
Algorithms for Matrix
Approximations with Time

Varying Systems
Stephan Nüßlein

Chair of Data Processing
Technische Universität München

Master’s thesis

Algorithms for Matrix Approximations
with Time Varying Systems

Stephan Nüßlein

June 29, 2022

Stephan Nüßlein. Algorithms for Matrix Approximations with Time Varying Systems.
Master’s thesis, Technische Universität München, Munich, Germany, 2022.

Supervised by Prof. Dr.-Ing. Klaus Diepold and Matthias Kissel; submitted on June
29, 2022 to the Department of Electrical and Computer Engineering of the Technis-
che Universität München.

© 2022 Stephan Nüßlein

Chair of Data Processing, Technische Universität München, 80290 München, Ger-
many, http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Moun-
tain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

There are different approaches to approximate matrices using structured matrices to
reduce the computational cost of matrix-vector multiplications. A possible structure
are sequentially semiseparable matrices, that describe the input-output behavior
of time varying systems. If time varying systems are used to approximate weight
matrices from neural networks, structural parameters have to be determined. In
this thesis two algorithms to obtain the structural parameters are described. The
first refines an initial segmentation by optimizing the input and output dimensions of
the system. The second algorithm recursively splits the subsystems in a way that
makes it possible to recover permuted sequentially semiseparable matrices. In ex-
periments, the algorithms were able to recover the structure of simple test matrices.
When used to approximate weight matrices from neural networks, the algorithms
were able to reduce the computational cost of the matrix approximation compared
to a naive approximation.

3

Contents

1 Introduction 7

2 Literature Review 11
2.1 Matrix Structures . 11

2.1.1 Semiseparable Matrices . 11
2.1.2 Hierarchical Matrices . 12
2.1.3 Sequentially Semiseparable Matrices 13

2.2 Neural Networks . 14

3 Background 17

4 Methods 25
4.1 Matrix Approximations . 25

4.1.1 Balanced Truncation of Ordered Systems 25
4.1.2 Computing Singular Values of Hankel matrices 27
4.1.3 Error Bound for Matrix Approximation 30

4.2 Cost of Computation . 32
4.3 Number of Stages . 33
4.4 Segmentation Adaptation . 36

4.4.1 Moving Boundaries . 36
4.4.2 Singular Values of Hankel Matrices when Moving Boundaries 40
4.4.3 Optimizing Input and Output Dimensions 43

4.5 Permutations . 45
4.5.1 Split Stage . 47
4.5.2 Matrix Segmentation . 50

5 Experiments 57
5.1 Segmentation Adaption . 57

5.1.1 Illustrative Example . 57
5.1.2 Weight Matrix Approximation 59

5.2 Permutations . 63
5.2.1 Illustrative Example . 63
5.2.2 Weight Matrix Approximation 63

6 Discussion 67

5

Contents

7 Conclusion 69

A Matrix Approximation Error Bounds 71

B Algorithms to Move Bounds Up or Down 77

C Random Sequentially Semiseparable Matrices 81

6

1 Introduction

The computational complexity for training and evaluating neural networks is increas-
ing steadily [42]. As the neural networks get larger, the evaluation gets computa-
tionally more expensive. This is often problematic as computational resources are
a limiting factor, especially on embedded or mobile systems. Linear layers in neural
networks are usually represented with weight matrices. The evaluation of a neural
network requires the calculation of a matrix-vector product, which has an algorithmic
complexity in the order of O(n2) for a full unstructured matrix [17]. For large n the
cost for computing the matrix-vector products will therefore dominate over the parts
of the neural network whose costs grow linearly.

In other fields the quadratic growth of the computational cost for a matrix-vector
product is also an issue. This led to research into structured matrices, where the cost
of the matrix-vector product is of lower order. Some structured matrices are used
to solve partial differential equations like H-Matrices [16], others arise in different
circumstances like semiseparable matrices [46], or describe time varying systems
like sequentially semiseparable matrices [11]. All of them can be expressed not
only as matrices but also in terms of other representations. It is possible to use
these representations to construct algorithms that can compute the matrix-vector
product efficiently. One example of this are circulant matrices that describe cyclic
convolutions. Using the matrix describing the Discrete Fourier Transform, circulant
matrices can be transformed into diagonal matrices. This allows us to obtain a faster
algorithm for the product y = Tu by using the Fast Fourier Transform (FFT): We can
first compute the FFT of the input, then multiply the vector elementwise with a weight
vector. Finally, we use the inverse FFT to obtain the result y. In doing so, the original
order of complexity of O(n2) can be reduced down to O(n log(n)) [44].

Analogously, other structure can be used to represent weight matrices. A possi-
ble representation are sequentially semiseparable matrices that represent the input-
output behavior of time varying systems. These systems consist of stages that can
change over time. We can create a system that represents the matrix calculate the
matrix-vector product using algorithms based on this representation. The input and
output dimensions of the system induce an inherent segmentation of the sequen-
tially semiseparable matrices. If certain sub blocks of the matrices are of low rank,
then computing the matrix-vector product is far cheaper when using the system rep-
resentation. The corresponding segmentation is often determined by an underlying
physical system and therefore known. In contrast, weight matrices in neural net-
works do not necessarily have the same underlying structure. Even if the matrix is

7

1 Introduction

close to a sequentially semiseparable matrix the structural parameters are usually
unknown. To represent the matrices, algorithms to derive these structural parame-
ters are needed. Existing algorithms to calculate the state space representation for
an arbitrary matrix require prior knowledge of the segmentation [8]. As weight matri-
ces are usually not sequentially semiseparable, these systems are approximated to
reduce the computational cost. A common approximation algorithm is the balanced
truncation, that relies on the singular values of the Hankel matrices.

The goal of this thesis is to develop algorithms to represent matrices with time
varying systems that do not require a prior knowledge of the segmentation. These
algorithms should be able to reduce the computational cost while not increasing the
approximation error. For this I guess an initial segmentation and subsequently use
an algorithm to refine it. Or I start with an initial system that is split recursively. In
both cases I need to compute the singular values of the Hankel matrices efficiently.

Chapter 2 reviews different matrix structures and their use in neural networks.
In Section 2.1 different matrix structures related to sequentially semiseparable ma-
trices are presented and in Section 2.2 approaches to use structured matrices in
neural networks are collected. Chapter 3 introduces time varying systems, that are
an essential foundation of this thesis In Chapter 4 the methods to create a system
approximating a matrix with unknown structural parameters will be presented. First,
different prerequisites are discussed. In Section 4.1 an algorithm for the approxima-
tion of a system is explored and a strategy to compute the singular values of the
Hankel matrices efficiently is presented. Additionally, an error bound for the matrix
approximation is derived. The number of operations is derived in Section 4.2. The
following Section 4.3 presents an approach to determine the number of stages for
a system. Based on this, the input and output dimensions have to be determined.
For this two algorithms are presented. The first algorithm, described in Section 4.4
starts with an initial guess and then refines the structure by adapting the input and
output dimensions. First, an algorithm to change the input and output dimensions of
a system is given. This algorithm is then used to optimize the segmentation of the
matrix. The second algorithm, described in Section 4.5 starts with a simple system
and then recursively refines this structure by splitting up the stages. In Chapter 5
the algorithms will be tested on random sequentially semiseparable matrices and
on weight matrices. Chapter 6 will discuss the results and in Chapter 7 I will give
some perspective on them.

In this thesis I use a Matlab-like notation for the indexing of vectors and matrices.
Given a vector

a = [a1, a2, . . . , an]>, (1.1)

the notation a[i] denotes the i-th element of a. Double points are used to denote
ranges according to

a[:i] = [a1, . . . , ai−1, ai]
> (1.2)

8

and
a[i:] = [ai, ai+1, . . . , an]> (1.3)

To index the last element I use the notation a[end] and to index elements from the
end, I use the notation

a[end−i] = an−i (1.4)

These notations can analogously be used for a matrix. Here A[i,j] denotes the j-th
element in the i-th row.

To simplify the notation, I use the shorthand notation[
X
Y

]
← Z (1.5)

instead of

X ← Z[:i,:] Y ← Z[i+1:,:] (1.6)

with an index i that will be clear form the context.

9

2 Literature Review

In the next section different matrix structures are described. In Section 2.2 some
approaches to use matrix structures in neural networks are presented.

2.1 Matrix Structures

In the following several matrix structures are presented. These have in common
that they have low rank sub-matrices. These are semiseparable, hierarchical and
sequentially semiseparable matrices.

2.1.1 Semiseparable Matrices

Semiseparable matrices are not consistently defined in the literature. In this thesis
the definitions described by Vandebril [46, 47] are used. An important differentiation
are generator representable semiseparable matrices and semiseparable matrices.

Generator Representable Semiseparable Matrix A matrix S is a generator rep-
resentable semiseparable matrix if the lower and upper triangular parts of S are
taken from rank 1 matrices. This can be expressed as

triu(S) = triu(pq>) (2.1)

tril(S) = tril(uv>) (2.2)

Where triu is the upper triangular matrix and tril is the lower triangular matrix. The
vectors p, q, u and v are called the generators. It is important to note here that the
diagonal of S is both included in the lower and upper triangular matrix.

Semiseparable Matrix In a semiseparable matrix every subblock selected from
the lower triangular part of S has rank 1. The analogous statement has to be fulfilled
for the upper triangular part. This can be formalized as

rank(S[i:n,1:i]) ≤ 1 ∀i ∈ {i, . . . , n} (2.3)

rank(S[1:i,i:n]) ≤ 1 ∀i ∈ {i, . . . , n} (2.4)

An extension of this matrix class are the semiseparable plus diagonal matrices.

11

2 Literature Review

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




Figure 2.1: Illustration of a quasiseperable matrix

Quasiseparable Matrix Quasiseparable matrices are similar to the semiseparable
matrices. In a quasiseparable matrix every subblock selected from the strictly lower
strictly upper triangular part of S has rank 1. This can be formalized as

rank(S[i+1:n,1:i]) ≤ 1 ∀i ∈ {i, . . . , n} (2.5)

rank(S[1:i,i+1:n]) ≤ 1 ∀i ∈ {i, . . . , n} (2.6)

A quasiseperable matrix is illustrated in Figure 2.1. All the marked submatrices
have the property that their rank is 1. As the quasiseperable structure does not im-
pose conditions on the diagonal it is more general than the semiseparable matrices.

There is a relation between invertible semiseparable matrices and invertible tridi-
agonal matrices [47]. The inverses of a generator representable semiseparable
matrix is a irreducible tridiagonal matrix and vice versa. The inverse of a semisep-
arable matrix is a tridiagonal matrix and vice versa. If an invertible quasiseparable
matrix is inverted, the inverse is again a quasiseparable matrix. These relations can
be proven with results by Fiedler and Markham [14].

These matrix classes can also be extended for higher ranks. A matrix S is a
generator representable semiseparable matrix of semiseparability rank r if there
exist the matrices R1 and R2 with rank(R1) = r and rank(R2) = r such that

triu(S) = triu(R1) (2.7)

tril(S) = tril(R2). (2.8)

A similar definition for semiseparable matrices of semiseparability rank r is given
in [46].

2.1.2 Hierarchical Matrices

The Hierarchical matrices (H-Matrices) are a matrix structure to approximate large
matrices. These were mainly introduced by Hackbusch [17] and Grasedyck [16]. A
short introduction can also be found in [15]. TheH-Matrices were developed for the
solution of PDEs. If a PDEs is solved numerically, it has to be discretized in order to
obtain an approximated solution. As the discretization already introduces errors, it is
advantageous to drop the requirement that the matrix representation is exact, if this

12

2.1 Matrix Structures

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(a) Matrix Segmentation (b) Block Cluster Tree

Figure 2.2: Illustration of the structure of a H-Matrix

results in a reduction of the computational cost. This can be done by partitioning
the matrix in segments. These blocks are represented by low rank matrices. If the
rank is far smaller than the size of the matrix this representation is cheaper in terms
of storage and in terms of computational cost. The partitioning is done by hierarchi-
cally dividing blocks that cannot be represented using a low rank representation. To
decide if a block has to be divided, an admissabillity condition is introduced. This is
a way to predict the representability of a matrix block. For discretizations of PDEs
this admissibility condition is usually based on the geometrical distance. For other
applications different admissibility conditions have to be derived.

An H-Matrix is shown in Figure 2.2a. In this case the matrix is divided in four
blocks. If a block is admissible, it is stored as a low rank representation. These are
illustrated as the white rectangles. If a block is not admissible, the block is divided in
smaller subblocks. If matrices are already small and still not admissible the matrices
are stored directly. In Figure 2.2a these blocks are colored orange. As the partition is
done in a hierarchical fashion the matrices can be represented in a block-tree. The
block-tree for the matrix in Figure 2.2a is illustrated in Figure 2.2b. The Hierarchical
matrices make it possible to compute different matrix operations efficiently.

2.1.3 Sequentially Semiseparable Matrices

Sequentially semiseparable matrices are described in detail in the book by Dewilde
and van der Veen[11]. These matrices can represent time varying systems. As the
sequentially semiseparable matrices will be used in this thesis an introduction will
be given in Chapter 3.

The sequentially semiseparable matrices are divided into blocks. Matrices taken
from the strict lower and strict upper triangular blockmatrix have the condition that
their rank is low. This is illustrated in Figure 2.3.

This segmentation in blocks makes similar to the hierarchical matrices that also
have a segmentation. Unlike semiseparable matrices the sequentially semisepara-
ble matrices do not have to be quadratic.

13

2 Literature Review

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




Figure 2.3: Illustration of a sequentially semiseparable matrix. The thick dotted lines mark
the segmentation of the matrix. The colored lines represent submatrices with low rank.

2.2 Neural Networks

In this section different approaches that use structured matrices in neural networks
are shortly introduced. There are two main approaches to obtain structured matri-
ces: In one case the structure is predetermined and the parameters of the structure
are trained by a regular training process [2, 9, 13, 21, 29]. Or the neural network is
trained without a predetermined matrix structure and the matrices are later approxi-
mated with structured matrices [18, 23, 39, 50]. In [51] the model was retrained after
the approximation. There are also approaches where the approximation is done dur-
ing the training procedure like [10] or a structure is created using regularization [31,
49].

One widely known approach to reduce the complexity of neural networks is prun-
ing. These are processes that set elements in neural network matrices to zero to
reduce the computational cost [5]. This is equivalent to removing connections be-
tween neurons. An approach to remove connections from a trained network based
on the Hessian of the loss function was proposed by Hassibi [18]. It is also possible
to obtain sparse matrices while training. Dettmers and Zettlemoyer use an algorithm
that includes pruning steps during the training after every epoch [10]. A different ap-
proach to obtain sparse matrices is including a regularization term. As an example
Louizos et al. use L0 regularization [31] and Wen et al. use LASSO regularization
[49].

Low rank approximations for filters in convolutional layers were proposed by Rig-
amonti et al. [39]. These use combinations of separable filters. Jaderberg et al.
approximate existing filters using low rank filters [23]. Ioannou et al. directly learn
low rank filters and combine them later [21]. In low rank and sparse decomposition
a matrix is approximated with a low rank and a sparse matrix. Yu et al. represented
matrices in deep models as a sum of low rank and sparse matrices [51]. The com-
putation of the decomposition is based on an algorithm to calculate a low rank and
sparse decomposition by Zhou and Tao [52]. To avoid an accumulation of errors
due to the compression of multiple layers, the decomposition are not done indepen-
dently. This is achieved by defining the objective function as the difference between

14

2.2 Neural Networks

the outputs of the approximation for a collection of approximated input vectors and
the corresponding output vectors.

The structure of Hierarchical matrices will be explained in subsection 2.1.2. These
matrices have also been used in machine learning. Fan et al. used the structure of
H-Matrices in neural networks to solve PDEs [13]. There the structure of the neural
network makes use of the different scales in the system. Hierarchical tensor decom-
positions were used by Wu et al. to represent weight matrices and convolutional
kernels [50]. Ithapu used hierarchical factorization of covariance matrices to explore
relationships between classes [22].

A different matrix structure explored in neural networks are butterfly matrices.
These are products of sparse matrices that overall have a similar structure to the
fast Fourier transform [29, 36]. Ailon et al. used this matrix structure to represent
dense layers [2]. The butterfly structure was combined with CNNs by Li et al. [28].
This structure can be used to efficiently represent Fourier kernels. An extension of
butterfly matrices are Kaleidoscope matrices (K-matrices). These were introduced
by Dao et al. in [9]. K-Matrices are the product of factors of the shape BaB>b , where
Ba and Bb are butterfly matrices. These can be used to represent a wide class of
structured matrices. The patterns in the factors are fixed. Therefore the parameters
can be learned using gradient descent. K-matrices can also be used to represent
linear hand crafted structures like reprocessing steps.

