
factor 100 is again the largest value. Furthermore, the L2 regularization is the second-
highest value. However, the third highest value is the CE regularization with the factor
e− 02. Generally, the mean of the CE value does not get smaller with a smaller factor.
Specifically, the factors 10 and 1 lie under factors like e−02 and e−03. Lastly, the well-
balanced dataset, in Figure 5.9 shows, that the CE regularization with factor 100 and

58

5.2 Results and Discussion

factor 10 generates the largest CE value. Similarly, to the plot of all datasets combined,
the other factors besides the factors 100 and 10 lie very close to each other.

Figure 5.7: For datasets with a prior probability shift the CE regularization with the factor 100
and 10 achieve a noticeable higher CE value

Figure 5.8: The CE value for datasets with a covariate shift is the highest for CE regularization
with factor 100, e − 02 and the L2 regularization

59

5 Experiments and Results

Figure 5.9: For well-balanced datasets the factors 10 and 100 with the CE regularization
achieve the highest CE value

Generally, the CE regularization with the value 100 seems to generate the largest CE
value of the neural net. For the dataset with a prior probability shift as well as the well-
balanced dataset, the CE values of other CE regularizations, the L1 regularization, the
L2 regularization as well as the standard neural net training lie near each other. This is
because the value of the CE is small compared to the Training MSE. The CE’s highest
value lies in the area of 10−3. In comparison, the MSE’s smallest value lies in the area
of 10−2. This means, if the CE value is multiplied with factors between 10 and e − 05,
its impact compared to the MSE can be seen as small. Thus, the CE value will not
grow as large for factors between 10 and e − 05 compared to factor 100.

However, for the covariate shift one can see that with increasing factor for the CE
regularization the CE value does not necessarily increase in its mean. As I mentioned
before, the CE value has a high standard deviation. One reason could be the randomly
initialized weights and biases. In the first epoch of the training, the weights and biases
are randomly initialized. This determines the neuron activations within the neural net.
As the interventions are dependent on the neuron activations, they are also dependent
on the weights and biases. Thus, if the weights and biases are initialized in a way that is
less causal, it makes it harder for the CE to increase. This can result in a large standard
deviation of the CE value. Thus, even with a higher factor for the CE regularization,
the CE value can be smaller if the weights and biases are randomly initialized in a less
causal way. The high standard deviation could also stem from the absolute value used
in the CE calculation. As this is also related to the MSE, I discuss that in Section 5.2.5.

60

5.2 Results and Discussion

Another way to see if a causality measurement is working is to check whether it is able
to measure zero causal effect. At the beginning of the training, the causality should
be zero or at least very close to zero. This is the case because the neural net as not
identified any causal relationships yet. It can happen that part of the seed set at the
beginning of the training is causal. That’s why it can also just be close to zero. As
one can see in all four figures, at the start of the training, when all the weights and
biases are set randomly and no learning has been executed, the CE is zero or very
close to zero. In the following, I compare the test MSE to the CE values discussed in
this section.

5.2.2 Causal Effect (CE) Relative to the Test Mean Squared Error

In this thesis, I pose the question of whether the generalization ability of the neural net
increases with a larger CE in the neural net. I test the generalization ability of the neural
net by using the datasets with a dataset shift. Then, I calculate the test MSE for these
datasets and the test MSE that is generated by a well-balanced dataset. Afterward,
I take the test MSEs and compare them in relation to the calculated CE value. Here
similarly to the figures before, I take the mean of the test MSE and the CE for all training
methods trained with all datasets.

Figure 5.10: The test MSE for all datasets combined do not show a correlation between a
improved test MSE and a higher CE value

In Figures 5.10 all datasets are combined. Here, the test MSE values do not seem to

61

5 Experiments and Results

decrease with larger CE. However, looking at the datasets separately, one can see two
different trends in Figure 5.11, Figure 5.12 and Figure 5.13. For the case of prior prob-
ability shift in Figure 5.11, there is still no improvement of the test MSE with increasing
CE. But, for the case of covariate shift in Figure 5.12 and the well-balanced dataset in
Figure 5.11, the test MSE slightly improves for a growing CE. Furthermore, one can
observe that a very large CE results in a large test MSE. This indicates that the test
MSE is only improved by a large CE until the CE reaches a certain value. When the CE
becomes a too large value the test MSE will not continue to improve. Furthermore, for
the covariate shift and the well-balanced dataset, the L2 regularization shows a larger
CE with an improved test MSE compared to the standard neural net training. I discuss
the test MSE in more detail in the next section.

