
Neural Network Online-Pruning: Accelerating
Weighted Sum Calculation by Early Stopping

Julian Lorenz
Chair of Data Processing

Technical University of Munich
Munich, Germany

julian.lorenz@tum.de

Abstract—In this paper I propose a new method to shorten the
weighted sum computation at each neuron in a neural network
without requiring retraining. I sort the weighted sum compu-
tation order by the magnitude of the weights. If the activation
function shows converging behavior, I stop the weighted sum
computation early after it has passed a predetermined stopping
threshold. I show how to find the stopping thresholds by statistical
analysis of the weighted sum computation in a network. I also
provide an experimental analysis on how the online-pruning
method performs in comparison to the normal feed-forward
computation. Using my approach, the MAC operations in the
tested network can be reduced by 14.1%. This results in a speed
improvement of 5.1% while achieving an average R2 score of
99.09%.

Index Terms—neural networks, efficient, weighted sum, acti-
vation function

I. INTRODUCTION

Efficient neural network inference is an important research
area next to the proper neural network design and training.
Less computational effort means that manufactures can use
more affordable computing devices, they can deploy larger,
more capable networks or it saves on energy. Less energy
consumption leads to longer battery life in smartphones or to
lower operating costs.
There are many existing ways in which engineers can improve
the efficiency of neural networks. A very comprehensive
summary of ways to run neural networks more efficiently
has been done by Sze et al in [1]. The paper also provides
performance metrics which can be used to measure a neural
networks efficiency. The authors list many approaches such as
using specialized memory architectures or reduced precision.
While there is specialized hardware for neural networks such
as FPGAs and GPUs, typically they do not come at low cost.
In this paper, I focus on CPU based neural network inference
and algorithmic optimization that reduce the total number of
operations performed. This allows the neural networks to run
on generic, low-cost, low-energy microcontrollers.
The most well known method is called ”pruning” and is
typically applied offline after training and before inference.
During pruning researchers identify and remove weights or
neurons with low impact. Often the networks are retrained to
adjust to the pruned structure. There are countless examples for
neural network pruning. The most prominent pruning method
is ”Optimal Brain Damage” by Le Cun et al [2]. A more recent

method is proposed by Kamma et al in [3].
Because pruning happens in preprocessing, it treats all input
samples the same way. I however want to find a technique
that prunes weights dynamically depending on the input
vector. One approach for example would be to use layers
of increasing complexity depending on the difficulty of the
current sample as Wang et al do it in [4]. Such approaches
however completely alter the structure of the network and
can not be applied to already trained networks. I on the
other side search for a technique that can be applied to any
already trained network. For example, Albericio et al propose
a technique that skip zero-valued neurons during the weighted
sum calculation [5] dynamically. They also prune the network
online by setting neuron outputs to 0 if their activation is below
a certain threshold. Another very dynamic neural network
accelerator is called ”SnaPEA” by Akhlaghi et al in [6].
SnaPEA concentrates on networks with rectified linear unit
(ReLU) activation functions with only positive inputs. The
ReLU function returns 0 for all negative inputs. They sort the
weights in descending order. If the weighted sum intermediate
result (WSIR) becomes negative, the weighted sum will remain
negative and the computation can be stopped early. The authors
also propose to earlier predict that the weighted sum will be
negative by using speculative thresholds while the weighted
sum is still positive. The method proposed in my paper shares
the same core idea. My approach however is not limited to
positive inputs and can be applied to any activation function
which can be approximated by a constant if the input exceeds
a convergence threshold.
I propose an online-pruning technique that aims to stop the
weighted sum computation early by exploiting the activation
function behavior. I have observed that I can sort the order
of the previous neurons such that during the computation the
weighted sum tends early to values where I can consider the
activation function as constant (i.e. convergence zone). This
allows us to stop the weighted sum computation early after
only considering a few, most significant previous neurons.
In this paper I will explain the idea of online-pruning with
the example of a generic activation function with an upper
bound threshold. Then I will show how to find the right
stopping thresholds for the method using statistical analysis
of the neural networks. Later, I will evaluate the impact of
online-pruning using a neural network for drone control as

x
−1

0

1
ta
nh

(x
)

tanh ≈ −1 tanh ≈1

λ=2.2976

−λ

Fig. 1. tanh approximation

an example and compare the results with the normal network
feed-forward operation.