15

3 Background

Sequentially semiseparable matrices can be considered as descriptions of time
varying systems.1

A causal time varying system Σ[A,B,C,D] can be described using the formulas

xk+1 = Akxk +Bkuk (3.1a)

yk = Ckxk +Dkuk. (3.1b)

The vectors uk are the inputs, the vectors yk are the outputs and the vectors xk
are the states of the system. The matrices Ak, Bk, Ck and Dk can vary with the
time index k. This is different from time-invariant systems, where the matrices A,
B, C and D are constant. This also means that the dimensions of the input, the
output and the states can vary with time. The structure of a system is represented
in Figure 3.1a. We can see that the system is structured in stages. The stage k
consists of the matricesAk,Bk, Ck andDk. The matrixAk maps the old state xk to
the next state xk+1, the matrix Bk maps the current input uk to the next state xk+1.
The matrix Ck maps the old state xk to the output yk. Finally the matrix Dk directly
maps the input uk to the output yk. The system defined in Equation 3.1 is a causal
system. This means that the output yk only depends on the current input uk and
the previous inputs ul with l < k. It is also possible to define an anticausal system
where the output only depends on the current and the later inputs. An anticausal
system is described using the formula

xk−1 = Ekxk + Fkuk (3.2a)

yk = Gkxk +Dkuk. (3.2b)

Figure 3.1b illustrates an anticausal system. The structure is analogous except for
the reversed direction of the arrows for the states.

When we stack the inputs for the stages to a combined input vector u =
[u>1 , . . . , u

>
k]> and stack the outputs of all stages to a combined output vector

y = [y>1 , . . . , y
>
k]> we can describe the input-output behavior of the system using a

single matrix-vector product
y = Tu, (3.3)

1The naming and structure of the matrices is not consistent in the literature. In this thesis I will use
the notation used in [45]. In [11] a similar notation is used, but the transfer operator is transposed.
In other works like [8, 38] the causal and anticausal parts are considered jointly.

17

3 Background

u1
A1

D1

C1

B1

y1

u2
A2

D2

C2

B2

y2

...

uK
AK

DK

CK

BK

yK

x1

x2

x3

xK

xK+1

(a) Causal system

u1
E1

D1

G1

F1

y1

u2
E2

D2

G2

F2

y2

...

uK
EK

DK

GK

FK
yK

x0

x1

x2

xK−1

xK

(b) Anticausal system

Figure 3.1: Illustration of the structure of time varying systems.

where the matrix T is called the transfer operator. The transfer operator T for a
causal system with four stages is

Tcausal =


D1 0 0 0
C2B1 D2 0 0
C3A2B1 C3B2 D3 0
C4A3A2B1 C4A3B2 C4B3 D4

 . (3.4)

For an anticausal system the matrix description is

Tanticausal =


D1 G1F2 G1E2F3 G1E2E3F4

0 D2 G2F3 G2E3F4

0 0 D3 G3F4

0 0 0 D4

 . (3.5)

The matrices for a higher number of stages are analogous. We can see that the
causal system results in a lower triangular blockmatrix whereas the anticausal sys-
tem results in an upper triangular blockmatrix. If we want to represent the whole
matrix we can use mixed systems. Mixed Systems can be defined as the sum of a
causal and an anticausal system. These usually have the same input and output di-
mensions, while the state dimensions can de different for the causal and anticausal

18

part. When adding the systems, the Dk-matrices have to be added. As the use of
two separate Dk does usually not have any benefits, the Dk-matrices for the anti-
causal system are usually set to 0 and can therefore be ignored. When representing
matrices, the first state x1 and the last state xn+1 of the causal system are usually
zero dimensional. This means that the system does not have an initial or remaining
state. For the anticausal system this is analogous.

Hankel Operator and Minimality When we are interested in properties of the
system, we can study the relation between the inputs, the states and the outputs.
The reachability Matrix Rk is the mapping from the inputs to the state xk. For a
causal system the reachability matrix for state xk can be written as

Rk =
[
· · · Ak−1Ak−2Bk−1 Ak−1Bk−2 Bk−1

]
(3.6)

The mapping from the state xk to the output is called the observability Matrix Ok.
For a causal system the observability matrix for state xk can be written as

Ok =


Ck

Ck+1Ak
Ck+2Ak+1Ak

...

 . (3.7)

When we multiply these we obtain the mapping from the inputs to the outputs. This
is called the Hankel operator Hk. For a causal system this can be written as

Hk = OkRk =

· · · CkAk−1Bk−2 CkBk−1

· · · Ck+1AkAk−1Bk−2 Ck+1AkBk−1

. .
. ...

...

 . (3.8)

The same structure can be found in the transfer operator T

T =

. . .

· · · Dk−1

· · · CkBk−1 Dk

. .
. ...

...
. . .

. . .

· · · Dk−1

· · · CkBk−1 Dk

. .
. ...

...
. . .




Hk = OkRk

(3.9)

If the rows of Rk are linearly independent, the range of Rk is Rdk, where dk is the
number of dimensions of xk. This means that we can reach every state with an
according input. Therefore we call a system reachable if every Rk has a full row
rank.

19

3 Background

If the columns of Ok are linearly independent, we can reconstruct the state xk
from the output. Therefore we call a system observable if everyRk has a full column
rank.

If a system is both observable and reachable, it is called minimal. In a minimal
system the state dimension cannot be further reduced without a loss of information.
The rank of the Hankel operator is called the Hankelrank. If the system is minimal
we have

rank(Hk) = rank(Ok) = rank(Rk) = dk (3.10)

for every k. Usually the Hankel matrices are low rank matrices.. This allows us
to factor the Hk in a tall and a wide matrix. This results in the factorization Hk =
OkRk.

State Transforms As the aforementioned factorization is not unique, the corre-
sponding state is not uniquely defined, as well. The state can be transformed with
a non-singular state transformation matrix S according to x̃k = Skxk. This results
in a transformed reachabilty matrix R̃k = SkRk and the transformed observability
matrix Õk = OkS−1

k . The Hankel matrix stays the same as H̃k = OkS−1
k SkRk =

OkRk = Hk. If a matrix factorization is used to construct a state transformation,
the state transformation can be considered as moving a matrix from the reachability
matrix to the observability matrix

OkRk = OkA︸︷︷︸
Õk

B︸︷︷︸
R̃k

= ÕkR̃k (3.11)

or moving a matrix from the observability matrix to the reachability matrix.

OkRk = A︸︷︷︸
Õk

BRk︸ ︷︷ ︸
R̃k

= ÕkR̃k (3.12)

An algorithm working directly on the state space model makes it possible to reduce
the state dimension of non-minimal systems, as the resulting state transformation
matrix Sk does not need to be invertible.

There are three particular types of factorization that are called canonical forms.
An input-normal realization has the property that the columns of each Ok are or-
thonormal. Whereas in an output-normal realization, all rows of each Rk are or-
thonormal. The balanced realization results from the reduced Singular Value De-
composition (SVD) Hk = UkΣkV

>
k . In a balanced realization Ok = UkΣ

1/2
k and

Rk = Σ
1/2
k V >k . These canonical forms usually also require that the system is min-

imal. In this thesis the minimality is usually omitted, as the algorithms described
also work on non-minimal systems and minimality is nontrivial to define for systems
where the singular values decay slowly. If minimality is required, it will be explicitly
stated.

20

Matrix Factorization Sequentially semiseparable matrices can also be consid-
ered as a matrix factorization. For a causal system, the matrix T can be expressed
as a product T = TnTn−1 . . . T2T1 where every Tk represents a stage. The matrix
Tk is constructed according to

Tk =



Ak Bk
I . . .

I
Ck Dk

I . . .
I


. (3.13)

For a system with 3 stages this gives the factorization

T =


A3 0 0 B3

0 1 0 0
0 0 1 0
C3 0 0 D3

 . . .

A1 B1 0 0
C1 D1 0 0
0 0 1 0
0 0 0 1

 =


A3A2A1 A3A2B1 A3B2 B3

C1 D1 0 0
C2A1 C2B1 D2 0
C3A2A1 C3A2B1 C3B2 D3


As A1 has zero columns and A3 has zero rows, the first block-column as well as

the top block-row disappear, resulting in the familiar structure show in Equation 3.4.
An analogous factorization is possible for anticausal systems. Here the ordering

is reversed T = T1T2 . . . Tn−1Tn
Sequentially semiseparable matrices can be added, multiplied and inverted using

algorithms that work on the state space description. It is also possible to calculate
QR factorization [8, 45] or URV factorization [7]. There are also a couple of other
algorithms that can be used for controller design like sign iterations [38].

Approximations It is also possible to reduce the number of states by approxi-
mating a system Σ[A,B,C,D] with a system Σ[Â,B̂,Ĉ,D̂]. If the system Σ[A,B,C,D] is
minimal, this is not trivial, as a reduction of the number of states also results in a
reduction of the Hankelrank. One approach is the Hankel-Norm approximation. The
Hankel-Norm

‖T‖H = sup
i
‖Hi‖. (3.14)

is the supremum over the spectral norm (the matrix 2-norm) of each individual Han-
kel matrix. In [11] an algorithm is given for the Hankel norm approximation that
computes an approximated T̂ . This is based on the results form Adamjan, Arov,
and Kreı̆n [1]. The approximated system satisfies the condition

‖Γ−1(T − T̂)‖H ≤ 1. (3.15)

21

3 Background

Here Γ is a diagonal and hermition operator. If we set Γ = Iγ we obtain the
simplified condition

‖T − T̂‖H ≤ γ. (3.16)

This problem has no unique solution, as the smaller singular values can be changed
as long as they remain smaller than the supremum.

A second approach is balanced truncation, as described in [20, 40]. Here the
state dimension dk is reduced to a new dimension d̂k. The main idea of the balanced
truncation is to remove states that result in a small output y, or need a big input u to
be reached. We can calculate the norm of the output for a state x using

‖y‖22 = y>y = x>O>Ox. (3.17)

The matrixO>O is called the Observability Gramian. Analogously, we can calculate
the norm of the input required to reach a certain state using

‖u‖22 = x>(RR>)−1x. (3.18)

The Reachability Gramian RR> is invertible if the system is reachable. The prob-
lems depend on the basis for the states. This basis can be changed using state
transformations. The idea is now to obtain a state transformation, for which both
problems are equivalent. This is the case for a balanced realization

O>O = Σ1/2U>UΣ1/2 = Σ = Σ1/2V >V Σ1/2 = RR>. (3.19)

This results in a basis for the state with

‖y‖22
∣∣
x=el

= ‖Ox‖22
∣∣
x=el

= σl (3.20)

and
‖u‖22

∣∣
x=el

= σ−1
l . (3.21)

Here el is the l-th standard basis vector. This allows us to only keep the states with
‖y‖ > ε1/2‖x‖ and ‖x‖ > ε1/2‖u‖ for some ε > 0 by cutting all dimensions l with
σl < ε.

To obtain the reduced system the matrices of a balanced realization for every
state are partitioned according to

Ak =

[
Ak[11] Ak[12]

Ak[21] Ak[22]

]
Bk =

[
Bk[1]

Bk[2]

]
(3.22a)

C =
[
Ck[1] Ck[2]

]
Dk = Dk. (3.22b)

The dimensions are determined by the new state dimensions. The approximated
system Σ[Â,B̂,Ĉ,D̂] is then set to

Âk = Ak[11] B̂k = Bk[1] (3.23a)

Ĉk = Ck[1] D̂k = Dk. (3.23b)

22

This approach is equivalent to removing all σl < ε of the SVD of the Hankel operator.
Therefore we can also construct an approximation when identifying a system using
the SVD by truncating the SVD as described in [43]. The error ‖T−T̂‖ can be bound
to two times the cut singular values [27]. A detailed discussion of approxiamtions is
given in [3].

23

4 Methods

This chapter presents the methods and algorithms derived in this thesis. Section 4.1
explains the techniques to calculate the singular values of the Hankel matrices and
how to use them to approximate matrices. The cost to compute a matrix-vector
product using a time varying system is shown in Section 4.2 and used in Section 4.3
to choose the number of stages. In Section 4.4 a method to adapt the segmenta-
tion is presented and in Section 4.5 a algorithm to recover permuted sequentially
semiseparable is explained.

4.1 Matrix Approximations

In this section more details of the balanced truncation are derived. First, the class
of ordered systems is presented, which makes it possible to use the balanced trun-
cation on certain systems that are not balanced. Next a algorithm to compute the
required singular values is given. Finally an error bound for the approximation of
matrices is derived.

4.1.1 Balanced Truncation of Ordered Systems

In Chapter 3 the balanced truncation is defined for balanced systems. These have
the property thatOk = UkΣOk andRk = ΣRkV

>
k where ΣOk = ΣRk = Σ

1/2
k . The

balanced truncation is also possible for a wider class of realizations. In this thesis
these realizations will be called ordered.

Definition 1 (Ordered Realization). A system is ordered if

O>k Ok = Σ2
Ok (4.1a)

RkR>k = Σ2
Rk (4.1b)

where ΣOk and ΣRk are diagonal matrices and the diagonal entries of Σk =
ΣOkΣRk are non increasing (i.e. σ1 ≥ σ2 ≥ · · · ≥ σn) for every k.

An ordered system can be transformed into a balanced system using the diagonal
state transformations Sk = Σ

1/2
k Σ−1

Rk and the inverse S−1
k = Σ−1

OkΣ
1/2
k . This gives

25

4 Methods

the balanced system Σ[Ã,B̃,C̃,D̃]

Ãk = Sk+1AkS
−1
k B̃ =Sk+1B (4.2a)

C̃k = CkS
−1
k D̃ =D (4.2b)

Proof. By applying the state transformations to the observability and reachability
matrices we get a balanced system
OkS−1

k = UkΣOkΣ
−1
OkΣ

1/2
k = UkΣ

1/2
k

SkRk = Σ
1/2
k Σ−1

RkΣRkV
>
k = Σ

1/2
k V >k

A ordered system can be reduced using the same segmentation as used for the
balanced truncation.

Proof. The reduction of an ordered system is equivalent to the reduction of a bal-
anced system if both reduced systems are equivalent. As the state transformations
are diagonal matrices, the result of first transforming it to a balanced system and
then reducing it using balanced truncation is equivalent to directly reducing the or-
dered system.

The ordered system Σ[A,B,C,D] is first transformed to a balanced system
Σ[Ã,B̃,C̃,D̃] as described in Equation 4.2. Thereafter, the matrices are segmented
as described in Equation 3.22. This results in the block matrices

Ãk =

[
Sk+1[1]Ak[11]S

−1
k[1] Sk+1[1]Ak[12]S

−1
k[2]

Sk+1[2]Ak[21]S
−1
k[1] Sk+1[2]Ak[22]S

−1
k[2]

]
B̃k =

[
Sk+1[1]Bk[1]

Sk+1[2]Bk[2]

]
(4.3a)

C̃ =
[
Ck[1]S

−1
k[1] Ck[2]S

−1
k[2]

]
D̃k = Dk. (4.3b)

The matrices Sk[1] and Sk[1] are obtained by segmenting the state transformations
according to

Sk =

[
Sk[1] 0

0 Sk[2]

]
. (4.4)

The segmentation is determined by the new state dimension. This results in the
reduced system Σ[Â,B̂,Ĉ,D̂] with

Âk = Sk+1[1]Ak[11]S
−1
k[1] B̂k = Sk+1[1]Bk[1] (4.5)

Ĉk = Ck[1]S
−1
k[1] D̂k = Dk. (4.6)

This system can also be obtained by first reducing the ordered system and then
transforming it using Sk+1[1].

This allows us to use algorithms that require input normal or output normal forms,
as systems can be both ordered and input normal if ΣRk = I or both ordered and
output normal if ΣOk = I .

26

4.1 Matrix Approximations

Recursive factorization of Ok and Rk The goal of this section is to construct
an algorithm calculating the singular values of the Hankel matrices without applying
the SVD on Hk or calculating Hk, Ok or Rk. The idea is that we can recursively
factor the observability matrix, as Ok contains both the mapping from the state xk
to the output yk and the mapping from xk to the later outputs. The first mapping is
represented by Ck. The second mapping is represented byOk+1Ak. This gives the
recursive factorization

Ok =

[
Ck

Ok+1Ak

]
=

[
I 0
0 Ok+1

] [
Ck
Ak

]
. (4.7)

Analogously the reachability matrix can be factorized as

Rk =
[
Ak−1Rk−1 Bk−1

]
=
[
Ak−1 Bk−1

] [Rk−1 0
0 I

]
. (4.8)

4.1.2 Computing Singular Values of Hankel matrices

The recursive factorizations of Ok and Rk allows us to create algorithms, that can
convert realizations into input normal and output normal form. With a combination
of both algorithms it is also possible to obtain the singular values of the Hankel
matrices. The algorithms to convert to input and output normal forms are also given
in [7]. Here a different derivation will be presented. Additionally, a way to use these
algorithms to compute the SVD of the Hankel matrices will be explained.

Conversion to input normal and reachable An algorithm to transform the system
into a reachable and input normal system is given. This means that all Rk have to
fulfill R>kRk = I . As we do not want to calculate the reachability matrices directly,
the algorithm employs the decomposition given in Equation 4.8. If R>k−1Rk−1 = I

the next reachability matrix Rk can be transformed such that R̃>k R̃k = I . We
calculate the SVD of [Ak−1Bk−1] which is used to obtain the new reachability matrix
R̃k according to

Rk =
[
Ak−1 Bk−1

] [Rk−1 0
0 I

]
= UkΣk Vk

[
Rk−1 0

0 I

]
︸ ︷︷ ︸

R̃k

. (4.9)

This gives the state transformation Sk = UkΣk. The usage of the reduced SVD
also removes states that are not reachable.The product with the inverse S−1

k is
implicitly calculated by computing the SVD. We can set the matrices Ãk and B̃k
to [Ãk, B̃k] = V >k . The matrices Ak and Bk have to be updated with the state
transformation Sk. The algorithm is formalized in Algorithm 1

The result is input normal and reachable.