Figure 5.11: For datasets with a prior probability shift there is no correlation between an im-
proved test MSE and a higher CE value

62

5.2 Results and Discussion

Figure 5.12: For datasets with a covariate shift there is an indication that an improved test
MSE correlates with a higher ACE

Figure 5.13: An improved test MSE for well-balanced datasets correlates with a higher CE
value

63

5 Experiments and Results

5.2.3 The Relative Test Mean Squared Error

After analyzing the MSE in relation to the CE, I take a closer look at the MSE of each
factor of the CE regularization. For this, I calculate the relative MSE for each dataset
and each training method as

MSErelative =
MSEtest − MSENoReg

MSENoReg
(5.1)

where MSErelative is the relative MSE. For MSEtest , I take the mean of the test MSEs
of each dataset. This is done for each training method involving a regularization. Fur-
thermore, the variable MSENoReg is the mean of the test MSE of each dataset with
no regularization in the model training. As the case with no regularization acts as a
baseline, with Equation (5.1) one can calculate the relative improvement or deteriora-
tion of the test MSE MSEtest compared to the baseline. This way, I can compare the
different MSEs with their different absolute values more accurately.

Similar to theMSE, the standard deviation will also be calculated relative to the baseline
deviation. This means, the standard deviation for each training method becomes

ST Drelative =
ST Dtest − ST DNoReg

ST DNoReg
(5.2)

where ST Drelative is the relative standard deviation, ST Dtest is the standard deviation
of the test MSEs of each dataset and each training method involving a regularization.
Furthermore, ST DNoReg is the standard deviation of the test MSE of each dataset
with no regularization in the model training. With this calculation, the deviation can be
compared relative to the baseline and with each other.

64

5.2 Results and Discussion

Figure 5.14: The relative test MSE of all datasets combined shows no improvement for the CE
regularization

For Figure 5.14, I combine all datasets and calculate the test MSE for all training meth-
ods. As I calculate the relative MSE to the baseline, the baseline lies at0 and is indi-
cated by the red dotted line. As one can see, the two regularization methods L1 and
L2 have a slightly improved test MSE compared to the baseline. The CE regularization
performs similarly to the baseline. There is a large standard deviation especially for
the factor 10. To gain more insights, I again split up the datasets into three figures.
One can see that, for the dataset with prior probability shift in Figure 5.15, the relative
MSE of the CE, the L1, and the L2 regularization perform similarly to the baseline. For
the datasets with covariate shift in Figure 5.16, one can see that the CE regularization
with factor e − 03 and e − 02 results in an improved MSE compared to the baseline.
In Figure 5.17, one can see that the CE regularization for the well-balanced dataset
with the factor 10 generates an improved MSE. With the factors e − 04, e − 01, and 1
the mean also appears to be better than the baseline MSE. However, they all fall into
the standard deviation (shadow with the dashed outline) of the baseline. This means,
the improvement is not very significant. For the prior probability shift dataset, the stan-
dard deviation seems to be very high for factor 10. Furthermore, for the covariate shift
dataset, the standard deviation seems to be high for all CE factors as well as the L1
regularization.

65

5 Experiments and Results

Figure 5.15: For the dataset with prior probability shift there is no improvement for the relative
Test MSE of the CE regularization

Figure 5.16: The factor e− 03 and e− 02 of the CE regularization can achieve a improvement
of the relative test MSE for a datasets with a covariate shift

66

5.2 Results and Discussion

Figure 5.17: For well-balanced datasets the CE regularization with factor 10 can achieve a
improved test MSE which is even lower than the test MSE of the L2 regularization

