
1

Skip-Thought Vector based Chatbots
Paul Mierau

Chair for Data Processing, Technical University of Munich
paul.mierau@tum.de

Abstract—This paper explores the potential of using Skip
Though sentence encoding as part of an intent based chatbot
system. Skip-Thought vectors constitute a state of the art ap-
proach of sentence embedding that aims to allow machines to
extract the meaning of a sentence.
For that purpose a support vector machine classifier is trained on
a dataset of 64 intents using Skip-Thought encoding as a feature
generator. The implementation is tested against industry leading
platforms such as IBM Watson, Google Dialogflow or Cognigy
AI.
Despite being built with a much lower complexity and using sig-
nificantly less resources, the Skip-Thought vector based chatbot
ranks 3 out of 5 with respect to accuracy and F1-Score, showing
the high potential Skip-Thought embedding provides.

Keywords—Skip-Thought Vectors, Chatbots, Natural Language
Understanding, Intent Classifiers.

I. INTRODUCTION

The vast majority of human knowledge is stored and accessible
in the form of written language. Teaching machines how to
efficiently access and use this type of information has been
the objective of natural-language understanding (NLU), a
subcategory of natural-language processing (NLP), for several
decades.
The results, that are at the cutting edge of these efforts are
continuously becoming part of our daily lives. Conversational
agents (chatbots), that automate customer relations in areas
like retail or customer support constitute a quiet established
application based on NLU research. Despite the successful
implementations of its current development stage, the
language understanding capabilities of these systems are still
very limited [1].

The approach of Skip-Thought Vectors, promises to be
a groundbreaking attempt to model natural reasoning based
on written language [2]. In the Skip-Thoughts model, an
encoder-decoder architecture is used for unsupervised learning
of a generic sentence encoder. For the learning, a special
loss function is implemented, which extends the skip-gram
model of so called word vectors [3]. Instead of mapping the
individual words in a sentence to a vector representation,
an entire sentence gets encoded. By predicting surrounding
sentences from continuous text, the loss implementation
aims at modeling context and hence a sort of reasoning
into the encoding. While Skip-Thought Vectors have been
tested in their capability to measure semantic relatedness,
perform paraphrase detection and basic classification [2],

their suitability for building production capable chatbots was
unexplored.

This paper considers the question of how a chatbot,
based on Skip-Thought sentence embedding, performs
compared to current leading chatbot vendors. For that purpose
a skip-thought vector encoder is implemented and embedded
into a support vector machine based classifier. The classifier
is then trained and tested using a dataset and benchmarking
method from the paper Benchmarking Natural Language
Understanding Services for building Conversational Agents
[4]. In a final step the results are compared to a selection of
leading conversational agent service platforms such as Google
Dialogflow, IBM Watson and Cognigy.

II. STATE OF THE ART

The declared objective of a chatbot is to allow user interactions
with a backend system, or an automated service, using-natural
language. The most important component of a modern, in pro-
duction chatbot systems is the natural-language understanding
engine (NLU engine). The core of an NLU engine is its intent
classifier, which maps an incoming user query to a so called
intent [5]. An intent constitutes a predefined category of user
requests, that specifies the goal of the interaction. Once a user
intent is classified, the system is able to evaluate the next steps
based on the user query. Eventually a suitable response is
chosen from either a knowledge base or generated from the
result of an API request, as can be seen in figure 1

Fig. 1: An overview of the user-chatbot interaction process

The intent classifier is the result of either some sort of unsu-
pervised or supervised learning on a dataset [6]. In the more
common supervised example, a dataset consists of example
sentences for a user query and their corresponding intent label.



2

The process of intent matching involves a feature generator and
a classifier [7] as illustrated by figure 2 .