27

4 Methods

Input: System Σ[A,B,C,D]

Tolerance tolr
Output: Input normal system Σ[A,B,C,D]

for k ← 1 to K − 1 do
U, σ, V > ← reducedSVD([Ak, Bk], ε = tolr)
[Ak, Bk]← V >

Ak+1 ← Ak+1U diag(σ)
Ck+1 ← Ck+1U diag(σ)

end for

Algorithm 1: Conversion to input normal system.

Proof. Input normality can be proven by induction:
Base case: As x1 is zero dimensional R1 vanishes and R̃1R̃>1 = I .
Induction step: From R̃k−1R̃>k−1 = I follows that R̃kR̃>k = I as

R̃kR̃>k = V >k

[
R̃k−1 0

0 I

] [
R̃>k−1 0

0 I

]
Vk = V >k

[
I 0
0 I

]
Vk = I (4.10)

This proves R̃kR̃>k = I for all k ∈ [1, . . . ,K − 1] by induction. Reachability directly
follows from RkR>k = I .

Conversion to output normal and observable The algorithm to transform the
system into an observable and output normal system is analogous. Here all Ok
have to fulfill OkO>k = I . We use the decomposition given in Equation 4.7 to avoid
a computation of Ok. If Ok+1O>k+1 = I , the algorithm transforms Ok such that
Õk+1Õ>k+1 = I by calculating the SVD of [C>k A

>
k]>. By inserting the SVD we can

obtain the new observability matrix according to

Ok =

[
I 0
0 Ok+1

] [
Ck
Ak

]
=

[
I 0
0 Ok+1

]
Uk︸ ︷︷ ︸

Õk

ΣkV
>
k (4.11)

This results in the state transformation Sk = ΣkV
>
k . Here the SVD is also in a

reduced form, which results in a removal of all non observable states. The state
transformation with S−1

k is done implicitly by the SVD. The matrices Ak−1 and Ck−1

are updated with the state transformation Sk
This gives the Algorithm 2. The result is output normal and observable.

Proof. Output normality can be proven by induction:
Base case: As xK+1 is zero dimensional Ok+1 vanishes and Õ>K+1ÕK+1 = I

28

4.1 Matrix Approximations

Input: System Σ[A,B,C,D]

Tolerance tolo
Output: Output normal system Σ[A,B,C,D]

for k ← K downto 2 do

U, σ, V > ← reducedSVD
([
Ck
Ak

]
, ε = tolo

)
[
Ck
Ak

]
← U

Ak−1 ← diag(σ)V >Ak+1

Bk−1 ← diag(σ)V >Ck+1

end for

Algorithm 2: Conversion to output normal system.

Induction step: From Õ>k+1Õk+1 = I follows that Õ>k Õk = I as

Õ>k Õk = U>k

[
I 0
0 O>k+1

] [
I 0
0 Ok+1

]
Uk = U>k

[
I 0
0 I

]
Uk = I (4.12)

This proves Õ>k Õk = I for all k ∈ [K − 1, . . . , 1] by induction. Reachability directly
follows from OkO>k = I .

Obtaining sigmas By converting an input normal system to an output normal sys-
tem it is possible to calculate the singular values of H . This uses the factorization in
Equation 4.7 to get

H = OkRk =

[
I 0
0 Ok+1

] [
Ck
Ak

]
Rk. (4.13)

As the algorithm started with an input normal system, RkR>k = I is still fulfilled.
And due to the fact the algorithm has transformed the states xi for i > k to output
normal form, O>k+1Ok+1 = I is already fulfilled. When the SVD is applied to the
matrix [C>k A

>
k]> this results in the SVD of H

H =

[
I 0
0 Ok+1

]
Uk︸ ︷︷ ︸

Uk

Σk V
>
k Rk︸ ︷︷ ︸
V̆ >k

= ŬkΣkV̆
>
k (4.14)

Proof. To prove that H = ŬkΣkV̆
> is the SVD we have to prove that Ŭ>k Ŭk = I

and V̆ >V̆ = I . If Ok+1, Rk, Uk and V are orthogonal the proof directly follows. For
non-square matrices we have V̆ >k V̆k = V >k RkR>k Vk = V >k IVk = I and U>k Uk =
I has been proven in Equation 4.12

29

4 Methods

As the resulting system is ordered, the system can be approximated using bal-
anced truncation.

Proof. The condition in Equation 4.1a directly follows from the output normality
Õ>k Õk = I . The condition in Equation 4.1b follows from the input normality of the
intermediate system by

R̃kR̃>k = ΣkVkRkR>k V >k Σk = Σ2
k (4.15)

As Σk results from an SVD, the singular values are nonnegative and in decreasing
order. Therefore the system is ordered.

This algorithm makes it possible to compute the singular values of a system with-
out explicitly computing the Hankel matrices. Therefore, the algorithm is also a fast
way to reduce the system to a minimal system. The tolerance for the first transfor-
mation toli is usually set to a value close to the machine precision to avoid errors
due to the removed states. The tolerance for the second transformation tolo is then
set to the wanted ε.

It is also possible to first convert the system to an output normal system and calcu-
late the SVD when converting it to an input normal system. The proof is analogous.
The proof and the algorithms for the anticausal case are omitted for brevity.

4.1.3 Error Bound for Matrix Approximation

In the following I give an upper bound for the error of the matrix approximation with
the balanced truncation. The algorithm given in [8] makes it possible to create a
mixed system representing an arbitrary matrix. The mixed system can be approx-
imated by separately approximating the causal part Tc and the anticausal part Ta.
This results in the transfer matrix of the approximated system

T̃ = T̃c + T̃a (4.16)

The error for the approximation of the causal and anticausal system can be bounded
using the results from [27]. Using this bound one can obtain the trivial bound

‖T − T̃‖ ≤ ‖Tc − T̃c‖+ ‖Ta − T̃a‖. (4.17)

I derive a tighter bound for the matrix approximation. We start by considering a
case where we only approximate the k-th state of the causal system and the k−1-th
state of the anticausal system.

In this case the Hankel matrix of the causal system Hk and the Hankel matrix of
the anticausal system H∗k−1,

30

4.1 Matrix Approximations

T =

. . .
...

... . .
.

· · · Dk−1 Gk−1Fk · · ·

· · · CkBk−1 Dk · · ·

. .
. ...

...
. . .

. . .
...

... . .
.

· · · Dk−1 Gk−1Fk · · ·

· · · CkBk−1 Dk · · ·

. .
. ...

...
. . .




Hk = OkRk

H∗k−1 = O∗k−1R∗k−1

, (4.18)

are replaced with the low rank approximation Ĥk and Ĥ∗k−1. The low rank approxi-

mation is constructed taking the first d̂k columns of Ok and the first d̂k rows of Rk.
Analogously the anticausal Hankel matrix is approximated. These approximations
are based on the SVD of Hk and H∗k−1 because a balanced system is used. Ac-
cording to the Schmidt–Mirsky Theorem the approximation is optimal for the spectral
norm ‖X‖ and the Frobenius norm ‖X‖F [4].

This results in the approximated system with the transfer matrix T̂ (k). The approx-
imation error is the norm of the matrix

T − T̂ (k) =

[
0 H∗k−1 − Ĥ∗k−1

Hk − Ĥk 0

]
. (4.19)

The SVD of this matrix can be obtained by combining the SVD of Hk − Ĥk and
H∗k−1 − Ĥ∗k−1 to

T−T̂ (k) =

[
U∗k−1Σ∗k−1V

∗>
k−1

UkΣkV
>
k

]
=

[
U∗k−1

Uk

] [
Σ∗k−1

Σk

] [
V ∗>k−1

V >k

]
and then permuting the matrices such that the singular values are ordered in de-
creasing order. The matrices Σk and Σ∗k−1 contain the singular values correspond-
ing to the cut states. Using the SVD, the spectral norm is

‖T − T̂ (k)‖ = max
(
‖Hk − Ĥk‖, ‖H∗k−1 − Ĥ∗k−1‖

)
(4.20)

and the Frobenius norm is

‖T − T̂ (k)‖F =
√
‖Hk − Ĥk‖2F + ‖H∗k−1 − Ĥ∗k−1‖2F (4.21)

If multiple states are approximated, the error form the individual approximations
have to be combined.

In general

T̂ 6= T −
K∑
i=2

T − T̂ (i) (4.22)

31

4 Methods

is true. Nevertheless the total error in the spectral norm is bounded by

‖T − T̂‖ ≤
K∑
i=2

‖T − T̂ (k)‖ (4.23)

and for the Frobenius norm by

‖T − T̂‖F ≤
K∑
i=2

‖T − T̂ (k)‖F. (4.24)

Proof. The proof relies on the fact that ‖T − T̂ (k)‖ is equal or larger than the actual
change if multiple stages are approximated. The details can be found in Appendix A

For the spectral norm this results in the upper bound

‖T − T̂‖ ≤
K∑
i=2

ε ≤ (K − 1)ε (4.25)

for the balanced truncation of a system with K stages, using an approxiamtion
parameter ε, as all singular values of T − T̂ (k) are smaller than ε for all k ∈
1, . . . ,K − 1.

4.2 Cost of Computation

When using Time Varying Systems to approximate weight matrices, we are mainly
interested in the cost of computing the product y = Tu using time varying sys-
tems. The cost is the number of Floating-Point Operations (FLOPs). The number of
parameters is also important as this determines the required memory.

The cost depends on the state dimensions dk, the input dimensions mk and the
output dimensions pk.

First, the cost for a causal stage is derived: Without considering additions, the
cost Ck for the stage k is

Ck = dk+1dk + dk+1mk + pkdk + pkmk. (4.26)

We can also include the additions and get the cost

C ′k = dk+1(2dk − 1) + dk+1(2mk − 1) + pk(2dk − 1) + pk(2mk − 1). (4.27)

For anticausal system, the formulas are identical, except for the indexing of the state.
Here symbols with a ∗ denote quantities for the anticausal system. Without additions
this gives the cost for one stage

C∗k = d∗k−1d
∗
k + d∗k−1mk + pkd

∗
k + pkmk. (4.28)

32

4.3 Number of Stages

If the additions are included this results in the cost

C ′∗k = d∗k−1(2d∗k − 1) + d∗k−1(2mk − 1) + pk(2dk − 1) + pk(2mk − 1). (4.29)

When considering mixed systems the costs for the causal and the anticausal system
are added. As the D-matrices for the anticausal part are not needed the according
FLOPs are irrelevant. This gives the cost for a mixed stage

Ck = dk+1dk + d∗k−1d
∗
k + (dk+1 + d∗k−1)mk + (dk + d∗k)pk + pkmk. (4.30)

Including the additions, the cost is

C ′k = dk−1(2dk − 1) + d∗k−1(2d∗k − 1) + (dk−1 + d∗k+1)(2mk − 1)

+ pk(2dk − 1) + pk(2d
∗
k + 1) + pk(2mk − 1). (4.31)

The total cost is the sum over all stages

C =
K∑
k=1

Ck. (4.32)

The number of parameters is equal to the number of multiplications. In the following
I will only use the number of multiplications.

4.3 Number of Stages

To choose the appropriate number of stagesK, I approximate how the cost depends
on the number of stages. For now the dimensions d, d∗, p and m are considered as
constant.

Then the cost in Equation 4.32 can be simplified to the multiplication

C = K(d2 + d∗2 + (d+ d∗)m+ (d+ d∗)p+ pm). (4.33)

If the total number of inputs M and the total number of outputs P are divisible by K,
the input and output sizes are related to the number of stages by m = M/K and
p = P/K. This results in

C =K(d2 + d∗2 + (d+ d∗)
M

K
+ (d+ d∗)

P

K
+
PM

K2
) (4.34)

=K(d2 + d∗2) + (d+ d∗)M + (d+ d∗)P +
1

K
PM. (4.35)

This relation describes how the general computational cost depends on the num-
ber of stages. This approximation is not helpful if we want to approximate matrices,
as in these cases the state dimensions are usually not constant. Usually the state

33

4 Methods

0 5 10 15 20
:

0

10

20

30

40

3 :

Approximation
� = 0.13
� = 0.05
� = 0.02

Actual 3

 = 0.40

 = 0.50

 = 0.60

Figure 4.1: Approximated degree of a matrix from the Mobilenet V2 model [41]. The actual
degree is the number of singular values with σ > α‖A‖H for every causal Hankel matrix.
Here α is a hyperparameter that determines the accuracy. Additionally approximations of
the rank with suitable parameters γ are plotted.

dimensions are small for the first and last states and larger for the states in the mid-
dle. Here, different approximations of the state dimensions have to be used. I used
an approximation based on the properties of the singular values and their relation
to the Frobenius norm. The singular values are related to the Frobenius norm by

‖H‖F =
√∑

σ2
i [4, p. 67]. If we suppose that the elements of H have a con-

stant absolute value, then ‖H‖2F ∝ size(H). This means that the Frobenius norm
increases with the size of the matrix, which in turn should also result in increasing
singular values. Finally dk is the number of singular values larger than a certain
threshold value. The number of states is not directly related to the 2-norm of the sin-
gular values as it depends on their distribution and the threshold value. Regardless
the approximation d̆k ∝ ‖Hk‖2F fits the behavior of the considered matrices fairly
well as illustrated in Figure 4.1. I approximate the degree using the relation

d̆k = γ size(Hk)
1

min(P,M)
(4.36)

= γ(K − k + 1)(k − 1)
PM

K2 min(P,M)
. (4.37)

The variable γ is a proportionality factor that represents the required accuracy. If
a high accuracy is wanted, this results in a higher number of states. This can be
modeled with a larger γ. If we do not need a high accuracy, we can use fewer states.
This is modeled with a smaller γ. The factor 1/min(P,M) is used to normalize the
state dimensions in such a way that for γ = 1 the approximation is compatible to

34

4.3 Number of Stages

the maximum rank of Hk. As I suppose that the statedimensions for the anticausal
case are equivalent to the statedimensions for the causal case, I can calculate the
cost using

C =

K∑
k=1

(
2dkdk+1 +

2Mdk+1

K
+

2Pdk
K

+
MP

K2

)
. (4.38)

As the matrix can be transposed, min(P,M) = M can be assumed without loss of
generality. By inserting the approximation from Equation 4.36 and transforming the
sums using Faulhaber’s formula [25] the cost is transformed to

C =
KP 2γ2

15
+
MPγ

3
+
P 2γ

3
+
MP − P 2γ2

3

K
+
−MPγ

3 − P 2γ
3

K2
+

4P 2γ2

15K3
. (4.39)

This makes it possible, to calculate the cost for different values for the parameter γ.
In Figure 4.2 this is done for an example with M = N = 210.

21 23 25 27 29

104

105

106

107

108

A
pp

ro
xi

m
at

ed
C

os
t

� = 0.01

� = 0.03
� = 0.06

� = 0.16
� =

0.4
� =

1.0

Figure 4.2: Approximated cost for different numbers of stages. The system has M =
P = 210 input and output dimensions. The cost is approximated for different values for the
parameter γ. The optimal number of stages for every γ is marked with a circle.

We can see that for one stage the cost is equivalent to the cost of a simple matrix
product, as the whole matrix is stored as one D-matrix. For γ = 1 the cost only
increases for higher number of stages. For γ � 1 the cost first decreases before
increasing later. The figure shows that the optimal number of stages K̂ increases
as γ decreases. For very small γ I get K̂ = 1/2M . For more reasonable values
like γ = 0.16 the optimal number of stages is K̂ = 2−5M . This gives an educated
guess on the optimal number of stages K for a weight matrix.

35

4 Methods

The approximation has the downsides, that the parameter γ has to be estimated
and the input and output dimensions are modeled as constant, which is not true for
the tested systems. It is also possible to approximate the state dimension based
on the maximum possible rank of the Hankel matrix. The rank has to be lower than
min(width(Hk), height(Hk)). This approximation might have some benefits for very
tall or wide matrices, as this approximation is able to represent ranks that are not
symmetric in k.

4.4 Segmentation Adaptation

In this section the segmentation of the matrix is changed. This means adapting the
input and output dimensions. First I will describe how to move the boundaries. In
Subsection 4.4.2 the algorithm is extended such that makes it possible to calculate
the singular values of the Hankel matrices. In Subsection 4.4.3 a strategy to improve
the segmentation is presented.

4.4.1 Moving Boundaries

In this subsection algorithms to move the boundaries of a causal system are intro-
duced. This is done by changing the segmentation of the input and output. When
we change the segmentation of the input and output, this also changes the segmen-
tation of the transfer matrix T . A change of the division between the inputs uk and
uk+1 moves the k-th vertical boundary left or right according to


...
yk
yk+1

...

 =


. . .

· · · Dk

· · · BkCk+1 Dk+1

. .
. ...

...
. . .




...
uk
uk+1

...


.

(4.40)

A change of the division between the outputs yk and yk+1 analogously moves the
k-th horizontal boundary up or down according to


...
yk
yk+1

...

 =


. . .

· · · Dk

· · · BkCk+1 Dk+1

. .
. ...

...
. . .




...
uk
uk+1

...


.

(4.41)

The movement of the boundaries changes the parts of the matrix that can be
represented with a causal system. When we move boundaries to the left or down,

36

4.4 Segmentation Adaptation

some connections are no longer possible in a causal system. These will be dropped.
Conversely when we move boundaries to the right or up, new connections will be
established. For a mixed system these connections can be moved to the anticausal
system and vice versa. The algorithms are constructed such that they also preserve
the minimality of the system.

uk

A1

yk

uk+1

Ak+1

yk+1

Ck+1

xk

xk+1

xk+2

uO d

b

ũk

Ãk

D̃k

Ck

B̃k

yk

ũk+1 yk+1

xk

x̃k+1

xk+2

uO

Ak+1b

Ck+1b

(a) Original system (b) Moved system

Figure 4.3: Illustration of a system where a boundary is moved to the left.