II. TERMINOLOGY

I use the following terminology to describe neural networks.
I focus solely on feed-forward neural network structures with
only fully connected layers. A network has L layers. Each
layer l has got Nl neurons. The neurons are connected by the
weights wl

ij , where i is the index of the neuron in the l-th layer
and j is the neuron’s index in the (l−1)-th layer. Each neuron
also has got a bias bli, which initializes the weighted sum
computation. The value xl

i is the weighted sum at a neuron i
in the l-th layer, which I define as followed:

xl
i = bli +

Nl−1∑
j=0

wl
ijσl−1(x

l−1
j) (1)

The weighted sum consists out of many so called Multiply-
And-Accumulate (MAC) operations. One MAC is defined as
the product of the previous neuron’s activation and it’s corre-
sponding weight (Multiply) which is then added to a temporary
sum (Accumulate). The output of a neuron i is the result of
the activation function applied to the weighted sum: σl(x

l
i).

Neurons of one layer share the same activation function.
Different layers may have different activation functions.
In the method that I propose I will make use of converging
activation functions, meaning that they converge to a constant
for x → ∞ and/or for x → −∞. I will also write about
”converging weighted sums” for simplicity. A weighted sum
does not necessarily converge, but with the term I mean that
the activation function that is applied to the weighted sum
has exceeded a convergence threshold λ. An example of an
activation function can be seen in Fig.1. If the weighted sum
x has exceeded the convergence threshold λ, we approximate
the activation function as a constant. I call the weighted sum
”converged”, if |x| > λ.

III. METHOD

At each neuron in a neural network we calculate a weighted
sum of all previous neurons activation and individual weights.
After that, an activation function is applied to the weighted
sum. In this paper I propose a method to decrease the
computation effort for the weighted sum by reducing the total
amount of MAC operations. I take advantage of the activation

functions which often show converging behavior, when I sort
the order of summing weights in an appropriate way. Precisely,
if x exceeds a predetermined threshold λ, I can assign to the
activation function σ(x) a constant value a. Note that in that
case x is the result of the weighted sum at the neuron. A
generic formulation can be found in (2).

σ′(x) =

{
a , if x > λ

σ(x) , otherwise
(2)

The activation function could also have a lower-bound
threshold, such that x < λ to assign a constant a. An example
is the ReLU in (7). The activation function can also be
bounded by an upper and a lower threshold. An example is
the tangens hyperbolicus which can be approximated as in
(8). During the computation of the weighted sum x, I observe
that often the value x stays beyond the threshold after it has
exceeded it once if the order of the weights has been sorted in
a specific way. This hints us that I can stop the computation
of the weighted sum early under the condition that the
weighted sum intermediate result (WSIR) exceeds a stopping
threshold α. Instead of the explicit, general equation of the
weighted sum as in (1) I propose an iterative formulation
in algorithm 1. The WSIR after the k-th step is denoted by
xl
i(k). Note that α ̸= λ. Just because the weighted sum xi is

Algorithm 1 Weighted sum with early stopping
xl
i(0)← bli

k ← 0
while k <= Nl−1 and xl

i < α do
j ← order(k)
xl
i(k + 1)← xl

i(k) + wl−1
ij σl−1(x

l−1
j)

k ← k + 1
end while
xl
i ← xl

i(k)

greater than λ during its computation, does not mean that it
will stay beyond the threshold after considering all inputs. I
need to compensate those cases, which first seem to converge
but then end up non-converged by introducing the stopping
threshold α. Later in this paper, I will refer to such cases as
”false friends”.
After approximating the weighted sum, I can then use the
activation function’s approximations (refer to (2), (7), (8)) to
compute the output of the neuron.

To be able to run the algorithm 1, we need to perform two
steps in preprocessing: Determine the order of the weighted
sum computation order(k) and after that find the thresholds
α. I describe the generic procedure for a network with an
activation function with an upper bound threshold as in (2) in
the following two subsections.

A. Sort the weights

I need to sort the order of the previous neurons during the
weighted sum computation, such that two goals are full-filled:

Fig. 2. Three examples of weighted sum computation processes at one
neuron. The figure shows 5000 samples. Everything below the orange-dashed
threshold line is considered as converged and can be stopped early.