Fig. 2: Process of intent matching

During the last decade, feature generators for intent classifica-
tion have developed from n-gram based architectures over to
word vector (word2vec) algorithms, setups using convolutional
neural networks (CNNs) or transformer models such as BERT
[8]. The goal of the feature extraction is to convert a sentence,
which consists of a sequence of letters, into a sequence of
numbers (vector) that represents meaningful attributes such as
semantic information, of that sentence within the scope of a
language.
As for classifier however, a variety of models and approaches
have been established suitable for applications in the field
of NLU. Amongst the most popular setups are maximum
entropy methods, K-nearest neighbors algorithms, support vec-
tor machines (SVMs) and long short-term memory networks
(LSTMs) [9].

III. PROBLEM STATEMENT

Intent classification extends the problem of data classification
by a problematic nature of its target data. Language itself
tends to be an inefficient way of exchanging information,
especially when applied in a context of social activities.[10]
Ambiguity in interpretations, relevance of context, complexity
and semantic layers of languages are amongst the factors that
make intent classification a challenging task. On top of that,
out of vocabulary and unseen intent handling needs to be
taken into consideration.[8]
In general however, the ability to grasp the meaning of
a query and thus to consider the context of words in a
sentence, has shown to be the most important factor of intent
classification. [7] This is emphasized through the ground
breaking improvements that came along with BERT.[11]
Further improving feature generation thus remains one of the
key tasks to enhance chatbot capabilities.

IV. APPROACH

The chatbot build in this paper uses Skip-Thought encoding
for feature generation from queries and a SVM model for
intent classification. A full NLU interface and pipeline is
implemented, which allows for intent definition and training
as well as prompting a query.

A. Skip-Thought Encoder

A Skip-Thought encoder is generated using an encoder-
decoder architecture. Given a large dataset of contiguous
text, following the idea of unsupervised learning, the encoder
attempts to convert a sentence si to a numerical representation,
while two decoders proceed in recreating the previous sentence
si−1 as well as the following sentence si+1. The choice for
an encoder-decoder architecture was made on recurrent neural
networks (RNNs) using a gated recurrent unit (GRU), as this
has been shown to perform well [2].

Fig. 3: The Skip-Thought model scheme

As can be seen in figure 3 the hidden state hi of the encoding
layer is used as output of the encoder.

Let xt denote a vector RM×1 at time t = 1, ..., N , containing
the words w1

i , ..., w
N
i from sentences si i = 1, ...,M of length

N and Wr,Wz, Ur, Uz be corresponding weight matrices,
then at each timestep t, the encoder computes the following
sequence of equations in order to receive hidden state ht.

rt = σ(Wrx
t + Urh

t−1) (1)
zt = σ(Wzx

t + Uzh
t−1) (2)

h̄t = Φh(Wxt + U(rt � ht−1) (3)
ht = (1− zt)� ht−1 + zt � h̄t (4)

The initial hidden state h0 is set to 0. The hidden state hNi is
then taken as a the feature vector of si.
This paper implements two such encoders. One which
processed a sentence from beginning to the end (UniSkip)
and another which looks at the sentence in reversed order as
well (BiSkip).
For the UniSkip a hidden Unit size of 2400 is chosen. The



3

BiSkip encoder is build with a hidden Unit size of 1200 for
each forward and backward processing. Finally a vector of
dimension 4800 is formed out of the output from the two
encoders.

The decoders used for training the encoders follow the
same logic, except for an additional weight matrix that
induces the input of the encoder into the set of above
equations. Given the feature vector hi of sentence si the goal
is to optimize the log-probabilities for sentences si−1 and
si−1:

K∑
t

(logP (wt
i+1|w<t

i+1, hi)) +

L∑
t

(logP (wt
i−1|w<t

i−1, hi)) (5)

where K and D denote the length of the surrounding sentences.
The probability of a sentence is given by:

K∑
t

(logP (wt
i+1|w<t

i+1, hi)) ∝ exp(vwt
i+1
hti+1) (6)

where hti+1 is the output of a decoder and V the vocabulary
matrix [2].
Since it turned out that training a sentence feasible Skip-
Thought encoder would extend the ressources of this paper,
a pre-trained model from the University of Toronto was used.
The model was trained on the bookCorpus [12], containing
11,038 books from 16 different genres and is the most properly
trained model publicly available up to this day.