Taking a closer look at the three splits of the covariate shift, it shows that for the wide
split (Figure 5.18) the CE regularization with the factors e − 03, e − 02, and 1 show an
improved test MSE compared to the baseline and its standard deviation. Generally,
the mean of the CE regularization lies below the mean of the training method without
the regularization. However, except for factors e− 03, e− 02, and 1, they still lie within
the standard deviation of the baseline. On the other hand, the L2 regularization shows
an even larger improvement of the test MSE. For the skewed split, in Figure 5.19, the
mean of the test MSE for the CE regularization also has a dip at e−02. However, all the
values are within the standard deviation of the baseline. This means, I cannot conclude
an improvement of the test MSE. However, the same can be concluded for the L2 as
well as L1 regularization. Lastly in Figure 5.20, the CE regularization for narrow split
results in no improvement at all for the MSE. Furthermore, the figure shows a very large
deviation for the factor 10. However, the L1 and L2 regularization also perform worse
compared to the baseline. In sum, the wide split that has a dataset shift in a larger
number of important features has an improvement for the test MSE. Furthermore, the
wide split also has a larger number of skewed datasets and a larger number of wider
distributed datasets in the training set compared to the narrow split for example. The
narrow and skewed split have the same number of important features with a dataset
shift. However, the skewed split also has a larger number of skewed datasets and a
larger number of wider distributed datasets in the training set compared to the narrow
split.

67

5 Experiments and Results

Figure 5.18: The covariate shift with wider distributions is able to improve the test MSE of the
CE regularization with factor e − 03, e − 02, and 1

Figure 5.19: The test MSE of the CE regularization for the skewed split falls into the standard
deviation of the baseline

68

5.2 Results and Discussion

Figure 5.20: For the narrow split the test MSE of the CE regularization falls into the standard
deviation of the baseline or becomes worse

Generally, looking at the CE value compared to the test MSE and the relative MSE
value. One can conclude that the approach presented in this thesis is not able to
generate an improved MSE for the prior probability shift case. Looking at the CE value
for this case, one can also conclude that a higher CE value does not result in a higher
MSE. A high CE is not the case for the L1 or L2 regularization either. This raises
the question of whether the ACE is even suitable for that kind of dataset shift. One
reason could be that the ACE intervenes on the neuron activations as well as inputs.
Because of that the output variable, so the variable where I apply the dataset shift,
is a fixed variable in this process. This can be explained with a simple example of
causality. Imagine that the input variables of an algorithm are whether rain is falling
and whether the wind is very strong. The output variable would be if people are wearing
jackets. The ACE could determine if there is a causal effect between these two input
variables and the output variable. Thus, the ACE intervenes on the input variables and
activations to see whether the output is changing. Now, I introduce a prior probability
shift. Thus, taking out parts of the output. This could mean that I remove all data
points from the training set that include the variable that people are wearing a jacket.
Thus, the training set now only includes data samples where people are not wearing
a jacket. If the ACE intervenes now, the only output present is that people are not
wearing jackets. Thus, the output is not changing which means the algorithm cannot
form any causal relationships. Translating this to the model in this thesis, one can
say that by applying a prior probability shift the causality is only calculated for this
specific range in outputs. Hence, the causal connections for other outputs are not

69

5 Experiments and Results

detected. This means, if one applies other house prices out of the range of the training
data, the causal relationships formed during the training do not improve the calculation.
For the covariate shift on the other hand an improvement of the test MSE could be
detected for some splits. According to the section before, one could also see that
with a growing CE, the test MSE could be improved up to a certain CE value. As I
mentioned before, the CE calculates the causal effect of the inputs on the outputs.
Thus, this time I apply the dataset shift to the intervened variables. Thinking back
to the rain, wind, and jacket example. Now, with a covariate shift, I take out parts
of the input variables. Thus, I remove the data points that include rain for example.
However, as I intervene on the input variables the output is still able to change. Thus,
causal relationships can still be formed without the removed data points. However,
what can happen is that some causal relationships go missing, as the interventions
depend on the input samples. Thus, if I remove crucial input samples the interventions
will not be performed across the whole input space. That will result in fewer causal
relationships formed. As the wide and skewed split have a training dataset where the
shifted features are wider distributed than for the narrow split, they are able to generate
more impactful interventions. With that, the training algorithm results in a better test
MSE than the narrow split compared to the baseline. Additionally, as I have multiple
inputs with a dataset shift, the impact on all causal relationships is limited. The reason
for that is that the other inputs are still there to form causal relationships. For the
prior probability shift case, the severity of the shift has a larger impact on how the
CE regularization performs. Besides that, only having one input amplifies the effect a
sever prior probability shift has on the performance. As the ACE uses that single output
to measure causality, a dataset shift in that output sabotages all causal relationships
within the net. With the rain, wind, and jacket explanation, it also makes sense that
the well-balanced dataset shows an improvement with the CE regularization. For this
case, the result of the CE regularization performs better even compared to the L2
regularization for factor 10. As there is no dataset shift here, the interventions can
cover the whole realm of input and output data. This means, a maximum of causal
relationships can be formed. In sum, the nature of the ACE could cause that the CE
regularization is unable to deal with large prior probability shifts for models with one
output. Furthermore, as the interventions of the CE regularization depend on the input
samples of the training, the covariate shift can also pose problems for this approach.
In the following section, I analyze the training MSE and set it into context with the
explanation above.