1) The weighted sum converges quickly.
2) A converged weighted sum remains in the convergence

interval.
It works very well to use the absolute value of the weights
|wl

ij | to a neuron i in layer l as the sorting criteria. We then
sort the computation order j = order(k) in descending order.
k indicates how many MACs have been performed already.
j is the index of the previous neuron that shall be processed
next. In Fig.2 we can see, that both of the goals are met. The
WSIRs change a lot after the first MAC operations, but then
remain almost static for the remaining part of the weighted
sum computation.

B. Learning the thresholds

While early stopping of the weighted sum and sorting the
weights is relatively straight-forward, the biggest difficulty
in the online-pruning method is to find the right stopping
thresholds α. The stopping threshold α must not be confused
with the threshold λ. After λ, I consider the activation function
as converged. We define a value for λ before trying to find
the thresholds. A more detailed explanation can be found in
subsection IV-A and IV-B. Variable α is the threshold after
which I stop the computation of the weighted sum early. In
Fig.2 both thresholds are shown. Because a ReLU activation

function is used, λ = 0. The orange-dashed line shows the
stopping threshold α.
In a first step, I run the neural network again many times
using the determined processing order and record all WSIRs
for each neuron and each run. I store the n-th weighted sum
computation sample for the i-th neuron in the l-th layer as a
function over all WSIRs k as xl

i[n](k). This is then the k-th
WSIR during the n-th computation.
I then assign our weighted sum computation samples xl

i[n] to
the following groups:

• CONVERGED NEURONS C: Weighted sum computation
samples that converged: xl

i[n](Nl−1) > λ
• FALSE FRIENDS F: Weighted sum computation samples

that converged, but then left the convergence zone again:
xl
i[n](o) > λ and xl

i[n](Nl−1) < λ and o < Nl−1

• OTHERS O: Neurons that do not converge: xl
i[n](k) < λ

for all k
I then determine the stopping threshold αl

i(k) as a function for
each neuron i in each layer 1 < l ≤ L over all steps k. The first
layer is excluded, as the input layer does not have an activation
function. I choose αl

i(k) such that the false-stop probability
P (xl

i[n](k) > αl
i(k) ∀ xl

i[n](k) ∈ F) is minimized. In other
words: The probability to stop early even though the current
weighted sum computation is a false friend shall be minimized.
The trivial solution would be to choose

αl
i(k) = max

(
λ , max

n∈F
xl
i[n](k)

)
. (3)

In (3) I assign to αl
i(k) the largest value of all false friend

WSIRs xl
i[n](k). If this value is lower than λ (not converged),

I choose αl
i(k) = λ. This way I ensure that at least from

our observations αl
i(k) is always larger or equal to the largest

false friend WSIR at the k-th step. While (3) is the safest way
to lower the false-stop probability, it is not the best solution
when it comes to MAC savings. I suggest to trade a higher
false-stop probability for better MAC savings. For example we
could fix the false-stop probability to a constant of choice:

P (xl
i[n](k) > αl

i(k) ∀ xl
i[n](k) ∈ F) = p = 0.001 (4)

To find the value of αl
i(k) for which (4) is true, I need to

approximate the distributions of false friend WSIRs f(xl
i(k))

using a histogram. The stopping threshold αl
i(k) is then the

(1 − p)-th quantile of the empirical distribution f(xl
i(k)) for

the generic example with an upper bound threshold λ. For
activation functions with a lower bound threshold such as
the ReLU, I choose the p-th quantile of the distribution as
shown in Fig.3. The p-th quantile of the empirical distribution
f(xl

i(k)) will be denoted as z
f(xl

i(k))
p . The right value for p

needs to be chosen experimentally with the goal of finding
a tradeoff between accuracy and processing speed (i.e. MAC
savings).

The stopping thresholds αl
i(k) for each neuron at all steps

k can be determined using algorithm 2. First, I initialize all
thresholds for all neurons to ∞. Then, I assign the value λ
to the thresholds of each neuron that has converged at least

αl
i(k) λ= 0

xl
i(k) ∈ 

1

10

100

1000
nu

m
be

r o
f s

am
pl

es

Fig. 3. Distribution of false friend WSIRs at neuron i at step k with a ReLU
activation function. Stopping threshold αl

i(k) is set to the 0.001-quantile of
the histogram. Total number of false friend samples in histogram is 91548.