B. Support Vector Machine classifier

The choice for the intent classifier was made on a support
vector machine model for mainly two reasons.
SVMs haven been proven to be quite effective in the field
of intent classification throughout several experiments [8] [9].
Thus the quality of the classification would be high enough
to not compromise the comparison of performance against
state-of-the art chatbot platforms. Its simple architecture and
setup however ensure the focus being on the feature extraction
capabilities of the Skip-Thought encoder and allow for easy
reproducibility of the experiment.
In particular the python package sklearn is used to implement
its default Nu-SVC classifier with a linear kernel.

V. EXPERIMENT

The evaluation of the generated Thought-Vector chatbot is
orientated on the paper Benchmarking Natural Language Un-
derstanding Services for building Conversational Agents [4],
as it has been used by several vendors to benchmark their
own product. On top of that the project provides a publicly
available dataset, designed specifically to test in production
chatbot NLU engines.

A. Dataset

The dataset consists of a set for training the NLU as well as a
seperate set for testing. Both contain a collection of 64 intents
based on a home-assistant bot scenario. While the original
training dataset includes 190 example queries per intent class,
this paper only uses a total of 30 sentences for each class, to
train the classifier. This choice was made in order to make the
test results more accounting to real, in production situations
and aligns with similar attempts to compare market leaders.
[13] Table 1 shows example queries from the training set.

Intent class Query
general explain could you again elaborate me on your answers

please
general explain could not understand it
calendar remove delete all my appointments for today
calendar remove cancel sam’s party
iot hue lightdim i want the lights less brighter
iot hue lightdim bed room two darken

TABLE I: Example queries from the training dataset

The dataset for testing includes a total of 5518 queries approx-
imately 86 sentences per intent class.
By using less queries per class for training than for testing, an
additional layer of approximation towards a real life scenario
is achieved.

B. Metrics

Two measurements are taken in order to evaluate the results.
Each of which provides a slightly different inside on the
performance of the chatbot.
The first measurement is the accuracy of the classifier, which
describes the ratio between the number of all correctly classi-
fied intents and all tested queries. Accuracy measurements are
widely used in the field of NLU and thus allow for a direct
comparison with most vendors.
The second measurement is the so called macro F1 score.
The F1 score is derived by first tracking the True Positives
(TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN) per intent class.
Using these results a recall and precision value can be calcu-
lated by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

For each class the corresponding F1 score is now obtained by:

F1 = 2 ∗ (Precision ∗Recall)
(Precision+Recall



4

Taking measurements separately per class, using a One-vs-
Rest (OvR) strategy is necessary in multi-class classification.
Following the macro average approach the overall F1 score is
received by the arithmetic mean of all separate scores.
The motivation to include F1 scores for the classifier evalua-
tion, is based on its capability to account for imbalances with
respect to FP and FN values. For chatbots a wrongly classified
positive is more expensive than a false negative. Hence a high
precision value is required. The recall value on the other hand
allows for a more precise estimate of the NLUs competence
of grasping the intent behind a query than the accuracy.

C. Comparisons

The performance measurements of the implemented Skip-
Thoughts chatbot are compared against the results of testing
four different chatbots, based on the NLUs of leading vendors
in the market.
This is done to receive a direct placement in the scope of
the current market, such that the feasibility of Skip-Thought
encoders for chatbot instances can be realistically assest. All
bots got trained and tested using the same datasets.
Corresponding measurements for the Googles Dialogflow,
Microsoft Luis and IBMs Watson have been obtained by
Benchmarking Natural Language Understanding Services [4].
Results for Cognigy AI are provided by the company itself
[13].

D. Results

Skip-
Thoughts
Chatbot

Cognigy AI Dialogflow LUIS Watson

Accuracy 0.778 0.846 0.761 0.788 0.81
F1(macro) 0.779 0.827 0.758 0.776 0.804

TABLE II: Results of the experiment

Table 2 shows the performance results of the experiment.
With respect to accuracy as well as the F1 Score the following
placement is obtained:

1) Cognigy AI
2) Watson
3) Skip-Thoughts Chatbot
4) LUIS
5) Dialogflow

It is notable however, that only the Skip-Thoughts Chatbot
does not have a lower F1 Score than the corresponding
accuracy. By directly comparing these two measurements such
a result is only possible if the classifier has identified a
higher amount of TP than TN. Given that a dataset in intent
classification consists of more negative examples, a high FP
rate for one ore two classes can be concluded.