5.2.4 Training Error Developement

In this section, I analyze the ACE and test MSE, I discuss the training MSE and its
progress over the training epochs. Here, I calculate the mean of all training MSEs of
all datasets for each training method. This is then observed for each training epoch.

70

5.2 Results and Discussion

Figure 5.21 displays the training MSE for all datasets combined. Here, the training
MSE decreases until a certain value for all factors of the CE regularization. However,
for the factor 100, the training MSE starts increasing again. This is because, in the
beginning, the CE value is very small. Thus, the MSE overpowers the CE within the
loss function. As mentioned, when the MSE is decreased enough, the CE can weigh
in within the loss function and can drive up the MSE value. It is also logical that this
effect appears for the factor 100, as it gives the CE more influence in the loss function.
Furthermore, especially for factor 100, the training MSE shows a large standard devia-
tion. All the other factors as well as no regularization produce a similarly small training
MSE. On the other hand, the training MSE of the L1, as well as L2 regularization, are
not decreasing as in the other cases. Looking at the datasets separately, one can see
that the prior probability shift cases, in Figure 5.22, show a training MSE for the L1 and
L2 regularization which is not decreasing accordingly. However, as shown in the pre-
vious section the test MSE is still improved compared to the baseline. This indicates
that the training MSE of the value produced by the L1 as well as L2 regularization is
desirable. The cases of covariate shift and the well-balanced dataset, in Figure 5.23
and Figure 5.24, do not show any special behavior in their training MSE.

Figure 5.21: The training MSE for all datasets combined shows that the CE regularization can
overpower the MSE for factor 100

71

5 Experiments and Results

Figure 5.22: The L1 and L2 regularization for datasets with a prior probability shift produce a
much higher training MSE

Figure 5.23: For datasets with a covariate shift all the regularization techniques produce a
decreasing training MSE except for the CE regularization with factor 100

72

5.2 Results and Discussion

Figure 5.24: For a well-balanced dataset the CE regularization with factor 100 can overpower
the training MSE

5.2.5 Summary and Discussion of Results

As explained before, the approach, developed in this thesis with the chosen parame-
ters, is not stable for prior probability and covariate shifts. This is because the interven-
tions are made over the realm of the training input samples. For the prior probability
case, this means that the training algorithm does not form causal relationships for
certain outputs. Furthermore, for the covariate shift case, some interventions might
be missing resulting in the training algorithm missing some causal connections. This
is also indicated by the fact that, compared to the other datasets, the well-balanced
dataset could be improved the best according to its test MSE. Another indication is
that for the measured CE value one cannot see a correlation between increased CE
value and improved test MSE for the prior probability shift case. Another important
point is the large standard deviation in both the training MSE and the CE value. As
mentioned before, interventions rely on neuron activations. The neuron activations,
on the other hand, rely on the seed set at the beginning of the training. So depending
on what kind of seed is set, the CE can increase faster if the seed is set in a way that
favors causality. Or the CE increases slower if the seed is set less favorably. With the
speed of the CE increasing also the training MSE is impacted. If the CE is increasing
fast, the CE is able to weigh in heavier in the loss function. If the CE is increasing
slower, its impact will be less. This means, the training MSE can weigh in more or less
depending on the seed resulting in a large standard deviation. Another reason could

73

5 Experiments and Results

be that I incorporate the absolute value of the median of the ACEs into the CE. Thus, at
the beginning of each training epoch, the regularization determines whether the ACE is
positive or negative for each neuron. This value is then fed into the loss function as an
absolute value and the training algorithm updates the weights accordingly. There is a
great chance that this first calculation of the ACE is not always accurate. This means,
that some neurons might be forced into a negative ACE by the regularization although
they should be positive. Especially at the beginning of the training when the ACE val-
ues are close to zero, this is very likely to happen. Thus, it cannot be assured that
the regularization term determines the right sign for the ACE for each neuron. Hence,
it can happen that for one training the regularization is right for all neurons, and for
another training, it picks a lot of wrong ACEs. Depending on that the training, as well
as test MSE, can be influenced positively or negatively. This could result in a large
standard deviation for the CE value and the training MSE.