Input: System Σ[A,B,C,D], Index k, Tolerance tol
Output: System Σ[A,B,C,D] with changed input dimensions
b← Bk[:,end]

Dk ← Dk[:,:end−1]

Bk ← Bk[:,:end−1]

Dk+1 ← [Ck+1b,Dk+1]
Bk+1 ← [Ak+1b, Bk+1]
U, σ, V > ← SVD([Ak, Bk], econ = True)
if σ[end] < tol then

U ← U[:,:end−1]; σ ← σ[:end−1]; V ← V[:,:end−1]

[Ak, Bk]← diag(σ)V >

Ak+1 ← Ak+1U
Ck+1 ← Ck+1U

end if

Algorithm 3: Move boundary between uk and uk+1 to the left.

37

4 Methods

Move Left First we move the k-th vertical boundary to the left. This means that
the last element of the input uk becomes the first element in uk+1. This moved input
is designated as uO. The altered connections are highlighted in Figure 4.3.

The vector b is the last column of Bk and describes the connection from uO to
xk+1. The vector d is the last column of Dk and describes the connection from
uO to yk. These vectors are removed from the matrices resulting in B̆k and D̃. We
can see that the connection d in the original system cannot be realized with a causal
system as this would mean a connection from ũk+1 to yk in the transformed system.
This also means that the parts of the transfer matrix T that can be represented using
the causal system change. The dropped connection is illustrated using a dotted line
in Figure 4.3. Now we have to add the the input uO to the next stage. The connection
from the input uO to the output yk+1 can be incorporated by adding the vector Ck+1b
to Dk+1 as a new column. Analogously the connection from uO to the state xk+2

can be incorporated by attaching the vector Ak+1b to Bk+1.
After these changes, the mapping from the combined inputs [u>k u

>
k+1]> to the

state xk+2 remains unchanged. Therefore the following states are still reachable
and minimal. As the last column of Rk+1 is removed, the state xk+1 might become
non reachable. This is the case if the matrix [Ab B̆k] is no longer of full rank. We
can check this using the SVD. If the last singular value is equal to zero, one state-
dimension has to be removed. This can be done using a state transformation based
on the reduced SVD. The matrices [Ãb B̃k] are set to diag(σ)V > and the following
stages are transformed according to Ãk+1 = Ak+1U and C̃k+1 = Ck+1U . This
restores the minimality of the system.

The pseudocode to move the boundary to the left is given in Algorithm 3.

Move Right It is also possible to reverse these changes. When we move the k-th
vertical boundary to the right, the input uO is moved from uk+1 to ũk. The connection
from uO is moved from the current stage to the previous stage. We can do this by
directly routing the input to an additional state dimension. To attach the input uO to
the end of the state vector xk+1, we set

B̆k =

[
Bk 0
0 1

]
(4.42)

This makes the input uO available in the next stage. Now the connections can be
reconnected. For this we remove first row d of Dk+1 and attach it to Ck+1 as the
new last row. Analogously the first row b of Bk+1 is removed and attached to the
end of Ak+1. This is illustrated in Figure 4.4.

After these changes, the mapping from the combined inputs [u>k u
>
k+1]> to the

state xk+2 remains unchanged. Therefore the following states are still reachable
and minimal. This trivial approach results in a new observability matrix Õk+1 and a
reachability matrix R̃k+1 for the state xk+1. The state xk is still reachable, as the

38

4.4 Segmentation Adaptation

uk yk

uk+1 yk+1

xk

xk+1

xk+2

uO d

b

ũk

Ãk
yk

ũk+1 yk+1

xk

x̃k+1

xk+2

uO dnew

b

d

(a) Original system (b) Moved system

Figure 4.4: Illustration of a system where a boundary is moved to the right.

additional statedimension is directly connected to the input uO. The observability
matrix has one additional column

Õk+1 =

[
I 0
0 Ok+2

] [
Ck+1 d
Ak+1 b

]
. (4.43)

If the last column is not linearly independent, the system is no longer observable as
Ok+1 does not have full column rank. This is the case if[

d
b

]
∈ range

([
Ck+1

Ak+1

])
. (4.44)

If the vector is in the range then a state m with the property[
d
b

]
=

[
Ck+1

Ak+1

]
m (4.45)

exists. This also means that no new state dimension is required. In this case the vec-
tor m is appended to the matrix Bk. The algorithm uses the SVD of [C>k+1, A

>
k+1]>

to check the relations. This uses the intermediate vector

a = U>
[
d
b

]
(4.46)

If the vector [d>, b>]> is in the range, the norm of

‖a[r+1:]‖ = 0. (4.47)

39

4 Methods

Input: System Σ[A,B,C,D], Index k, Tolerance tol
Output: System Σ[A,B,C,D] with changed input dimensions
b← Bk+1[:,1]

d← Dk+1[:,1]

Bk+1 ← Bk+1[:,2:]

Dk+1 ← Dk+1[:,2:]

U, σ, V > ← SVD
([
Ck+1

Ak+1

])
r ← count(σ > toli)

a← U>
[
d
b

]
if ‖a[r+1:]‖ > tol then . not in range

Bk ←
[
Bk 0
0 1

]
Ak ←

[
Ak
0

]
Ak+1 ← [Ak+1, b]
Ck+1 ← [Ck+1, d]

else
m← V[:,:r] diag(σ[:r])

−1a[:r]

Bk ←
[
Bk m

]
end if
Dk ←

[
Dk dnew

]
Algorithm 4: Move boundary between uk and uk+1 to the right.

Here r is the number of nonzero singular values. The vector m is computed with

m = V[:,:r] diag(σ[:r])
−1a[:r]. (4.48)

This is equivalent to calculating the vector m using the pseudoinverse. Additionally
the vector dnew is attached to Dk to represent the new connection from uk+1 to yO.
This connection is drawn with a dotted line in Figure 4.4.

The algorithms to move the horizontal boundaries up or down are described in
Appendix B

4.4.2 Singular Values of Hankel Matrices when Moving Boundaries

In this section the ideas from Section 4.1 are used to calculate the singular values
for a moved system. The main idea is that this algorithm iterates over the different
stages and moves them if needed. This algorithm not only calculates the moved
system but also returns the singular values. Algorithm 3 and Algorithm 4 are only

40

4.4 Segmentation Adaptation

able to move the boundaries by a single dimension. The algorithm derived here can
move the boundaries by arbitrary distances, as long as the other boundaries are not
crossed.

I will describe the algorithm to move the bounds left or right in this subsection.
The algorithms for moving up or down will be omitted for brevity. A reference imple-
mentation of the algorithm can be found in the supplementary code. The algorithm
starts with an output normal system and transforms it into a ordered input normal
system, by iterating over the stages from k = 1 up to K.

Move Left When moving the boundary between uk and uk+1 to the left the dis-
tance l, the last l columns of Rk+1 are removed. Based on this we have the new
Hankel matrix

H̃k+1 = Õk+1R̃k+1 = Ok+1Rk+1[:,:end−l]. (4.49)

Using the decomposition from Equation 4.8 this results in

H̃k+1 = Ok+1

[
Ak Bk[:,:end−l]

] [Rk 0
0 I

]
. (4.50)

If O>k+1Ok+1 = I and RkR>k = I then the singular values of the SVD of[
Ak Bk[:,:end−l]

]
are the singular values ofHk. This is the case as the initial system

is output normal and the previous stages were already transformed to input normal
form. Based on the SVD, the stage can be transformed such that Rk+1R>k+1 = I .
This also gives an ordered realization. The pseudocode can be found in Algorithm 5.

Input: System Σ[A,B,C,D] with O>k+1Ok+1 = I and RkR>k = I ,
Index k, Distance to move l, Tolerance tol

Output: System Σ[A,B,C,D] with changed input dimensions and Rk+1R>k+1 = I ,
Singular values σ of H̃k+1

b← Bk[:,end−l+1:]

Dk ← Dk[:,:end−l]
Bk ← Bk[:,:end−l]
Dk+1 ← [Ck+1b,Dk+1]
Bk+1 ← [Ak+1b, Bk+1]
U, σ, V > ← reducedSVD([Ak, Bk], ε = tol)
[Ak, Bk]← V >

Ak+1 = Ak+1U diag(σ)
Ck+1 = Ck+1U diag(σ)

Algorithm 5: Move boundary between uk−1 and uk to the left by l inputs.

41

4 Methods

Move Right When the bound is moved right by the distance l, this results in l
additional columns inRk+1. Additional states are also required in most cases. Using
the decomposition from Equation 4.8 and the structure from Equation 4.43 the new
Hankel matrix can be expressed as

H̃k+1 =

[
I 0
0 Ok+2

] [
Ck+1 d
Ak+1 b

] [[
Ak
0

] [
Bk 0
0 I

]] [
Rk 0
0 I

]
(4.51)

IfAk andBk are transformed to input normal form analogous to Algorithm 1 this can
be reduced to

H̃k+1 =

[
I 0
0 Ok+2

] [
Ck+1 d
Ak+1 b

] [
Rk+1 0

0 I

]
. (4.52)

The reachability matrix Rk+1 fulfills Rk+1R>k+1 = I . Therefore the singular values

of the SVD of
[
Ck+1 d
Ak+1 b

]
are the singular values of the Hankel matrix. Using the

SVD the system can also be reduced to a minimal system. To preserve the input
normality Ak and Bk are multiplied with V >. The combined matrices [C>k A>k]>

are set to UΣ. This results in the Algorithm 6.

Input: System Σ[A,B,C,D] with O>k+1Ok+1 = I and RkR>k = I ,
Index k, Distance to move l, Tolerance tol

Output: System Σ[A,B,C,D] with changed input dimensions and Rk+1R>k+1 = I ,
Singular values σ of H̃k+1

Σ[A,B,C,D] ← input normalk+1(Σ[A,B,C,D]) . Transform state xk+1

b← Bk+1[:,:l]

d← Dk+1[:,:l]

Bk+1 ← Bk+1[:,l+1:]

Dk+1 ← Dk+1[:,l+1:]

U, σ, V > ← reducedSVD
([
Ck+1 d
Ak+1 b

]
, ε = tol

)
Bk ← V >

[
Bk 0
0 I

]
Ak ← V >

[
Ak
0

]
[
Ck+1

Bk+1

]
← U diag(σ)

Dk ←
[
Dk dnew

]
Algorithm 6: Move boundary between uk and uk+1 to the right by l inputs.

Analogous algorithms can be derived for the anticausal part.

42

4.4 Segmentation Adaptation

4.4.3 Optimizing Input and Output Dimensions

In order to obtain the optimal segmentation of a system, the optimization problem

min
segmentation

f(Σ[A,B,C,D]), (4.53)

needs to be solved. Here f(Σ[A,B,C,D]) is some objective function. The problem is
discrete and, in general nonconvex, which makes it hard for to solve.

To get a solution of the optimization problem, an iterative algorithm is used. For
this, both the input dimensions and the output dimensions have to be changed. This
algorithm alternately changes the input and output dimensions.

The general strategy is to start with an input normal causal system in combination
with an output normal anticausal system. First, we adapt the dimensions of the out-
puts. For every boundary, the algorithm computes a preliminary system in which the
boundary is either moved down, not moved, or moved up. For these three options
the objective function is calculated. Then the system with the lowest objective func-
tion is adopted. This is done for every boundary. By doing this using the algorithms
described in the previous subsection, the systems are transformed into a causal in-
put normal system and an anticausal output normal system. These algorithms also
compute the singular values of the Hankel matrices. This makes it possible to use
these in the objective function. After the output dimensions are adapted, we adapt
the input dimensions. Again, the adaptation is done by computing three preliminary
systems were the bounds are either moved to the left, not moved, or moved to the
right. Then the option with the lowest objective function is used. Thereby, the sys-
tem is transformed back to an input normal causal system in combination with an
output normal anticausal system. This makes it possible to immediately continue
with an adaption of the output dimensions.

The pseudocode for the adaptation of the segmentation is given in Algorithm 7.
To avoid that the algorithm gets stuck in spurious local minima and to improve the

speed, the algorithm does not change the segmentation by a fixed search distance l,
but uses different search distances for every iteration of the algorithm. If the matrices
are non square it might also be advantageous to use a different search distances
for the outputs and the input.

For most of the tests I used search distances of the form li = dl02−ie. This gives
a structure that is similar to a tree. As the optimal segmentation of the input depends
on the segmentation of the output, that is also subject to change, the sequence is
constructed such that there is not a single way to reach a certain movement of a
boundary.

If moving the boundary by the search distance would mean crossing the next
boundary, the boundary is only moved to the position of the next boundary.

The objective function for the output from Algorithm 7 Σ[Ã,B̃,C̃,D̃,Ẽ,F̃ ,G̃] is lower
than or equal to the objective function for the original system Σ[A,B,C,D,E,F,G]. For

43

4 Methods

Input: Mixed system Σ[A,B,C,D,E,F,G]

with input normal causal system and output normal anticausal system
sequences lout and lin

Output: Ordered mixed system Σ[Ã,B̃,C̃,D̃,Ẽ,F̃ ,G̃]
with optimized input and output dimensions

for i← 1 to Number of iterations do
for k ← K − 1 downto 1 do

. Iterate over boundaries and transform causal system
to output normal and anticausal to input normal

Σd ← move down(Σ) by min(lout
i , pk+1)

Σn ← no move (Σ)
Σu ← move up(Σ) by min(lout

i , pk)
Σ← argmin

Σ∈{Σd,Σn,Σu}
f(Σ)

end for
for k ← 1 to K − 1 do

. Iterate over boundaries and transform causal system
back to input normal and anticausal to output normal

Σr ← move right(Σ) by min(lini ,mk+1)
Σn ← no move (Σ)
Σl ← move left(Σ) by min(lini ,mk)
Σ← argmin

Σ∈{Σr,Σn,Σl}
f(Σ)

end for
if Σ did not change then

Exit
end if

end for

Algorithm 7: Optimization of segmentation.

every objective function that is invariant under state transformations. This means

f(Σ[Ã,B̃,C̃,D̃,Ẽ,F̃ ,G̃]) ≤ f(Σ[A,B,C,D,E,F,G]). (4.54)

Proof. The sequence of objective functions for the intermediate systems
f(Σ(1)), . . . , f(Σ(N)) produced by the algorithm is non-increasing. When the
output dimensions are adapted this is due to

f(Σ(l+1)) = min(f(Σ
(l)
d), f(Σ(l)), f(Σ(l)

u)) ≤ f(Σ(l)). (4.55)

The analogous argument

f(Σ(l+1)) = min(f(Σ(l)
r), f(Σ(l)), f(Σ

(l)
l)) ≤ f(Σ(l)) (4.56)

holds when the input dimensions are adapted.

44

4.5 Permutations

Objective function To recover the segmentation, the goal is to reduce the rank
of the Hankel matrices. The rank itself is not a suitable objective function, as the
algorithm has to exactly meet the segmentation. Therefore we use the nuclear norm
‖H‖∗. The nuclear norm is defined as the sum of the singular values

‖X‖∗ =
r∑
i=1

σi. (4.57)

Liu and Vandenberghe use the nuclear norm get low rank solutions in optimization
problems [30]. Dividing it with the spectral norm ‖X‖ results in the lower bound of
the rank rank(X) ≥ ‖X‖∗/‖X‖ as described by Recht et al. in [37]. This results in
the objective function

fnuc(Σ) =
∑
all H

‖H‖∗
‖H‖

. (4.58)

When we compute fnuc for Hankel matrices taken out of weight matrices, we can
see that fnuc(H) ≈

√
size(H). This means that the algorithm would minimize the

size of the Hankel matrices. In this case, the boundaries tend to move outwards, as
this minimizes the size of the Hankel matrices.

As a different objective function I used the number of multiplications required to
calculate the matrix-vector product y = Tu in the state space. Based on the Equa-
tion 4.30, this gives the objective function

fFLOP =
K∑
k=1

dk+1dk + d∗k−1d
∗
k + (dk+1 + d∗k−1)mk + (dk + d∗k)pk + pkmk. (4.59)

Here the number of states is determined by counting the singular values of the Han-
kel matrices that are bigger than a certain threshold value. The threshold value has
to be known in advance. This objective function does not minimize the approxima-
tion error, but Equation 4.25 gives an upper bound of Kε.

4.5 Permutations

In this section the matrix is represented using a permutation of the inputs, a time
varying system, and a permutation of the output.

This means that the matrix M is represented as the product

M = ΠoTΠi. (4.60)

Here T is the transfer operator of the time varying system and Πi and Πo are permu-
tation matrices. This is equivalent to permuting the columns and rows of the matrix
M before representing it as a time varying system. This can lead to a reduction of

45

4 Methods

u1 y1

u2 y2

...
...