Algorithm 2 Determining the threshold (General formulation)
for all xl

i do
αl
i(k)←∞ ∀ k

end for
for all xl

i[n] ∈ C do
αl
i(k)← λ ∀ k

end for
αl
i(k)← max

[
αl
i(k), z

f(xl
i(k))

1−p

]
∀ k

once. After the last step, αl
i(k) is either∞ if the weighted sum

never converged, or either of λ or the (1−p)-th quantile of the
empirical false friend WSIR distribution z

f(xl
i(k))

1−p , depending
on which one is larger.

C. Speed tradeoff

The modified weighted sum computation technique de-
scribed in algorithm 1 will take more processing time on most
computing architectures. This is due to the additional check
whether the weighted sum has exceeded the threshold. On an
amd64 CPU, one iteration of the loop in algorithm 1 requires
about 16% more time than one iteration of the conventional
weighted sum computation. This implies that I increased the
processing time for weighted sums that do not converge, if I
applied the online-pruning method to all neurons. The online-
pruning method should only be applied to neurons where the
average MAC savings outweigh the increased processing time.
To do so, I first need to determine the MAC time ratio (MTR)
between the normal MAC operation and the online-pruning
MAC operation:

MTR =
time per iteration during normal WS
time per iteration during pruning WS

(5)

On my hardware the MTR is 0.87. I then determine the average
computed MAC operations for each neuron. Using the average
computed MAC operations we can compute the MAC count
ratio (MCR) for each neuron as followed:

MCR =
avg. processed MACs at neuron

number neurons in previous layer
(6)

0

20

40

Hi
dd

en
 L

ay
er

 1

neurons
0

25

50

Hi
dd

en
 L

ay
er

 2

av
g.

 p
ro

ce
ss

ed
 M

AC
s

Fig. 4. Avg. number of processed MACs in the hidden layers for each neuron.

x

0

re
lu
(x
)

relu(x) = 0

0= λ

Fig. 5. ReLU activation function

I then only apply the online-pruning method to neurons where
the MCR is less than the MTR to maximize the processing
time savings.

Fig.4 shows the average number of processed MAC op-
erations at each neuron in a trained online-pruning network.
Considering the speed tradeoff and an MTR of 0.87, only 50
out of 100 neurons are eligible for online-pruning.

IV. IMPLEMENTATION

After having explained the general method of online-
pruning, I now apply the concept to the activation functions
rectified linear unit (ReLU) and tangens hyperbolicus (tanh).
The concept can be extended to other activation functions, as
long as they can be approximated similar to (2).

A. Rectified Linear Unit

The ReLU activation function does not require an approxi-
mation, but I can use the original definition:

σReLU(x) =

{
0 , if x < 0 = λ

x , otherwise
(7)

The ReLU function has got a lower threshold λ = 0 after
which I always return a constant 0.

During preprocessing, I sort the order of previous neurons
during weighted sum computation for all neurons as described
in III-A. After that I perform statistical analysis as described
in subsection III-B. The weighted sum computation samples
xl
i[n] will then be grouped as followed:

• CONVERGED NEURONS C: Weighted sum computation
samples that converged: xl

i[n](Nl−1) < λ = 0
• FALSE FRIENDS F: Weighted sum computation samples

that converged, but then left the convergence zone again:
xl
i[n](o) < λ = 0 and xl

i[n](Nl−1) > λ = 0 with o <
Nl−1

• OTHERS O: Weighted sum computation samples that do
not converge: xl

i[n](k) > λ for all k

The stopping threshold can then be determined using algo-
rithm 3.