74

6 Conclusion

In this work, I aim to answer the questions whether a causal interpretability mecha-
nism, incorporated into the model training, will enhance the causality of a neural net
and whether a neural net with a higher causal interpretability mechanism has a better
generalization ability. In order to answer these questions, I incorporate the Negative
Causal Effect (NCE) into the model training as a regualrization term. The NCE is min-
imized during the training together with the loss function. Through that, the weights
and biases should become more causal throughout the training. In order to construct
the NCE, the Average Causal Effect (ACE) is used. The ACE is calculated for every
neuron in the neural net by slicing the neural net and intervening on every neuron. The
interventions are uniformly distributed over the realm of the training data. In order to
assess the generalization ability, I perform experiments using a well balanced dataset,
three datastets with a covariate shift and three datasets with a prior probability shift.
For all datasets, I run a standard training, a training with L1 as well as L2 regulariza-
tion, and multiple trainings using the CE regularization with regularization factors from
e − 05 to 100. For all CE regularizations, especially for regularization factors above
10 the CE value of the neural net could be enhanced. Janzing found, in [18], that L1
as well as L2 regularization can enhance the causality of the model. The experiments
also demonstarted an enhancement of the causality of the neural net for the L1 as well
as L2 regularization. Furthermore, I found that the way the dataset shift is distributed
has an impact. As the interventions are connected to the training data a sever shift
means that the interventions can only cover a small realm of the dataset. With the
interventions not covering all input values, not all causal connections can be formed.
Moreover, I suspect that the initialized weights and biases influence the growth of the
CE value. For the prior probability shift, the output variable cannot change as much
with the intervention. So, not all causal connections could be formed. Additionally, the
absolute value within the CE regularization can determine the wrong sign for the ACE.
Thus, the ACE of a neuron can be optimized for the wrong sign. This also influences
the test MSE and the growth of the CE value. For future work, besides using this ap-
proach on a larger training samples sizes as well as on other models and datasets, the
selection of the right interventions could be explored further. Lastly, the determining of
the sign of the ACE for each neuron could be optimized as well.

75

Bibliography

[1] S.Ö. Arik and T. Pfister. “TabNet: Attentive Interpretable Tabular Learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence 35 (2021).

[2] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek.
“On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation”. In: PLOS ONE 10 (2015).

[3] M. T. Bahadori, K. Chalupka, E. Choi, R. Chen, W. Stewart, and J. Sun. “Causal
Regularization”. In: Computing Research Repository abs/1702.02604 (2017).

[4] O. Boz. “Extracting Decision Trees from Trained Neural Networks”. In: Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. Association for Computing Machinery, 2002, pp. 456–
461.

[5] O. Campesato. Artificial Intelligence, Machine Learning, and Deep Learning.
Mercury Learning & Information, 2020.

[6] G.C. Cawley. “Causal & Non-Causal Feature Selection for Ridge Regression”.
In:Workshop on the Causation and Prediction Challenge at WCCI 2008. PMLR,
2008, pp. 107–128.

[7] A. Chattopadhyay, P. Manupriya, A. Sarkar, and V.N. Balasubramanian. “Neural
Network Attributions: A Causal Perspective”. In: Proceedings of the 36th Inter-
national Conference on Machine Learning. PMLR, 2019, pp. 981–990.

[8] A. Datta, S. Sen, and Y. Zick. “Algorithmic Transparency via Quantitative Input
Influence: Theory and Experiments with Learning Systems”. In: 2016 IEEE Sym-
posium on Security and Privacy (SP). IEEE Computer Society, 2016, pp. 598–
617.

[9] A. P. Dawid. “Conditional Independence in Statistical Theory”. In: Journal of the
Royal Statistical Society 41 (1979).