...

uK yK

Πi Πo

Figure 4.5: Illustration of system with permuted inputs and outputs.

the Hankel rank and therefore the state dimensions as demonstrated by Diepold et
al. in [12]. In this section I introduce an algorithm that makes it possible to permute
the rows and columns of the represented matrix, such that state dimensions are re-
duced. The algorithm does not recover the whole permutation in one step but uses
a strategy similar to divide and conquer by recursively splitting the problem up in
smaller subproblems and recovering the permutation by combining the results from
these individual subproblems. First an initial system consisting of only one stage is
created. In this case T = D1. Then the Algorithm splits the stages into two stages
as illustrated in Figure 4.6. When this is done the inputs and outputs are permuted

uk

A

D

C

B

yk

xk

xk+1

uα yα

uβ yβ

xk

xk+1

uk ykΠi Πo

(a) Original stage (b) Split stage with permutations

Figure 4.6: Illustration of splitting a stage.

and segmented. These new stages are later split using the same strategy. The
permutations can be combined, resulting in the permutation matrices Πi and Πo.

The order of the inputs inside the input vectors uk and the order of the outputs

46

4.5 Permutations

inside the output vectors yk is not important. The states of the balanced realization
depend on the SVD of Hk. The SVD of Hk is invariant under permutation of the
rows with ΠR and permutation of the columns with ΠC as the new factorization

ΠRUΣV >ΠC = ŨΣṼ > (4.61)

is again a SVD.

Proof. To be an valid SVD, we have to prove that Ũ and Ṽ are orthogonal. This is
shown by the forward multiplication

Ũ>Ũ = U>Π>CΠCU = U>U = I. (4.62)

This uses the fact that Π>Π = I for a permutation matrix Π. Analogously

Ṽ >Ṽ = V >ΠCΠ>CV = V >V = I (4.63)

is true. As the matrix Σ stems form a SVD, the singular values are nonnegative and
are ordered decreasingly.

This means that all permutations that preserve the grouping of the inputs and
outputs are equivalent. Therefore, the algorithm does not have to recover a unique
ordering of the inputs and outputs but only has to group the inputs and outputs.

The algorithm to split a stage is described in Subsection 4.5.1. It uses the same
strategy as described in [7]. Before the stage is split, the inputs and outputs of the
stage must be grouped. The required algorithm to partition the inputs and outputs
is presented in Subsection 4.5.2.

4.5.1 Split Stage

We want to split the stage k into the stages α and β, as illustrated in Figure 4.7.
Again, we have connections that are no longer possible in a causal system. These
have to be included in the anticausal part. In Figure 4.7 the connections are repre-
sented using a dotted line. The resulting system should have the same input-output
behavior. Therefore, the relations

Ak = AβAα Bk =
[
Bk[1] Bk[2]

]
=
[
AβBα Bβ

]
(4.64a)

Ck =

[
Ck[1]

Ck[2]

]
=

[
Cα
CβAα

]
Dk =

[
Dk[1,1] Dk[1,2]

Dk[2,1] Dk[2,2]

]
=

[
Dα 0
CβAα Dβ

]
(4.64b)

have to be fulfilled. This immediately gives us most of the matrices for the new
stages

47

4 Methods

uk yk

xk

xk+1

uα

uβ

yα

yβDk

Ak
Ck

Bk

uα yα

uβ yβ

xk

xβ

xk+1

(a) Original stage (b) Split stage

Figure 4.7: Illustration of splitting a stage.

Now we want to compute the remaining matrices. The new realization should be
minimal. For this we consider the Hankel matrix associated with the new intermedi-
ate state xβ . The matrix can be factored into

Hβ = OβRβ =


Cβ

Ck+1Aβ
Ck+2Ak+1Aβ

...

 [· · · AαAk−1Bk−2 AαBk−1 Bα
]

(4.65)

By factoring Oβ and Rβ using Equations 4.7 and 4.8 respectively we obtain

Hβ =

[
I
Ok+1

] [
Cβ
Aβ

] [
Aα Bα

] [Rk
I

]
(4.66)

Multiplying the inner of the three products results in the matrix[
Cβ
Aβ

] [
Aα Bα

]
=

[
CβAα CβBα
AβAα AβBα

]
(4.67)

With the Equation 4.64 we can equate this matrix to[
CβAα CβBα
AβAα AβBα

]
=

[
Ck[2] Dk[2,1]

Ak Bk[1]

]
. (4.68)

By computing the SVD we can now get the matrices[
Ck Dk[1,0]

Ak Bk

]
= UΣV > =

[
Cβ
Aβ

] [
Aα Bα

]
. (4.69)

48

4.5 Permutations

Based on this we get the missing matrices for the new stages.[
Cβ
Aβ

]
= UΣ1/2 (4.70)

and [
Aα Bα

]
= Σ1/2V >. (4.71)

If O>k+1Ok+1 = 1 and RkR>k = 1 the singular values calculated by the SVD are
also the singular values of Hβ .

Proof. The SVD of the Hankel matrix is

Hβ =

[
I
Ok+1

] [
Cβ
Aβ

] [
Aα Bα

] [Rk
I

]
(4.72)

=

[
I
Ok+1

]
U︸ ︷︷ ︸

Ũ

ΣV >
[
Rk

I

]
︸ ︷︷ ︸

Ṽ >

. (4.73)

with the property that

Ũ>Ũ =

[
I
Ok+1

] [
I
O>k+1

]
=

[
I

I

]
= I (4.74)

and

Ṽ >Ṽ =

[
Rk

I

] [
R>k

I

]
=

[
I

I

]
= I (4.75)

To run efficiently, the algorithm requires a way to store the system in such a way
that we can easily compute the different normal forms. For this we store the singular
values separately form the reduced matrices Ã, B̃ and C̃.

If we have a balanced system Σ[A,B,C,D] the matrices Ã, B̃, C̃ and D̃ are con-
structed such that

Ak = Σ
1/2
k+1ÃkΣ

1/2
k Bk = Σ

1/2
k+1B̃k (4.76a)

Ck = C̃kΣ
1/2
k D = D̃. (4.76b)

As Σk is a diagonal matrix we only need to store the vector of the diagonal entries.
Also, products with Σk can be efficiently computed by scaling the columns if the
matrix is multiplied from the right or scaling the rows if the matrix is multiplied from
the left. Analogously the products with the inverses or the square roots can be
computed. Then the input normal system can be computed according to

Ăk = ÃkΣk B̆k = B̃k (4.77a)

C̆k = C̃kΣk D̆k = D. (4.77b)

49

4 Methods

Proof. We have to prove that R̆kR̆>k = I for all k. As the original system is balanced

we know that Rk = Σ
1/2
k V >k . The new reachability matrix is R̆ = Σ−1/2Rk = V >k .

As Vk is orthogonal, R̆kR̆>k = I .

Analogously the output normal system is

Ăk = Σk+1Ãk B̆k = Σk+1B̃k (4.78a)

C̆k = C̃k D̆k = D. (4.78b)

Proof. We have to prove that Ŏ>k+1Ŏk+1 = I for all k. As the original system

is balanced we know that Ok+1 = Uk+1Σ
1/2
k+1. The new observability matrix is

Ŏk+1 = Ok+1Σ
−1/2
k+1 = Uk+1. As Uk is orthogonal, Ŏ>k+1Ŏk+1 = I .

This makes it possible to transform the stage k such that R>kRk = I and
O>k+1Ok+1 = I are fulfilled at the same time. The matrices Ak, Bk, Ck and D
are

Ak = Σk+1ÃΣk Bk = Σk+1B̃ (4.79a)

Ck = C̃kΣk Dk = D̃. (4.79b)

To make it possible to later split the resulting stages, the Σs have to be removed
from the matrices after splitting the stage. In the case of C̃α and B̃β it also possible
to use the reduced matrices C̃k and B̃k directly.

The Algorithm takes the stage in the form described in Equation 4.76. Then the
SVD of the combined matrices are computed and the results are used to construct
the new stages α and β. These can then replace the stage k. These are again in the
form described in Equation 4.76. For this the algorithm also returns the intermediate
singular values Σβ . The pseudocode is given in Algorithm 8.

4.5.2 Matrix Segmentation

Every time we split up a stage, we have to determine which inputs and outputs of
the current stage correspond to the stage α and which one correspond to the stage
β. We want to do this in such a way that the rank of the Hankel matrices of the
causal and the anticausal systems are reduced. This is again nontrivial as we have
to solve a discrete optimization problem.

We need to group the rows and columns of the matrix

X =

 0 Fk Ek
Ck Dk Gk
Ak Bk 0

 . (4.80)

into two groups each.

50

4.5 Permutations

Input: Stage with Ãk, B̃k, C̃k and D̃k as well as Σk and Σk+1

index iin to split inputs
index iout to split outputs
Tolerance tol

Output: Stages α and β also intermediate Σβ

Ak ← Σk+1ÃkΣk . transform stage such that R>kRk = I and O>k+1Ok+1 = I

Bk ← Σk+1B̃k
Ck ← C̃kΣk

U, s, V > ← reducedSVD
([
C[iout:,:] D[iout:,:iin]

A B[:,:iin]

]
, ε = tol

)
Ãα ← V >[:,:dk]Σ

−1
k

B̃α ← V >[:,dk:]

C̃α ← C̃k[:iout,:]

D̃α ← D̃k[:iout,:iin]

Ãβ ← Σ−1
k+1U[end−dk+1+1:,:]

B̃β ← B̃k[:,iin:]

C̃β ← U[:end−dk+1,:]

D̃β ← D̃[iout:,iin:]

Σβ ← diag(s)

Algorithm 8: Split stage k into the stages α and β

When permuting the rows and columns of the Bk, Ck, Fk, Gk and Dk we obtain
the matrices B̃k, C̃k, B̃∗k , C̃∗k and D̃k. Then we can segment the resulting matrix
according to


x∗k−1

yk

xk+1

yk

x∗k−1

yk

xk+1

 =

0 F̃k Ek

C̃k D̃k G̃k

Ak B̃k 0B̃k

C̃k

F̃k

G̃kD̃k

Ak

Ek0 F̃k Ek

C̃k D̃k G̃k

Ak B̃k 0




H̃β

H̃∗α 
x∗k

uk

xk

uk

x∗k

uk

xk

 (4.81)

The input uk and the output yk are also permuted accordingly. This partitions
the input uk in the two sets uα and uβ . Analogously the output yk is partitioned
in the two sets yα and yβ . I denote all partitions that partition uk into two sets as

51

4 Methods

P(uk) and P(yk) for yk accordingly. Here H̃β and H̃∗α have the same singular
values as the Hankel matrices Hβ and H∗α. These singular values determine the
state dimensions dβ and d∗α. To efficiently represent a matrix, both state dimensions
should be minimal. Therefore we optimize the singular values of H̃β and H̃∗α in
some sense. The properties of the remaining parts of the matrix X are not relevant,
as they do not influence the state dimensions.

Ideally the algorithm directly optimizes the singular values. For this we need a way
to compute or approximate the singular values for different configurations. There are
some approaches to decrease the cost for low rank updates of SVD [6]. But these
still require a diagonalization step and are therefore too expensive to calculate the
singular values multiple times per iteration. Also, techniques for low rank optimiza-
tions described in [30] and [37] did not proof helpful for this discrete optimization
problem.

Therefore, I use two strategies to reduce the state dimensions. The first is re-
ducing the rank of H̃β and H̃∗α by minimizing the angle between the columns and
rows respectively. This can be used if the resulting matrix is low rank. In the case of
weight matrices all sub matrices usually have full rank. Therefore I use the second
strategy that reduces the squared sum of the singular values. This is equivalent to
minimizing the Frobenius norms of H̃β and H̃∗α. This does not promote low rank
solutions like the nuclear norm but is far easier to compute.

Rank reduction Reducing the rank of the Hankel matrices is equivalent to reduc-
ing the dimensions of the range of H . We could also reduce the range of H>. For
a matrix M ∈ Rm×n these are all equivalent as

rank(m) = dim(range(M)) = dim(range(M>)) (4.82)

This makes it possible to reduce the rank by partitioning the input uk such that

dim range(H̃β) + dim range(H̃∗α) (4.83)

is reduced. At the same time we have to partition the outputs yk such that

dim range(H̃>β) + dim range(˜H∗>α) (4.84)

is reduced. Both problems influence each other. As we want to reduce the dimen-
sion of the range we want to make sure that the angle between the columns of the
Hankel matrices are small. For this the function

χ(u, v) = 1− sin(^(u, v)) = 1− |u>v|
‖u‖2‖v‖2

. (4.85)

is used. If u and v are colinear χ(u, v) = 0.

52

4.5 Permutations

Proof. If u and v are colinear then u = αv. Therefore

χ(αv, v) = 1− |α||v>v|
|α|‖v‖2‖v‖2

= 1− |α|‖v‖
2
2

|α|‖v‖22
= 0 (4.86)

if u and v are orthogonal χ(u, v) = 1.

Proof. If u and v are orthogonal then u>v = 0. Therefore

χ(u, v) = 1− 0

‖u‖2‖v‖2
= 1 (4.87)

This gives the objective function

fcol =
∑

u,v collumns of H̃β

χ(u, v) +
∑

u,v collumns of H̃∗α

χ(u, v). (4.88)

An analogous derivation results in the objective function for the rows

frow =
∑

u,v rows of H̃β

χ(u, v) +
∑

u,v rows of H̃∗α

χ(u, v). (4.89)

This results in the two coupled optimization problems

arg min
(uα,uβ)∈P(uk)

fcol + γ

(
len(uα)

len(uk)
− 0.5

)2

(4.90)

and

arg min
(yα,yβ)∈P(yk)

frow + γ

(
len(yα)

len(yk)
− 0.5

)2

. (4.91)

These include regularization terms depending on the length of the inputs and out-
puts to make sure that the groups are of similar size. To solve this optimization
problem, I use an iterative algorithm. At every iteration, the algorithm computes for
every input in uα how much the objective function fcol would change if we would
move the input to uβ . The input with the smallest value is moved to uβ , if it is nega-
tive. Analogously the same is done for the inputs in uβ . If there is neither a negative
value for uα nor a negative value for uβ , the inputs with the smallest values are
exchanged. Simultaneously the same is done with the outputs with the objective
function frow.

53

4 Methods

The initial partition of uk is obtained using spectral clustering. For this the columns
of X are represented by nodes connected by weighted edges. The weight between
the columns ci and cj is

wi,j =

{
|c>i cj | if i 6= j

0 if i = j
(4.92)

The spectral clustering is done with a normalized Laplacian as described in [19].
The resulting segmentation also includes additional columns that do not correspond
to inputs, and are therefore already fixed. If more than halve of these columns have
been grouped incorrectly, the segmentation is flipped.

Analogously the initial partition of yk is computed.

Frobenius norm reduction Next, we consider the case where the Hankel matri-
ces have close to full rank. Here balanced truncation is used to approximate the
system. To reduce the number of states of the approximated system, the number
of singular values greater than some threshold have to be reduced. To achieve this,
I reduce the sum of the squared singular values. This is equivalent to the squared
frobenius norm as ‖H‖2F =

∑
σ2
i . Because ‖H‖2F =

∑m
i=1

∑n
j=1 h

2
ij this results

in the problem of partitioning the inputs and outputs such that the sum over the
squared entries of H̃β and H̃∗α is reduced. As ‖H‖2F ≈ size(H) for the weight ma-
trices tested, this would be equivalent to minimizing the size ofHβ andH∗α. To avoid
the trivial solution, where uα and yα or uβ and yβ are empty a regularization term γ
is added.

This results in the discrete optimization problems

(uα, uβ), (yα, yβ) = arg min
(uα,uβ)∈P(uk)
(yα,yβ)∈P(yk)

‖H̃β‖2F + ‖H̃∗α‖2F + γ (4.93)

Here I use the regularization term

γ = γr
len(uk) + len(yk)

2

[(
len(uα)

len(uk)
− 0.5

)2

+

(
len(yα)

len(yk)
− 0.5

)2
]

(4.94)

To solve this optimization problem, I use the same iterative algorithm as used for the
rank reduction. At every iteration the algorithm computes for every input in uα how
much the objective function would change if we would move the input to uβ . The
input with the smallest value is moved to uβ , if it is negative. Analogously the same
is done for the inputs in uβ . If no value is negative for both sets, the inputs with
the smallest values are flipped. The same is done with the outputs. The algorithm
terminates as soon as the algorithm detects an loop.

For larger matrices multiple inputs and outputs can be flipped at every iteration
to speed up the algorithm. To additionally speed up the algorithm a matrix W is

54

4.5 Permutations

computed, containing the matrix D◦2k with the squared entries of Dk. Here the
notation �◦2 denotes the Hadamard power. Using this approach, the squares of the
entries only have to be computed once. Additionally, the size of the matrix W can
be reduced by replacing the matrices Ak and Ek with their Frobeniusnorms ak and
ek. The matrices Bk and F ∗k are replaced by their column-wise vector-2-norm b>k
and f>k . The matrices Ck and Gk are replaced by their row wise vector-2-norm ck
and gk. This results in the matrix

W =

 0 f>k ek
ck D◦2k gk
ak b>k 0

 . (4.95)

The size of the matrix is W is independent of the state dimensions. This technique
makes it possible to apply the strategy to large matrices.

55

5 Experiments

In this section, I test how the algorithms presented in Chapter 4 behave for different
matrices. To demonstrate the behavior for structured matrices I use random Hankel
matrices. After this I test the algorithms on weight matrices form the Mobilenet V2
model [41] and the AlexNet model [26] as available through the torchvision package
[32]. When approximating the weight matrices, the goal is to reduce the number
of floating-point operations. The number of floating-point operations is described in
Section 4.2. At the same time the approximation error should stay small. To measure
the approximation error, I use the spectral norm of the difference between the matrix
M and the approximated matrix T̃

The code to reproduce the experiments is available on Github1. The code uses
the tvsclib library [24] to handle the time varying systems.