Algorithm 3 Determining the thresholds (ReLU)
for all xl

i do
αl
i(k)← −∞ ∀ k

end for
for all xl

i[n] ∈ C do
αl
i(k)← 0 ∀ k

end for
αl
i(k)← min

[
αl
i(k), z

f(xl
i(k))

p

]
∀ k

B. Tangens Hyperbolicus

Approximating functions by constants at their extremes is
not a new concept. For example, Kundu et al propose a
fast approximation of the tangens hyperbolicus function by
dividing the function into five segments in [7]. They use a
linear segment for |x| close to 0, two constant segments for
|x| → ∞, and a lookup table for the remaining parts. In my
work, I will use an approximation with only the two constant
segments as followed:

tanh′(x) =


−1 , if x < λ1

+1 , if x > λ2

tanh(x) , otherwise
(8)

This activation function approximation has got two thresholds:
a lower threshold λ1 and an upper threshold λ2. I suggest to
use the same magnitude for both thresholds, due to the point-
symmetry of the tanh function:

λ = |λ1| = |λ2| (9)

When choosing a value for λ I need to consider two different
effects. If I choose a large value, the error in our approximation
remains low, because limx→∞ | tanh(x)| = 1. On the other
side, it becomes more unlikely that the weighted sum exceeds
the threshold during computation. That effect is more likely
when I choose a lower value for λ. Lowering the value
increases the errors that I introduce to our network through

the approximation. In my example, I choose to accept that a
0.98 will be considered a 1. Now, I need to find λ by using:

0.98 = tanhλ = 1− 2

e2λ + 1
(10)

Reformulation yields:

λ = 0.5 ∗ ln
(

2

1− tanhλ
− 1

)
= 2.2976 (11)

I now sort the order of previous neurons during weighted sum
computation for all neurons as described in III-A. After that
I perform statistical analysis as described in subsection III-B.
Because I deal with two thresholds this time, I need to sort the
weighted sum computation samples into the following groups:

• LOWER CONVERGED NEURONS C1: Weighted sum
computation samples that converged to lower bound:
xl
i[n](Nl−1) < λ1

• UPPER CONVERGED NEURONS C2: Weighted sum
computation samples that converged to upper bound:
xl
i[n](Nl−1) > λ2

• FALSE FRIENDS F: Weighted sum computation samples
that converged, but then left the convergence zone again:
|xl

i[n](o)| > λ and |xl
i[n](Nl−1)| < λ with o < Nl−1

• OTHERS O: Weighted sum computation samples that do
not converge: |xl

i[n](k)| < λ for all k
I also need to determine two threshold functions for early
stopping: αl

i(k) for the lower bound and βl
i(k) for the upper

bound. Algorithm 4 shows how to determine them.

Algorithm 4 Determining the thresholds (tanh)
for all xl

i do
αl
i(k)← −∞ ∀ k

βl
i(k)← +∞ ∀ k

end for
for all xl

i[n] ∈ C1 do
αl
i(k)← λ1 ∀ k

end for
for all xl

i[n] ∈ C2 do
βl
i(k)← λ2 ∀ k

end for
αl
i(k)← min

[
αl
i(k), z

f(xl
i(k))

p/2

]
∀ k

βl
i(k)← max

[
βl
i(k), z

f(xl
i(k))

1−p/2

]
∀ k

V. EXPERIMENTS

I apply the online-pruning method proposed in this paper
to a neural network that was trained to control a light-weight
quadrocopter drone. The network has only fully connected
layers. The input vector has the length of 40 neurons followed
by two hidden layers with 50 neurons each. The output
vector has 4 values corresponding to the PWM settings of
the drones motors. The two hidden layers have a ReLU
activation function. The output neurons have identity activation
functions (σ(x) = x) which are not eligible for online-pruning.
I trained the stopping thresholds using a training data set

TABLE I
ONLINE-PRUNING PERFORMANCE ANALYSIS

general mode selective mode

αl
i(k) FSR MSR S FSR MSR S

0.01-th quantile 2.33 22.33 8.44 1.29 19.70 10.3
0.005-th quantile 1.36 19.88 5.19 0.67 17.41 8.0
0.001-th quantile 0.35 16.02 2.12 0.16 14.10 5.1
0.0001-th quantile 0.05 12.79 -1.93 0.02 10.55 2.0
min(f(xl

i(k))) 0.007 10.57 -3.89 0.002 7.89 1.4

TABLE II
ONLINE-PRUNING ERROR ANALYSIS

αl
i(k) mean 99-percentile max R2[%]

0.01-th quantile 0.1138 2.11 6.26 90.93
0.005-th quantile 0.0671 1.48 5.62 95.10
0.001-th quantile 0.0185 0.51 4.47 99.09
0.0001-th quantile 0.0016 0.01 1.07 99.97
min(f(xl

i(k))) 0.0003 0.00 1.31 99.99

with NT = 500000 samples with different settings for p. I
then validated the online-pruning networks using a different
validation data set with NV = 50000 samples.