[10] J. Dockès, G. Varoquaux, and J.-B. Poline. “Preventing dataset shift from break-
ing machine-learning biomarkers”. In: GigaScience 10 (2021).

[11] D. Geiger, T. Verma, and J. Pearl. “Identifying independence in bayesian net-
works”. In: Networks 20 (1990).

77

Bibliography

[12] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M.A. Specter, and L. Kagal. “Explain-
ing Explanations: An Overview of Interpretability of Machine Learning”. In: 5th
IEEE International Conference on Data Science and Advanced Analytics DSAA.
IEEE Computer Society, 2018, pp. 80–89.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[14] B. Goodman and S. Flaxman. “EU regulations on algorithmic decision-making
and a "right to explanation"”. In: AI Magazine 38 (2016).

[15] Y. Goyal, U. Shalit, and B. Kim. “Explaining Classifiers with Causal Concept
Effect (CaCE)”. In: Computing Research Repository abs/1907.07165 (2019).

[16] M. Harradon, J. Druce, and B. E. Ruttenberg. “Causal Learning and Explanation
of DeepNeural Networks via Autoencoded Activations”. In:Computing Research
Repository abs/1802.00541 (2018).

[17] D. Harrison and D. L. Rubinfeld. “Hedonic Housing Prices and the Demand for
Clean Air”. In: Journal of Environmental Economics and Management 5 (1978).

[18] D. Janzing. “Causal Regularization”. In: Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2019, pp. 1401–1412.

[19] H. Kiiveri, T. P. Speed, and J. B. Carlin. “Recursive causal models”. In: Journal of
the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
36 (1984).

[20] B. Kim, J. A. Shah, and F. Doshi-Velez. “Mind the Gap: A Generative Approach
to Interpretable Feature Selection and Extraction”. In: Advances in Neural Infor-
mation Processing Systems. Curran Associates, 2015, pp. 2260–2268.

[21] B. Kim, M. Wattenberg, J. Gilmer, C. J. Cai, J. Wexler, F. B. Viégas, and R.
Sayres. “Interpretability Beyond Feature Attribution: Quantitative Testing with
Concept Activation Vectors (TCAV)”. In: ICML. PMLR, 2018, pp. 2673–2682.

[22] J. Kim and J. F. Canny. “Interpretable Learning for Self-Driving Cars by Visual-
izing Causal Attention”. In: IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society, 2017,
pp. 2961–2969.

[23] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D.
Erhan, and B. Kim. “The (Un)reliability of Saliency Methods”. In: Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Cham: Springer Inter-
national Publishing, 2019, pp. 267–280.

[24] M. Kocaoglu, C. Snyder, A.G. Dimakis, and S. Vishwanath. “CausalGAN: Learn-
ing Causal Implicit Generative Models with Adversarial Training”. In: Interna-
tional Conference on Learning Representations. ICLR, 2018.

78

Bibliography

[25] P.W. Koh and P. Liang. “Understanding Black-box Predictions via Influence
Functions”. In: Proceedings of the 34th International Conference on Machine
Learning. PMLR, 2017, pp. 1885–1894.

[26] M. Kull and P. A. Flach. “Patterns of dataset shift”. In: First International Work-
shop on Learning over Multiple Contexts (LMCE). ECML-PKDD, 2014.

[27] T. Kyono, Y. Zhang, and M. van der Schaar. “CASTLE: Regularization via Aux-
iliary Causal Graph Discovery”. In: Advances in Neural Information Processing
Systems. Curran Associates, 2020, pp. 1501–1512.

[28] T. Le, S. Wang, and D. Lee. “GRACE: Generating Concise and Informative Con-
trastive Sample to Explain Neural Network Model’s Prediction”. In: 2020 ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining 26
(2020).

[29] R. Moraffah, M. Karami, R. Guo, A. Raglin, and H. Liu. “Causal Interpretability
for Machine Learning - Problems, Methods and Evaluation”. In: SIGKDD Explo-
rations Newsletter 22 (2020).

[30] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[31] J. Pearl. “Causal inference in statistics: An overview”. In: Statistics Surveys 3
(2009).

[32] J. Pearl. Causality. Cambridge University Press, 2009.