5.1 Segmentation Adaption

In this section the approach described in Section 4.4 is tested. Here an initial system
with constant input and output dimensions is created before adapting the segmen-
tation using Algorithm 7.

5.1.1 Illustrative Example

First, I demonstrate the algorithm for a sequentially semiseparable matrix T . All
Hankel matrices of T are rank one. The matrix is generated from random orthogonal
vectors such that the range of C, D and G are orthogonal to each other. Also,
the range of B>, D> and G> are orthogonal. The properties of the matrix T are
explained in more detail in Appendix C.

I represent the matrix with a time varying system without using the knowledge
about the input and output dimensions. For this, I create a system with constant
input and output dimensions. This system is illustrated in Figure 5.1a. Then the
segmentation is adapted using Algorithm 7. As an objective function, I used the
normalized nuclear norm as described in Equation 4.58. This results in the system
illustrated in Figure 5.1b. We can see that the algorithm can recover the original
segmentation.

1The code to reproduce the plots as well as supplementary code can be found under
https://github.com/snuesslein/Matrixapprox_reproducibility

57

https://github.com/snuesslein/Matrixapprox_reproducibility

5 Experiments

18 9 15 6
6

15

9

18

18 9 15 6
6

15

9

18

(a) Initial system (b) Optimized system

Figure 5.1: Illustration of the initial system and the optimized system. The lines mark the
segmentation of the systems. The Dk-matrices are shaded in gray. The ticks show the
segmentation of the matrix T . We can see that the segmentation of the optimized systems
coincides with the segmentation of T .

2.55.58.511.514.517.520.523.526.529.532.535.538.541.544.5

2.5
5.5
8.5

11.5
14.5
17.5
20.5
23.5
26.5
29.5
32.5
35.5
38.5
41.5
44.5

1
2
3
41 2 3 4

1 2 3 4
Iteration

Iteration

(a) Illustration of all possible
search paths (b) Illustration of the change of the segmentation

Figure 5.2: Illustration of the change of the segmentation. The blue lines mark how the
boundaries change as the algorithm adapts the segmentation.

When the algorithm adapts the segmentation, it tests different segmentations and
uses the one with the lowest objective function. This is done in every iteration. The
search distance li determines which movements of boundaries are tested at every

58

5.1 Segmentation Adaption

iteration. In the first iterations a larger li is used. For the later iterations the li are
smaller. I used l = [4, 2, 1, 1] as search distances for this example. The plot in
Figure 5.2a shows all the positions that are possible at every iteration. We can see
that in the first iterations the possible changes are larger and decrease for further
iterations. We can also observe that it is possible to reach the same segmentation
using different paths. The algorithm also makes sure, that the boundaries do not
cross. Therefore, some paths are not possible as these would require crossing
another boundary. In Figure 5.2a these are drawn with dotted lines. Figure 5.2b
shows how the segmentation is changing between the iterations.

5.1.2 Weight Matrix Approximation

Now the algorithm is tested for weight matrices form two pretrained neural networks.

Mobilenet V2 First a weight matrix M from the Mobilenet V2 model is used. The
size of the matrix is 1000× 1280. I set the number of stages toK = 10 based on the
approximations done in Section 4.3. In Section 4.3 the input and output dimensions
are presumed to be constant. Because this is not the case for the tested matrix, I
also tested other Ks. As the objective function I use the number of multiplications
as defined in Equation 4.59. I chose ε = 1

4‖M‖H as the threshold value for which
the segmentation is optimized. The value of ‖M‖H is calculated using the initial
segmentation. I use the search sequence l = [30, 20, 14, 9, 6, 4, 3, 2, 2, 1]. This
search sequence also starts with larger search distances that decrease over time.

(a) K = 5 fFLOP = 561549 (b) K = 10 fFLOP = 480573 (c) K = 17 fFLOP = 494119

Figure 5.3: Matrix segmentation for different numbers of stages. The areas shaded in gray
represent the Dk-matrices. For higher numbers of stages the portion represented by the
Dk-Matrices gets lower.

The results for K = 5, K = 10 and K = 17 are illustrated in Figure 5.3. The
different numbers of stages result in different numbers of multiplications. For K =
10 I get the lowest number of multiplications.

59

5 Experiments

Iteration

.

1 3 5 7 9
Iteration

4.8

4.9

5.0

5.1

f F
LO

P
(Σ
)

×105

1
3
5
7
91 3 5 7 9

Figure 5.4: Illustration of the change of the segmentation for the weight matrix from Mo-
bilenet V2 model.

0 1000000 2000000 3000000
Number of multiplications

0

2

4

6

8

10

‖"
−)̃
‖

& = 0

& = ‖"‖�

& = 1
4 ‖"‖�

Initial segmentation
Adapted segmentation

Figure 5.5: Plot of the approximation error with respect to the number of multiplications for
different ε. The black line indicates the number of multiplications for the regular matrix-vector
product.

The change of the segmentation for K = 10 is illustrated in Figure 5.4. We can
see that the number of operations decreases, as the algorithm runs, as plotted on
the right of Figure 5.4. Note that some input and output dimensions vanish. In
Figure 5.4 this manifests itself as two bounds converging to the same point. This
also leads to the effect that only a small part of the matrix is represented with the
Dk-matrices.

The resulting system requires more multiplications to compute y = Tu as re-

60

5.1 Segmentation Adaption

quired for a regular matrix-vector multiplication. Therefore, the system complexity
is reduced using balanced truncation as described in Section 4.1. This is done for
evenly spaced approximation parameters ε in the range form 0 to ‖M‖H . For every
ε the number of multiplications and the approximation error ‖M − T̃‖ is computed
and plotted in Figure 5.5. The results for the original and the adapted segmentation
are shown. For the case ε = 1

4‖M‖H we can see that the number of multiplications
decreased by 6% as shown in Figure 5.4. The approximation error ‖M − T̃‖ did not
change due to the adaption of the segmentation.

The state dimensions of the initial and adapted systems are plotted in Figure 5.6.
One can see that while some state dimensions decreased others did not decrease
or even increased significantly. In total, the number of states decreased.

0

50

100

3

2 4 6 8
:

0

50

100

3∗

Initial
Σ = 1271

Adapted
Σ = 1161

Figure 5.6: Plot of the causal state dimensions dk and the anticausal state dimensions d∗k
before and after the adaptation of the segmentation for ε = 1

4‖M‖H

AlexNet Now a weight matrix M from the AlexNet model with the size
4096× 9216 is represented. For this matrix I use K = 15, based on the
approximation described in Section 4.3. As the matrix is wide, I use differ-
ent search distances for the inputs and outputs. For the output I use the
search distances l = [120, 86, 62, 44, 32, 23, 16, 12, 9, 6], and for the input I use
l = [270, 193, 138, 99, 71, 51, 36, 26, 19, 14]. Here the threshold value is again
ε = 1

4‖M‖H , based on the initial segmentation. To speed up the computation,
the system is approximated with balanced truncation before the segmentation is
adapted. This is done using the threshold εapr = 1

2ε. It is important to choose a
smaller ε for the approximation than for the adaptation.

Subsequently I adapt the segmentation using Algorithm 7. The systems are again
approximated using balanced truncation. After moving the bounds the number of
multiplications for ε = 1

4‖M‖H is reduced by 37%. As the adaptation of the segmen-

61

5 Experiments

Iteration

.

1 3 5 7 9
Iteration

4

5

6

f F
LO

P
(Σ
)

×106

1
3
5
7
91 3 5 7 9

Figure 5.7: Illustration of the change of the segmentation for the weight matrix from AlexNet
model.

tation was not performed on the full system, but only on an approximated system,
adaptation errors can be amplified. We can see in Figure 5.7 that the approxima-

0.00 0.25 0.50 0.75 1.00 1.25
Number of multiplications ×108

0

2

4

‖"
−)̃
‖

& = 0

& = ‖"‖�

& = 1
4 ‖"‖�

Initial segmentation
Adapted segmentation
Recomputed system

Figure 5.8: Plot of the approximation error with respect to the number of multiplications for
different ε. The black line indicates the number of multiplications for the regular matrix-vector
product.

tion error actually increased after applying the Algorithm 7. We can also observe
that the approximation error for the adapted system does not vanish for the bal-
anced truncation with ε = 0 as the system is based on an already approximated
system. Therefore, a new system is computed. This system has the same input and
output dimensions as the adapted system but is directly calculated from the matrix
M . Subsequently this system is approximated using balanced truncation. The re-

62

5.2 Permutations

computed system with the new borders has the lowest approximation error. The
number of multiplications increases slightly for the recomputed system compared to
the adapted system. The number of multiplications is still 31% less compared with
the initial system for ε = 1

4‖M‖H. For smaller εs, the recomputed system behaves
similar to the initial system.

5.2 Permutations

In this section the algorithm described in Section 4.5 is tested. Here an initial system
with one stage is created. The stage is then split up into two stages. This process is
repeated until the final number of stages is reached. When the stages are split, the
inputs and outputs are partitioned such that an objective function is minimized. This
makes it possible to recover a permuted sequentially semiseparable matrix.

5.2.1 Illustrative Example

First the algorithm is tested on a random sequential semiseparable matrix T . The
Hankel matrices have rank 2. The matrix is generated as described in Appendix C.
The rows and columns of the matrix are then permuted with random permutations.
Algorithm 8 is used to identify the system and the permutations. The result is shown
in Figure 5.9. During the first iteration the algorithm splits the initial stage into two
stages. We can see how the algorithm partitions the inputs and outputs into two
groups and reorders them accordingly. After this, the stages are again split into
four stages total. In the second iteration the inputs and outputs of each stage are
grouped into two subgroups each and ordered accordingly. The algorithm is able to
recover the permutation.

5.2.2 Weight Matrix Approximation

The algorithm is tested on weight matrices. These have the property that the Hankel
matrices usually have close to full rank. As the algorithm to minimize the rank does
usually increase the computational cost in this case, the Frobenius norm of the
Hankel matrices is used as objective function.

Mobilenet V2 Next the algorithm is used to represent a weight matrix from the
Mobilenet V2 model. Here the inputs and outputs are partitioned such that the
Frobenius norm of the Hankel matrices is minimized. As the algorithm can only use
numbers of stages that are powers of 2, I useK = 23 = 8 as it is closest toK = 10.
The regularization parameter is set to γ = 9× 105. This makes sure that the inputs
and outputs are divided into two nearly equally sized parts. The resulting permuted
matrix is shown in Figure 5.10.

63

5 Experiments

0

1

0 1 2 .

Iteration

Figure 5.9: Illustration of the permuted sequentially matrix. The connections at the top and
the left illustrate how the original segmentation is recovered by permuting the input and
output. This is done in two iterations of the algorithm.

As a reference, a system without permutations is computed. The reference sys-
tem and the permuted system are approximated using balanced truncation. In Fig-
ure 5.11 we can see that permuting the matrix has only a minor impact on the num-
ber of operations and the approximation error. For ε = 1

4‖M‖H the reduction of the
computational cost due to the permutation is < 1%.

The state dimensions of the regular and permuted systems are plotted in Fig-
ure 5.12. One can see that while most state dimensions decreased others did in-
crease. In total, the number of states only decreased slightly. This means that the
algorithm is only partially successful in decreasing the number of states.

64

5.2 Permutations

Iteration

.

0

1

2

0 1 1 3 .

Figure 5.10: Illustration of permuted weight matrix from Mobilenet V2 model.

0.5 1.0 1.5 2.0 2.5 3.0
Number of multiplications ×106

0

2

4

6

8

10

‖"
−)̃
‖

& = 0

& = ‖"‖�

& = 1
4 ‖"‖�

Regular system
Permuted system

Figure 5.11: Plot of the approximation error with respect to the number of multiplications for
different ε. The black line indicates the number of multiplications for the regular matrix-vector
product.

65

5 Experiments

0

50

100

3

2 4 6
:

0

50

100

3∗
Regular
Σ = 1025

Permuted
Σ = 998

Figure 5.12: Plot of the causal state dimensions dk and the anticausal state dimensions d∗k
for the regular and permuted system for ε = 1

4‖M‖H

Alexnet The algorithm returns similar results for the weight matrix from the
AlexNet model. For this the K = 24 = 16 was used and γ = 6 × 103. The
number of flops is reduced by 3% if the system is approximated with ε = 1

4‖M‖H.

66

6 Discussion

This thesis presented two algorithms which were able to recover the structure of
simple test matrices based on random sequentially semiseparable matrices. When
applied to the tested weight matrices, they were not able to identify a potential struc-
ture.

Regardless, optimizing the segmentation for the computational cost did lead to a
noticeable reduction of the computational cost of the approximated system as seen
in Section 5.1.1. The total number of state dimensions decreased, even if some
state dimensions got larger. This reduction of the computational cost is possible
without a significant worsening of the approximation error. As the algorithm can
also run on a pre-approximated system, the segmentation of relatively large matri-
ces like the Alexnet weight matrix can be computed on a standard computer. The
algorithm requires that the approximation parameter for the balanced truncation is
known in advance. There is no straightforward relation to determine an approxima-
tion parameter that leads to a predetermined computational cost. If the system is
not pre-approximated, the adaptation also led to improvements if a different approxi-
mation parameter was used for the balanced truncation. The number of stages must
also be determined in advance. The experiments demonstrate that the approxima-
tions derived in Section 4.3 can be used to choose a suitable number of stages. One
notable observation is that the size of theDk-matrices decrease. In some cases, the
inputs or outputs of stages are zero-dimensional. It might be interesting to explore
time varying systems that do not requireDk-matrices. Alternatively, theDk could be
represented using other matrix approximations like low rank approximations, which
might further reduce the computational cost.

The second approach based on recursive splitting, tested in Section 5.2, did not
return promising results. The algorithm can successfully reduce the Frobenius norm
of the Hankel matrices. But this reduction of the sum of the squared singular values
of the Hankel matrices did only lead to a very small reduction of the computational
cost, as the number of states only decreased slightly.

The results suggest that the potential for decreasing the computational cost by
reducing the number of states is limited. Focusing directly on the computational
cost seems to be a better approach.

I was not able to identify sequentially semiseparable structures in the weight ma-
trices using a simple adaptation of the segmentation. This is not surprising, as this
would require that the Hankel matrices of the weight matrices are of low rank; a con-
dition that did not show up in any experiment. It might be possible to find structures

67

6 Discussion

when allowing permutations as this has more degrees of freedom. Unfortunately,
the splitting algorithm based on the minimization of the Frobenius norm was not
able to do this. Here an optimization based on the nuclear norm, that promotes low
rank solutions might be preferable, even if this would require some improvements to
make the optimization problem computationally viable.

The fact that the Hankel matrices of the weight matrices do not have a low rank is
not surprising considering other research. Research by Martin and Mahoney sug-
gests that well trained weight matrices usually have full rank [33]. This might be
explained with information theory as discussed by Papyan in [35]. The full rank
property is no problem in general, as sequentially semiseparable matrices can have
full rank, even if the Hankel matrices have a low rank1. I was not able to find state-
ments if these results also hold for submatrices. Even if similar results hold true
for submatrices, approximations using time varying systems might be still beneficial,
if most singular values are sufficiently small. In this case the approximation error
would be small, even if many nonzero singular values would have to be removed by
applying balanced truncation.

1For a trivial example consider the identity matrix as a sequentially semiseparable matrix with full
rank

68

7 Conclusion

The goal of this thesis was to develop and test algorithms that can be used to ap-
proximate matrices using time varying systems.

I developed multiple algorithms to transform time varying systems. These are
also useful for other applications involving time varying systems. An important re-
sult are the techniques to obtain the singular values of the Hankel matrices with-
out explicitly computing the Hankel matrices. The singular values are important as
they are needed to approximate a system with balanced truncation. This allows
an efficient approximation of arbitrary systems similar to the technique described
by Chandrasekaran et al. [7]. If a system has to be reduced to a minimal system
using floating-point arithmetic, then this algorithm makes it possible to do this in a
well-defined fashion by truncating the small singular values. Also an error bound
was derived for the approximation of matrices with balanced truncation. The error
bound is similar to existing error bounds, but allows a tighter bound if a mixed sys-
tem is approximated. Additionally, the error bound makes it possible to bound the
error measured with the Frobenius norm. The Algorithm to split stages described
by Chandrasekaran et al. in [7] was extended such that it can compute the cor-
responding singular values of the Hankel matrices. This makes it possible to use
the algorithm to identify and later refine systems and obtain the singular values on
the fly. Furthermore, algorithms to change the input and output dimensions are de-
vised. Such algorithms are required if systems with incompatible dimensions have
to be added or multiplied. The work on this thesis also led to improvements in the
tvsclib library [24].

To devise the number of stages, the computational cost for computing the matrix-
vector product with a time varying system was estimated. Using this estimation, it is
possible to choose the number of stages for approximations. This estimation might
also serve as a baseline for the determination of structural parameters that must
be chosen for the reduction of computational cost. These are not only required if
an existing matrix is approximated but can also be used as a baseline if a neural
network based on time varying systems is trained from scratch.

These results were combined with optimization problems to approximate weight
matrices from neural networks. The algorithm to adapt the segmentation of the ma-
trix is able to reduce the computational cost of the system, even if no clear structure
is identified. The second approach based on splitting the stages did only yield mi-
nor improvements. Some ideas used for the splitting might be interesting for other
matrix structures, especially in the case of H-matrices. These also rely on recur-

69

7 Conclusion

sively splitting the matrix into submatrices. When weight matrices are approximated
withH-matrices, this requires nonstandard admissibility conditions to determine if a
matrix can be represented using a low rank approximation.