A. Performance analysis

For each different stopping threshold setting p I measured:
• False-Stop Ratio (FSR)[%] - The average percentage of

false-stops in the network across all validation samples
• Mac-Savings Ratio (MSR)[%]- The average percentage

of performed MAC operations w.r.t. to standard inference
across all validation samples

• Speed-up (S)[%] - The average speed increase across all
validation samples. S = 100%∗(1−tp/ts), with tp being
the execution time for the online-pruning inference and
ts being the execution time for the standard inference

I measured all parameters first by applying online-pruning to
all neurons (general mode) and then by using online-pruning
only for neurons which have a smaller MCR than MTR
(selective mode, refer to III-C).

The results in table I show that the selective mode is faster
for all networks, even though it saves less MACs in total. The
table also shows that the selective mode has less false-stops
in the network than in the general mode. We can also see
the impact of parameter p. For larger values of the false-stop
probability more MACs are cut off and the speed improvement
is better in total.

B. Error analysis

I also measured the error between the n-th output vector
of the standard feed-forward operation vs[n] and the n-th
output vector of the online-pruning feed-forward operation
vp[n], with 1 < n <= NV . I use the max-norm of the error
vector:

e[n] = |vs[n]− vp[n]|∞ (12)

I compute the mean, the 99-th percentile and the maximum of
the distribution of all e. I also provide the average R2 score of
the data set across the 4 output dimensions. The results can be
seen in table II. Due to the increased number of false-stops,
the error increases for for larger values of p. All of the online-
pruning networks were also tested in a flight-simulation. All
networks flew well, except for the one where I used the 0.01-th
quantile of the false friend WSIR distribution as the stopping
threshold. The results show that the goals processing time
and accuracy are contradicting each other and that a good
compromise needs to be found.

VI. CONCLUSION

In this paper, I proposed a new method to decrease the total
number of performed MAC operations in a neural networks
feed-forward operation. I have demonstrated that we can
reorder the MAC operations of one weighted sum computation
such that the weighted sum shows converging behavior. I also
showed how to choose the stopping thresholds such that I can
account for so called false friend weighted sum computation
samples. I achieved the best result by choosing the 0.001-th
quantile of the false friend WSIR distribution for the stopping
thresholds α. This configuration saved 14.1% of the MAC
operations and about 5% computation time while maintaining
a reasonably low error. The processing speed improvement is
comparatively low due to the increased effort of comparing the
weighted sum against a threshold. The method could perform
better on hardware architectures that have a better MTR. The
network has got a MSR of 16.0% in the general mode, which
is the theoretical maximum speedup for hardware architectures
with an MTR of 1. The cost of online-pruning method is an
increased memory consumption, because I need to store the
thresholds and the processing order for each neuron. We can
expect the required memory to be tripled.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[2] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances
in Neural Information Processing Systems, D. Touretzky, Ed., vol. 2.
Morgan-Kaufmann, 1990.

[3] K. Kamma, Y. Isoda, S. Inoue, and T. Wada, “Neural behavior-based
approach for neural network pruning,” IEICE Transactions on Information
and Systems, vol. E103.D, no. 5, pp. 1135–1143, 2020.

[4] Q. Wang, K. Wang, Q. Li, Z. Yang, G. Jin, and H. Wang, “Mbnn: A multi-
branch neural network capable of utilizing industrial sample unbalance
for fast inference,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1809–1819,
2021.

[5] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” SIGARCH Comput. Archit. News, vol. 44,
no. 3, p. 1–13, jun 2016. [Online]. Available: https://doi-
org.eaccess.ub.tum.de/10.1145/3007787.3001138

[6] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. Gupta, and H. Es-
maeilzadeh, “Snapea: Predictive early activation for reducing computation
in deep convolutional neural networks,” 06 2018, pp. 662–673.

[7] A. Kundu, S. Srinivasan, E. C. Qin, D. D. Kalamkar, N. K. Mellempudi,
D. Das, K. Banerjee, B. Kaul, and P. Dubey, “K-tanh: Hardware
efficient activations for deep learning,” CoRR, vol. abs/1909.07729,
2019. [Online]. Available: http://arxiv.org/abs/1909.07729