VI. CONCLUSION

When comparing performance of the Skip-Thoughts Chatbot
in relation to market leading vendors, two factors need to be
taken into account. The complexity of this papers classifier
is rather simple compared to it’s professional competition
and the resources available for its training were vastly
disproportionate.
In this context a Rank of 3 out of 5 appears to be a remarkable
result.
On closer inspection the observed high FP rate is not
desirable. As stated in this paper a wrongly classified positive
is more expensive in an average chatbot customer relation.
Since the F1 Score is a macro average over all classes it is to
be assumed that one or two classes come with such a high
sensitivity.
In order to improve these results a more sophisticated
classifier would be the next step. Additionally it is worth
exploring the effects of including the intent examples in the
Skip-Thought encoder generation already.

As a final conclusion Skip Thought vectors have once
more proven their potential in the field of natural language
understanding.
A potential next step would be to explore the suitability of
Skip-Thought vectors for self learning chatbots.



5

REFERENCES

[1] E. Almansor and F. Hussain, Survey on Intelligent Chatbots: State-of-
the-Art and Future Research Directions, 01 2020, pp. 534–543.

[2] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba,
R. Urtasun, and S. Fidler, “Skip-thought vectors,” CoRR, vol.
abs/1506.06726, 2015. [Online]. Available: http://arxiv.org/abs/1506.
06726

[3] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” Proceedings of Workshop at
ICLR, vol. 2013, 01 2013.

[4] X. Liu, A. Eshghi, P. Swietojanski, and V. Rieser, “Benchmarking
natural language understanding services for building conversational
agents,” 03 2019.

[5] A. Abdellatif, K. M. S. Badran, D. E. Costa, and E. Shihab, “A
comparison of natural language understanding platforms for chatbots
in software engineering,” ArXiv, vol. abs/2012.02640, 2021.

[6] A. Chatterjee and S. Sengupta, “Intent mining from past conversations
for conversational agent,” CoRR, vol. abs/2005.11014, 2020. [Online].
Available: https://arxiv.org/abs/2005.11014

[7] P. Alonso, “Faster and more resource-efficient intent classification,”
Ph.D. dissertation, Lule University of Technology, 2020. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81178

[8] H. Weld, X. Huang, S. Long, J. Poon, and S. C. Han, “A survey
of joint intent detection and slot-filling models in natural language
understanding,” CoRR, vol. abs/2101.08091, 2021. [Online]. Available:
https://arxiv.org/abs/2101.08091

[9] R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief
networks for natural language understanding,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22, no. 4, pp. 778–
784, 2014.

[10] H. Purohit, G. Dong, V. Shalin, K. Thirunarayan, and A. Sheth, “Intent
classification of short-text on social media,” 12 2015, pp. 222–228.

[11] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

[12] Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun,
A. Torralba, and S. Fidler, “Aligning books and movies: Towards
story-like visual explanations by watching movies and reading
books,” CoRR, vol. abs/1506.06724, 2015. [Online]. Available:
http://arxiv.org/abs/1506.06724

[13] D. Seisser. (2020) Benchmarking nlu engines: A
comparison of market leaders. Accessed: 2022-
15-01. [Online]. Available: https://www.cognigy.com/blog/
benchmarking-nlu-engines-comparing-market-leaders

[14] J. Zhang, K. Hashimoto, Y. Wan, Y. Liu, C. Xiong, and P. S. Yu,
“Are pretrained transformers robust in intent classification? A missing
ingredient in evaluation of out-of-scope intent detection,” CoRR, vol.
abs/2106.04564, 2021. [Online]. Available: https://arxiv.org/abs/2106.
04564