[33] J. Pearl. “The Do-Calculus Revisited”. In:Proceedings of the Twenty-Eighth Con-
ference on Uncertainty in Artificial Intelligence. AUAI Press, 2012, pp. 3–11.

[34] J. Pearl. “The seven tools of causal inference, with reflections on machine learn-
ing”. In: Communications of the ACM 62 (2019).

[35] J. Peters, P. Bühlmann, and N. Meinshausen. “Causal inference by using invari-
ant prediction: identification and confidence intervals”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 78 (2016).

[36] J. Peters, D. Janzing, and B. Schlkopf. Elements of Causal Inference: Founda-
tions and Learning Algorithms. The MIT Press, 2017.

[37] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N.D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009.

[38] M. Ribeiro, S. Singh, and C. Guestrin. ““Why Should I Trust You?”: Explaining
the Predictions of Any Classifier”. In: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Demonstrations. Association for Computational Linguistics, 2016, pp. 97–101.

[39] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
Networks 61 (2015).

79

Bibliography

[40] P. Schwab and W. Karlen. “CXPlain: Causal Explanations for Model Interpreta-
tion under Uncertainty”. In:Advances in Neural Information Processing Systems.
Curran Associates, 2019, pp. 10220–10230.

[41] S. Sharma, J. Henderson, and J. Ghosh. “Certifai: A Common Framework to
Provide Explanations and Analyse the Fairness and Robustness of Black-Box
Models”. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Soci-
ety. SIGAI, 2020, pp. 166–172.

[42] A. Shrikumar, P. Greenside, and A. Kundaje. “Learning Important Features
Through Propagating Activation Differences”. In: Proceedings of the 34th Inter-
national Conference on Machine Learning. PMLR, 2017, pp. 3145–3153.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: Jour-
nal of Machine Learning Research 15 (2014).

[44] M. Sundararajan, A. Taly, and Q. Yan. “Axiomatic Attribution for Deep Net-
works”. In: Proceedings of the 34th International Conference on Machine Learn-
ing. PLMR, 2017, pp. 3319–3328.

[45] M. Sundararajan, A. Taly, and Q. Yan. “Gradients of Counterfactuals”. In: Com-
puting Research Repository abs/1611.02639 (2016).

[46] M. T. Wojnowicz, B. Cruz, X. Zhao, B. Wallace, M. Wolff, J. Luan, and C. Crable.
““Influence sketching”: Finding influential samples in large-scale regressions”.
In: 2016 IEEE International Conference on Big Data (2016).

[47] J. Woodward. Making Things Happen: A Theory of Causal Explanation. Oxford
University Press, 2003.

[48] G. Xu, T.D. Duong, Q. Li, S. Liu, and X. Wang. “Causality Learning: A New
Perspective for Interpretable Machine Learning”. In: IEEE Intelligent Informatics
Bulletin 20 (2020).

[49] J. Zhang and E. Bareinboim. “Fairness in Decision-Making - The Causal Ex-
planation Formula”. In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence. AAAI Press, 2018, pp. 2037–2045.

80

	Abstract
	Introduction
	Literature Review
	Causal Mechanisms Built in Model Training
	Explainable and Interpretable Model Training
	Causality Mechanisms Used on Trained Models
	Interpretability and Explainability of the Trained Model's Inner State
	Interpretability and Explainability of Trained Models

	Background
	Deep Learning
	Deep Feedforward Neural Nets
	Mean Squared Error as a Loss Function
	Neural Net Regularization
	Datasetshift in Deep Learning

	Causal Modelling and Learning
	Structural Causal Models
	Causal Inference

	Methodology
	The Training Algorithm with the Negative Causal Effect (NCE)
	Feedforward Neural Nets as Structural Causal Models (SCM)
	Applying the Average Causal Effect (ACE) to Neural Nets with Continuous Values
	Choosing the Interventional Values
	Calculating the Interventional Expectation

	Introducing the ACE as a Neural Net Regularization

	Experiments and Results
	Preparation and Conduct of Experiments
	The Boston Housing Dataset
	Experiment Set-Up

	Results and Discussion
	Development of the Causal Effect (CE)
	Causal Effect (CE) Relative to the Test Mean Squared Error
	The Relative Test Mean Squared Error
	Training Error Developement
	Summary and Discussion of Results

	Conclusion