The techniques to change the segmentation can be used without increasing the
approximation error measured in the spectral norm. In this thesis, I did not test how
this influences the total accuracy of the neural network. The approximation error
does give an indication but does not fully describe the behavior. Future research is
needed to determine how the approximation and the changing of the segmentation
influences the accuracy of the neural network.

70

A Matrix Approximation Error Bounds

In this chapter a proof for Equation 4.23

‖T − T̂‖ ≤
K∑
i=1

‖T − T̂ (k)‖. (A.1)

and for Equation 4.23

‖T − T̂‖F ≤
K∑
i=1

‖T − T̂ (k)‖F (A.2)

is given. To prove the bound we decompose the change due to the balanced trun-
cation into

T − T̂ =

[
∆∗0

∆̆1

]
+

[
∆̆∗1

∆̆2

]
+ · · ·+

[
∆̆∗K−1

∆K

]
. (A.3)

The matrix ∆k denotes the difference caused by the balanced truncation of the state
k on the original system

∆k = OkRk − ÔkR̂k = Ok[2]Rk[2] (A.4)

and the matrix ∆̆k denotes the difference caused by a balanced truncation of the
state k if the later stages have already been truncated using balanced truncation.
For the causal system this can be expressed as

∆̃k =

[
Ck

Ôk+1

[
Ak+1[11] Ak+1[12]

]]Rk−[Ck
Ôk+1Ak+1[11]

]
Rk[1] =

[
Ck[2]

Ôk+1Ak+1[12]

]
Rk[2]

Here the matrix Ôk+1 denotes the observability matrix of the approximated system

Ôk+1 =


Ĉk+1

Ĉk+2Âk+1

...

ĈKÂK−1 . . . Âk+1

 =


Ck+1[1]

Ck+2[1]Ak+1[11]
...

CK[1]AK−1[11] . . . Ak+1[11]

 (A.5)

Using the triangle inequality we obtain the relation

‖T − T̂‖ ≤

∥∥∥∥∥
[

∆∗0
∆̆1

] ∥∥∥∥∥+

∥∥∥∥∥
[

∆̆∗1
∆̆2

] ∥∥∥∥∥+ · · ·+

∥∥∥∥∥
[

∆̆K−1

∆K

] ∥∥∥∥∥. (A.6)

71

A Matrix Approximation Error Bounds

Spectral Norm The idea is to prove that ‖∆k‖ is equal or larger than the actual
introduced difference ‖∆̆k‖. Using the derivation from Equation 4.20 we can then
bound ∥∥∥∥∥

[
∆̆∗k−1

∆̆k

] ∥∥∥∥∥ ≤ max
(
‖∆̆k‖, ‖∆̆∗k−1‖

)
(A.7)

To prove ‖∆̆k‖ ≤ ‖∆k‖ it is sufficient to prove

‖∆̆ku‖2 ≤ ‖∆ku‖2 (A.8)

for any vector u.

Proof. For this we use the definition of the spectral norm

‖∆̆k‖ = max
‖u‖2=1

(‖∆̆ku‖2) ≤ max
‖u‖2=1

(‖∆ku‖2) = ‖∆k‖ (A.9)

For the causal case we start with the equation

‖∆ku‖22 = ‖Ok[2]]Rk[2]u‖22 (A.10)

By inserting the definitions form Equation 3.23a and using the factorization from
Equation 4.7 we obtain ∥∥∥∥∥

[
I
OK+1

] Ck[2][
Ak[12]

Ak[22]

]Rk[2]u

∥∥∥∥∥
2

2

(A.11)

Now we use balanced truncation of the state xk+1. This analogously splits up the
observability matrix Ok+1 according to

Ok+1 =
[
Ok+1[1] Ok+1[2]

]
. (A.12)

Using this, ‖∆ku‖22 can be expressed as∥∥∥∥∥
[

Ck[2]

Ok+1[1]Ak[12] +Ok+1[2]Ak[22]

]
Rk[2]u

∥∥∥∥∥
2

2

. (A.13)

Using the properties of the balanced realization the norm can be split up in the sum∥∥∥ [Ck[2]

Ok+1[1]Ak[12]

]
Rk[2]u

∥∥∥2

2
+
∥∥∥Ok+1[2]Ak[22]Rk[2]u

∥∥∥2

2
. (A.14)

72

Proof. The Norm can be expressed as the inner product∥∥∥∥∥
[
I
OK+1

] Ck[2][
Ak[12]

Ak[22]

]Rk[2]u

∥∥∥∥∥
2

2

(A.15)

= u>R>k[2]

[
C>k[2]

[
A>k[12] A>k[22]

]] [I
O>K+1

] [
I
OK+1

] Ck[2][
Ak[12]

Ak[22]

]Rk[2]u.

using the fact that the system is balanced and therefore O>k+1Ok+1 = Σk+1

u>R>k[2]

[
C>k[2]

[
A>k[12] A>k[22]

]] [I
ΣK+1

] Ck[2][
Ak[12]

Ak[22]

]Rk[2]u (A.16)

By splitting Σk+1 with the appropriate dimensions such that Σk+1 =
diag(Σk+1[1],Σk+1[2]) we can rewrite the expression as

u>R>k[2]

[
C>k[2] A>k[12] A>k[22]

]I ΣK+1[1]

ΣK+1[2]

Ck[2]

Ak[12]

Ak[22]

Rk[2]u.

(A.17)
This allows us to regroup the expression as the sum

= u>R>k[2]

[
C>k[2] A>k[12]

] [I
ΣK+1[1]

] [
Ck[2]

Ak[12]

]
Rk[2]u (A.18)

+ u>R>k[2]A
>
k[22]ΣK+1[2]Ak[22]Rk[2]u. (A.19)

It is also possible to prove this using the fact that range(Ok+1[1]) ⊥ range(Ok+1[2])

and then employing (u+ v)>(u+ v) = u>u+ v>v for u ⊥ v

Now we again use Equation 4.7 to rewrite the first summand as

∥∥∥ [Ck[2]

Ok+1[1]Ak[12]

]
Rk[2]u

∥∥∥2

2
=
∥∥∥
I I

Ok+2




Ck[2]

Ck+1[1]Ak[12][
Ak+1[11]

Ak+1[21]

]
Ak[12]

Rk[2]u
∥∥∥2

2

73

A Matrix Approximation Error Bounds

Analogously we can again split the norm into the sum

=

∥∥∥∥∥
I I

Ok+2




Ck[2]

Ck+1[1]Ak[12][
Ak+2[11]

Ak+2[21]

]
Ak[12]

Rk[2]u

∥∥∥∥∥
2

2

(A.20)

=

∥∥∥∥∥
 Ck[2]

Ck+1[1]Ak[12]

Ok+2[1]Ak+2[11]Ak[12] +Ok+2[2]Ak+2[21]Ak[12]

Rk[2]u

∥∥∥∥∥
2

2

(A.21)

=

∥∥∥∥∥
 Ck[2]

Ck+1[1]Ak[12]

Ok+2[1]Ak+2[11]Ak[12]+

Rk[2]u

∥∥∥∥∥
2

2

+
∥∥∥Ok+2[2]Ak+2[21]Ak[12]Rk[2]u

∥∥∥2

2

(A.22)

This can be repeated until we reach the final state K. The remaining term is

∥∥∥∥∥


Ck[2]

Ck+1[1]Ak[12]

Ck+2[1]Ak+1[11]Ak[12]
...

CK[1]AK−1[11] · · ·Ak+1[11]Ak[12]

Rk[2]u

∥∥∥∥∥
2

2

. (A.23)

The remaining term can be identified as∥∥∥∥∥
[

Ck[2]

Ôk+1Ak[12]

]
Rk[2]u

∥∥∥∥∥
2

2

=
∥∥∥∆̆ku

∥∥∥2

2
. (A.24)

This allows us to decompose ‖∆ku‖22 into the sum

‖∆ku‖22 = ‖∆̆ku‖22+· · ·+
∥∥∥Ok+2[2]Ak+2[21]Ak[12]Rk[2]u

∥∥∥2

2
+
∥∥∥Ok+1[2]Ak[22]Rk[2]u

∥∥∥2

2

By reordering and using the fact that the squared norms are larger or equal than 0
we obtain the relation

‖∆̆ku‖2 ≤ ‖∆ku‖2. (A.25)

This proves the relation form Equation A.8 for the causal matrices. The anticausal
case can be proven by transposing the matrix. In this case the state 1 is approxi-
mated first as indicated in Equation A.3. The details are left as an exercise to the
examiner.

74

Frobenius Norm Using Equation A.8 it is also straightforward to prove the relation
for the Frobenius norm as

‖M‖2F = trace(M>M) =

N∑
i=1

e>i M
>Mei =

N∑
i=1

‖Mei‖22 (A.26)

where ei is the i-th standard basis vector. The relation ‖∆̆kei‖22 ≤ ‖∆kei‖22 follows
form Equation A.25 and implies that

‖∆̆k‖F ≤ ‖∆k‖F (A.27)

Therefore

‖T−T̂‖F ≤

∥∥∥∥∥
[

∆∗0
∆̆1

] ∥∥∥∥∥
F

+

∥∥∥∥∥
[

∆̆∗1
∆̆2

] ∥∥∥∥∥
F

+· · ·+

∥∥∥∥∥
[

∆̆K−1

∆K

] ∥∥∥∥∥
F

. (A.28)

75

B Algorithms to Move Bounds Up or
Down

In this Appendix the complemaentary algorithms to the algorithms stated in Subse-
cion 4.4.1 are described.

uk

Ak

Bk

yk

uk+1 yk+1

xk

xk+1

xk+2

yOd
c>

uk
Ãk

B̃k

ỹk

uk+1 ỹk+1

xk

x̃k+1

xk+2

yO

c>Bk

c>Ak

(a) Original system (b) Moved system

Figure B.1: Illustration of a system where a boundary is moved down

Move Down A similar to Algorithm 3 can be used to move the k-th horizontal a
boundary down. That means moving the first output yO from yk+1 to yk. The altered
connections are drawn in color in Figure B.1.

The vector c> is the first row of Ck+1 and describes the connection from xk to yO.
This vector is removed from Ck+1. We also remove the first row from Dk+1. The
dotted connection from uk+1 to the output yO is no longer possible and therefore we
have to drop it. Now we attach the output yO to the output vector yk. For this the
vector c>Bk is added as last row to Dk and the vector c>Ak is added as last row to
Ck.

The mapping from the state xk to the combined outputs [y>k y
>
k+1]> remains un-

changed. This means that the previous states are still observable and therefore

77

B Algorithms to Move Bounds Up or Down

Input: System Σ[A,B,C,D], Index k, Tolerance tol
Output: System Σ[A,B,C,D] with changed output dimensions
c> ← Ck+1[1,:]

Dk+1 ← Dk+1[2:,]

Ck+1 ← Ck+1[2:,:]

Dk ←
[
Dk

c>Bk

]
Ck ←

[
Ck
c>Ak

]
U, σ, V > ← SVD

([
Ak+1

Ck+1

]
, econ = True

)
if σ[end] < tol then

U ← U[:,:end−1]; σ ← σ[:end−1]; V ← V[:,:end−1][
Ak+1

Ck+1

]
← U diag(σ)

Ak ← V >Ak
Ck ← V >Ck

end if

Algorithm 9: Move boundary between yk and yk+1 down

minimal. As the algorithm removes a row from Ok+1 it might happen that the state
xk+1 is no longer observable. This is the case if the kernel of Ok+1 is not the zero
subspace. We can check this with the SVD of [A>k+1, C̆

>
k+1]>. If the last singular

value is equal to zero one state dimension has to be removed. This is done by using
a state transformation based on the reduced SVD. Again the inverse does not need
to be calculated as it is implicitly calculated by the SVD. An algorithm to move the
state is given in Algorithm 9.

Move Up A similar algorithm to Algorithm 4 makes it possible to move the the k-th
horizontal boundary up. When moving the boundary up the output yO is removed
from the output yk and attached to the output vector yk+1. Here the output yO is
constructed in the stage k and appended to the state xk+1. First, the last row of
Dk is removed and stored in d> and analogously the last row of Ck is removed
and stored in c>. The vector c> is appended to the matrix Ak and the vector d> is
attached to Bk. Now we route the new statedimension to the new output. This can
be done by setting

C̆k+1 =

[
0 1

Ck+1 0

]
. (B.1)

78

uk yk

uk+1 yk+1

xk

xk+1

xk+2

yO

d>

c>

ũk

Ãk
yk

ũk+1 yk+1

xk

x̃k+1

xk+2

yO
dnew

(a) Original system (b) Moved system

Figure B.2: Illustration of a system where a boundary is moved up

This is illustrated in Figure B.2. The mapping from the state xk to the combined
outputs [y>k y

>
k+1]> remains unchanged. Therefore the previous states are still ob-

servable and minimal.
The algorithm changes the observability matrix Õk+1 and reachability matrix
R̃k+1 of the state xk+1. The state xk+1 is still observable as the added state di-
mension is directly connected to the output yO. The algorithm adds a new row to the
reachability matrix

R̃k+1 =

[
Ak Bk
c> d>

] [
Rk 0
0 I

]
. (B.2)

If this new row is part of the co-range of Rk+1, then the system is no longer reach-
able. In this case no additional state is needed. Using a similar derivation as for the
previous move we can check this using the SVD of [Ak+1 Bk+1]>. If no new state
is needed, then we can simply attach the vector

m = pinv
([
A>k+1

B>k+1

])[
c
d

]
(B.3)

to the matrix Ck+1.
The pseudocode can be found in Algorithm 10.

79

B Algorithms to Move Bounds Up or Down

Input: System Σ[A,B,C,D], Index k, Tolerance tolr
Output: System Σ[A,B,C,D] with changed output dimensions
c> ← Ck[end,:]

d> ← Dk[end,:]
Ck ← Ck[:end−1,:]

Dk ← Dk[:end−1,:]

U, σ, V > ← SVD
([
A>k+1

B>k+1

])
r ← count(σ > toli)

a← U>
[
c
d

]
if ‖a[r+1:]‖ > tol then . not in range

Ak ←
[
Ak
c>

]
Bk ←

[
Bk
d>

]
Ck+1 ←

[
0 1

Ck+1 0

]
Ak+1 ←

[
Ak+1 0

]
else

m← V[:,:r] diag(σ[:r])
−1a[:r]

Ck+1 ←
[
m>

Ck+1

]
end if

Dk ←
[
dnew

Dk

]
Algorithm 10: Move boundary between yk and yk+1 up

80

C Random Sequentially Semiseparable
Matrices

In this section the algorithm to construct the sequentially semiseparable matrices
used in Chapter 5 is explained. The matrices can be parameterized with the the input
dimensions mk, the output dimensions pk and the rank of the Hankel matrices. The
generated matrices have the property, that the range of C, D and G are orthogonal
to each other. Also the range of B>, D> and G> are orthogonal.

To archive the orthogonality, random orthogonal matrices form the Haar distribu-
tion are used. The matrices are generated by the algorithm described in [34], that
is available in SciPy [48]. Here we denote the group of orthogonal matrices with n
dimensions as O(n).

For every stage i ∈ 1, . . . ,K the matrices

Ũk = pkUk with Uk ∈ O(pk) (C.1)

Ṽk = mkVk with Vk ∈ O(mk) (C.2)

are generated. The matrices are scaled with pk and mk respectively to make sure
that

‖v‖2
len(v)

= 1 (C.3)

for all columns of Ṽk and Ũk. The random sequentially semipermeable matrix T with
Hankel matrices of rank d is constructed form the block matrices

T[i,j] =


Ũi[:,d]Ṽ

>
j[:,d] if i < j

Ũi[d+1,2d]Ṽ
>
j[d+1,2d] if i = j

Ũi[2d+1,3d]Ṽ
>
j[2d+1,3d] if i > j

(C.4)

These are then combined according to

T =


T[1,1] T[1,2] . . . T[1,k]

T[2,1] T[2,2] . . . T[2,k]
...

...
. . .

...
T[K,1] T[K,2] . . . T[K,K]

 (C.5)

81

Bibliography

[1] V. M. Adamjan, D. Z. Arov, and M. G. Kreı̆n. “Analytic properties of Schmidt
pairs for a Hankel operator and the generalized Schur-Takagi problem”. In:
Mathematics of the USSR-Sbornik 15(1) (Feb. 28, 1971). Publisher: IOP
Publishing, Translated by: J. C. Lennox. ISSN: 0025-5734. DOI: 10.1070/
SM1971v015n01ABEH001531.

[2] N. Ailon, O. Leibovitch, and V. Nair. “Sparse linear networks with a fixed but-
terfly structure: theory and practice”. In: Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence. Uncertainty in Artificial In-
telligence. ISSN: 2640-3498. PMLR, Dec. 1, 2021, pp. 1174–1184.

[3] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Advances
in Design and Control. Society for Industrial and Applied Mathematics, 2005.
ISBN: 978-0-89871-871-3. DOI: 10.1137/1.9780898718713.

[4] Z.-Z. Bai and J.-Y. Pan. Matrix Analysis and Computations. Other Titles
in Applied Mathematics. Philadelphia: Society for Industrial and Applied
Mathematics, Jan. 2021. ISBN: 978-1-61197-662-5. DOI: 10 . 1137 / 1 .
9781611976632.

[5] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. “What is the State of
Neural Network Pruning?” In: Proceedings of Machine Learning and Systems
2 (Mar. 15, 2020), pp. 129–146.

[6] M. Brand. “Fast low-rank modifications of the thin singular value decomposi-
tion”. In: Linear Algebra and its Applications. Special Issue on Large Scale
Linear and Nonlinear Eigenvalue Problems 415(1) (May 1, 2006), pp. 20–30.
ISSN: 0024-3795. DOI: 10.1016/j.laa.2005.07.021.

[7] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A. J. van der Veen,
and D. White. “Some Fast Algorithms for Sequentially Semiseparable Repre-
sentations”. In: SIAM Journal on Matrix Analysis and Applications 27(2) (Jan.
2005). Publisher: Society for Industrial and Applied Mathematics, pp. 341–
364. ISSN: 0895-4798. DOI: 10.1137/S0895479802405884.

[8] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. J. van der Veen.
“Fast Stable Solver for Sequentially Semi-separable Linear Systems of Equa-
tions”. In: High Performance Computing — HiPC 2002. Ed. by S. Sahni, V. K.
Prasanna, and U. Shukla. Berlin, Heidelberg: Springer, 2002, pp. 545–554.
ISBN: 978-3-540-36265-4. DOI: 10.1007/3-540-36265-7_51.

83

https://doi.org/10.1070/SM1971v015n01ABEH001531
https://doi.org/10.1070/SM1971v015n01ABEH001531
https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1137/1.9781611976632
https://doi.org/10.1137/1.9781611976632
https://doi.org/10.1016/j.laa.2005.07.021
https://doi.org/10.1137/S0895479802405884
https://doi.org/10.1007/3-540-36265-7_51

Bibliography

[9] T. Dao, N. Sohoni, A. Gu, M. Eichhorn, A. Blonder, M. Leszczynski, A. Rudra,
and C. Ré. “Kaleidoscope: An Efficient, Learnable Representation For All
Structured Linear Maps”. In: Eighth International Conference on Learning
Representations. Apr. 2020.

[10] T. Dettmers and L. Zettlemoyer. “Sparse Networks from Scratch: Faster Train-
ing without Losing Performance”. In: arXiv:1907.04840 [cs, stat] (Aug. 23,
2019). arXiv: 1907.04840.

[11] P. Dewilde and A.-J. van der Veen. Time-Varying Systems and Computations.
Jan. 1, 1998. ISBN: 978-0-7923-8189-1. DOI: 10.1007/978-1-4757-
2817-0.

[12] K. Diepold, P. Dewilde, and W. Bamberger. “Optic flow computation and time-
varying system theory”. In: MTNS 2004; Proceedings sixteenth international
symposium on mathematical theory of networks and systems (2004). Ed. by
B. de Moor and B. Motmans. Place: Leuven Publisher: Katholieke Universiteit
Leuven, pp. 1–7. ISSN: 90-5682-517-8.

[13] Y. Fan, L. Lin, L. Ying, and L. Zepeda-Núñez. “A Multiscale Neural Net-
work Based on Hierarchical Matrices”. In: Multiscale Modeling & Simulation
17(4) (Jan. 2019). Publisher: Society for Industrial and Applied Mathematics,
pp. 1189–1213. ISSN: 1540-3459. DOI: 10.1137/18M1203602.

[14] M. Fiedler and T. L. Markham. “Completing a matrix when certain entries of
its inverse are specified”. In: Linear Algebra and its Applications 74 (Feb. 1,
1986), pp. 225–237. ISSN: 0024-3795. DOI: 10.1016/0024-3795(86)
90125-4. URL: https://www.sciencedirect.com/science/
article/pii/0024379586901254 (visited on 06/27/2022).

[15] L. Grasedyck, W. Hackbusch, and S. L. Borne. “Adaptive Geometrically Bal-
anced Clustering of H-Matrices”. In: Computing 73(1) (July 1, 2004), pp. 1–
23. ISSN: 1436-5057. DOI: 10.1007/s00607-004-0068-0.

[16] L. Grasedyck. “Theorie und Anwendungen Hierarchischer Matrizen”. Ac-
cepted: 2001-07-20. Ph.D. thesis. Christian-Albrechts-Universität zu Kiel,
Aug. 27, 2001.

[17] W. Hackbusch. Hierarchische Matrizen: Algorithmen und Analysis. Ed. by
W. Hackbusch. Berlin, Heidelberg: Springer, 2009. ISBN: 978-3-642-00222-
9. DOI: 10.1007/978-3-642-00222-9.

[18] B. Hassibi, D. Stork, and G. Wolff. “Optimal Brain Surgeon and general net-
work pruning”. In: IEEE International Conference on Neural Networks. IEEE
International Conference on Neural Networks. Mar. 1993, 293–299 vol.1. DOI:
10.1109/ICNN.1993.298572.

84

https://arxiv.org/abs/1907.04840
https://doi.org/10.1007/978-1-4757-2817-0
https://doi.org/10.1007/978-1-4757-2817-0
https://doi.org/10.1137/18M1203602
https://doi.org/10.1016/0024-3795(86)90125-4
https://doi.org/10.1016/0024-3795(86)90125-4
https://www.sciencedirect.com/science/article/pii/0024379586901254
https://www.sciencedirect.com/science/article/pii/0024379586901254
https://doi.org/10.1007/s00607-004-0068-0
https://doi.org/10.1007/978-3-642-00222-9
https://doi.org/10.1109/ICNN.1993.298572

Bibliography

[19] D. J. Higham, G. Kalna, and M. Kibble. “Spectral clustering and its use in bioin-
formatics”. In: Journal of Computational and Applied Mathematics. Special is-
sue dedicated to Professor Shinnosuke Oharu on the occasion of his 65th
birthday 204(1) (July 1, 2007), pp. 25–37. ISSN: 0377-0427. DOI: 10.1016/
j.cam.2006.04.026.

[20] D. Hinrichsen and A. Pritchard. “An improved error estimate for reduced-order
models of discrete-time systems”. In: IEEE Transactions on Automatic Control
35(3) (1990), pp. 317–320.

[21] Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi. “Train-
ing CNNs with Low-Rank Filters for Efficient Image Classification”. In: Inter-
national Conference on Learning Representations. May 2, 2016. DOI: 10.
13140/RG.2.1.3727.8163.

[22] V. K. Ithapu. “Decoding the Deep: Exploring Class Hierarchies of Deep Repre-
sentations Using Multiresolution Matrix Factorization”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops.
2017, pp. 45–54.

[23] M. Jaderberg, A. Vedaldi, and A. Zisserman. “Speeding up Convolutional Neu-
ral Networks with Low Rank Expansions”. In: Proceedings of the British Ma-
chine Vision Conference. BMVA Press, 2014. DOI: 10.5244/C.28.88.

[24] M. Kissel, D. Stümke, and S. Nüßlein. Time Varying Systems and Compu-
tation (TVSC) Library. Apr. 14, 2022. URL: https : / / github . com /
MatthiasKi/tvsclib.

[25] D. E. Knuth. “Johann Faulhaber and sums of powers”. In: Mathematics of
Computation 61(203) (1993), pp. 277–294. ISSN: 0025-5718, 1088-6842. DOI:
10.1090/S0025-5718-1993-1197512-7.

[26] A. Krizhevsky. One weird trick for parallelizing convolutional neural net-
works. (arXiv:1404.5997). type: article. arXiv, Apr. 26, 2014. arXiv: 1404.
5997[cs].

[27] S. Lall and C. Beck. “Error-bounds for balanced model-reduction of linear
time-varying systems”. In: IEEE Transactions on Automatic Control 48(6)
(June 2003). Conference Name: IEEE Transactions on Automatic Control,
pp. 946–956. ISSN: 1558-2523. DOI: 10.1109/TAC.2003.812779.

[28] Y. Li, X. Cheng, and J. Lu. “Butterfly-Net: Optimal Function Representation
Based on Convolutional Neural Networks”. In: Communications in Compu-
tational Physics 28(5) (June 2020), pp. 1838–1885. ISSN: 1815-2406, 1991-
7120. DOI: 10.4208/cicp.OA-2020-0214.

85

https://doi.org/10.1016/j.cam.2006.04.026
https://doi.org/10.1016/j.cam.2006.04.026
https://doi.org/10.13140/RG.2.1.3727.8163
https://doi.org/10.13140/RG.2.1.3727.8163
https://doi.org/10.5244/C.28.88
https://github.com/MatthiasKi/tvsclib
https://github.com/MatthiasKi/tvsclib
https://doi.org/10.1090/S0025-5718-1993-1197512-7
https://arxiv.org/abs/1404.5997 [cs]
https://arxiv.org/abs/1404.5997 [cs]
https://doi.org/10.1109/TAC.2003.812779
https://doi.org/10.4208/cicp.OA-2020-0214

Bibliography

[29] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. “Butterfly Factorization”.
In: Multiscale Modeling & Simulation 13(2) (Jan. 2015). Publisher: Society
for Industrial and Applied Mathematics, pp. 714–732. ISSN: 1540-3459. DOI:
10.1137/15M1007173.

[30] Z. Liu and L. Vandenberghe. “Interior-Point Method for Nuclear Norm Approx-
imation with Application to System Identification”. In: SIAM Journal on Matrix
Analysis and Applications 31(3) (Jan. 2010). Publisher: Society for Industrial
and Applied Mathematics, pp. 1235–1256. ISSN: 0895-4798. DOI: 10.1137/
090755436.

[31] C. Louizos, M. Welling, and D. P. Kingma. “Learning Sparse Neural Networks
through L_0 Regularization”. In: International Conference on Learning Repre-
sentations. Feb. 15, 2018.

[32] S. Marcel and Y. Rodriguez. “Torchvision the machine-vision package of
torch”. In: Proceedings of the 18th ACM international conference on Multi-
media. MM ’10. New York, NY, USA: Association for Computing Machinery,
Oct. 25, 2010, pp. 1485–1488. ISBN: 978-1-60558-933-6. DOI: 10.1145/
1873951.1874254.

[33] C. H. Martin and M. W. Mahoney. “Implicit Self-Regularization in Deep Neural
Networks: Evidence from Random Matrix Theory and Implications for Learn-
ing”. In: Journal of Machine Learning Research 22(165) (2021), pp. 1–73.
URL: http://jmlr.org/papers/v22/20-410.html.

[34] F. Mezzadri. “How to generate random matrices from the classical compact
groups”. In: Notices of the American Mathematical Society 54(5) (May 2007),
pp. 592–604. ISSN: 0002-9920.

[35] V. Papyan. “Traces of Class/Cross-Class Structure Pervade Deep Learning
Spectra”. In: Journal of Machine Learning Research 21(252) (2020), pp. 1–
64. ISSN: 1533-7928. URL: http://jmlr.org/papers/v21/20-
933.html.

[36] D. S. Parker. Random Butterfly Transformations with Applications in Com-
putational Linear Algebra. 1995. URL: http://web.cs.ucla.edu/
~stott/ge/CSD-950023.pdf.

[37] B. Recht, M. Fazel, and P. A. Parrilo. “Guaranteed Minimum-Rank Solutions
of Linear Matrix Equations via Nuclear Norm Minimization”. In: SIAM Re-
view 52(3) (Jan. 2010), pp. 471–501. ISSN: 0036-1445, 1095-7200. DOI: 10.
1137/070697835.

[38] J. K. Rice. “Efficient Algorithms for Distributed Control: A Structured Matrix
Approach”. Ph.D. thesis. Technische Universiteit Delft, 2010. URL: https:
/ / repository . tudelft . nl / islandora / object / uuid %
3A50460cc9-2aba-4db5-b602-5373bb0bc609.

86

https://doi.org/10.1137/15M1007173
https://doi.org/10.1137/090755436
https://doi.org/10.1137/090755436
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
http://jmlr.org/papers/v22/20-410.html
http://jmlr.org/papers/v21/20-933.html
http://jmlr.org/papers/v21/20-933.html
http://web.cs.ucla.edu/~stott/ge/CSD-950023.pdf
http://web.cs.ucla.edu/~stott/ge/CSD-950023.pdf
https://doi.org/10.1137/070697835
https://doi.org/10.1137/070697835
https://repository.tudelft.nl/islandora/object/uuid%3A50460cc9-2aba-4db5-b602-5373bb0bc609
https://repository.tudelft.nl/islandora/object/uuid%3A50460cc9-2aba-4db5-b602-5373bb0bc609
https://repository.tudelft.nl/islandora/object/uuid%3A50460cc9-2aba-4db5-b602-5373bb0bc609

Bibliography

[39] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. “Learning Separable Filters”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2013, pp. 2754–2761.

[40] H. Sandberg and A. Rantzer. “Balanced truncation of linear time-varying sys-
tems”. In: IEEE Transactions on Automatic Control 49(2) (Feb. 2004). Con-
ference Name: IEEE Transactions on Automatic Control, pp. 217–229. ISSN:
1558-2523. DOI: 10.1109/TAC.2003.822862.

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. “MobileNetV2:
Inverted Residuals and Linear Bottlenecks”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). Mar. 21, 2019.

[42] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. “Green AI”. In: Com-
mun. ACM 63(12) (Nov. 2020), pp. 54–63. ISSN: 0001-0782. DOI: 10.1145/
3381831.

[43] S. Shokoohi and L. M. Silverman. “Identification and model reduction of time-
varying discrete-time systems”. In: Automatica 23(4) (July 1, 1987), pp. 509–
521. ISSN: 0005-1098. DOI: 10.1016/0005-1098(87)90080-X.

[44] G. Strang. Computational science and engineering. Wellesley, Ma.: Wellesley-
Cambridge Press, 2007. XI, 735 S. ISBN: 978-0-9614088-1-7.

[45] L. Tong, A.-J. van der Veen, P. Dewilde, and Y. Sung. “Blind decorrelating
RAKE receivers for long-code WCDMA”. In: IEEE Transactions on Signal Pro-
cessing 51(6) (June 2003). Conference Name: IEEE Transactions on Signal
Processing, pp. 1642–1655. ISSN: 1941-0476. DOI: 10.1109/TSP.2003.
811230.

[46] R. Vandebril, M. V. Barel, G. Golub, and N. Mastronardi. “A bibliography on
semiseparable matrices”. In: CALCOLO 42(3) (Dec. 1, 2005), pp. 249–270.
ISSN: 1126-5434. DOI: 10.1007/s10092-005-0107-z.

[47] R. Vandebril, N. Mastronardi, and M. Van Barel. Matrix Computations and
Semiseparable Matrices. Baltimore, UNITED STATES: Johns Hopkins Uni-
versity Press, 2007. ISBN: 978-0-8018-9679-8.

[48] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M.
Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, and P. van Mulbregt. “SciPy 1.0: fun-
damental algorithms for scientific computing in Python”. In: Nature Methods
17(3) (Mar. 2020). Number: 3 Publisher: Nature Publishing Group, pp. 261–
272. ISSN: 1548-7105. DOI: 10.1038/s41592-019-0686-2.

87

https://doi.org/10.1109/TAC.2003.822862
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.1016/0005-1098(87)90080-X
https://doi.org/10.1109/TSP.2003.811230
https://doi.org/10.1109/TSP.2003.811230
https://doi.org/10.1007/s10092-005-0107-z
https://doi.org/10.1038/s41592-019-0686-2

Bibliography

[49] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. “Learning Structured Sparsity
in Deep Neural Networks”. In: Advances in Neural Information Processing
Systems. Vol. 29. Curran Associates, Inc., 2016.

[50] B. Wu, D. Wang, G. Zhao, L. Deng, and G. Li. “Hybrid tensor decomposi-
tion in neural network compression”. In: Neural Networks 132 (Dec. 1, 2020),
pp. 309–320. ISSN: 0893-6080. DOI: 10.1016/j.neunet.2020.09.
006.

[51] X. Yu, T. Liu, X. Wang, and D. Tao. “On Compressing Deep Models by Low
Rank and Sparse Decomposition”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 7370–7379.

[52] T. Zhou and D. Tao. “Greedy Bilateral Sketch, Completion & Smoothing”.
In: Proceedings of the Sixteenth International Conference on Artificial Intel-
ligence and Statistics. Artificial Intelligence and Statistics. ISSN: 1938-7228.
PMLR, Apr. 29, 2013, pp. 650–658.

88

https://doi.org/10.1016/j.neunet.2020.09.006
https://doi.org/10.1016/j.neunet.2020.09.006

	Introduction
	Literature Review
	Matrix Structures
	Semiseparable Matrices
	Hierarchical Matrices
	Sequentially Semiseparable Matrices

	Neural Networks

	Background
	Methods
	Matrix Approximations
	Balanced Truncation of Ordered Systems
	Computing Singular Values of Hankel matrices
	Error Bound for Matrix Approximation

	Cost of Computation
	Number of Stages
	Segmentation Adaptation
	Moving Boundaries
	Singular Values of Hankel Matrices when Moving Boundaries
	Optimizing Input and Output Dimensions

	Permutations
	Split Stage
	Matrix Segmentation

	Experiments
	Segmentation Adaption
	Illustrative Example
	Weight Matrix Approximation

	Permutations
	Illustrative Example
	Weight Matrix Approximation

	Discussion
	Conclusion
	Matrix Approximation Error Bounds
	Algorithms to Move Bounds Up or Down
	Random Sequentially Semiseparable Matrices

