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Abstract—Large annotated datasets are a necessity nowadays
but also very expensive to generate in real settings. Simulations
are unable to represent the real world which is why different
methods are utilized to account for these deficiencies. We choose
three methods, photo-realistic rendering, domain randomization
and adaptation, to inspect the effects on machine learning
methods such as instance segmentation and pose estimation
methods.
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I. INTRODUCTION

Object detection and pose estimation are relevant in vari-
ous fields nowadays, such as augmented reality, assembly
lines, surveillance applications, driver assistance systems and
robotics. Learning based methods have been shown effective at
generalization [1]. Some of these methods require big training
sets for the training process.

One drawback when it comes to training is the data gen-
eration. Often big datasets are required that are versatile and
different enough to enable generalization, such as ImageNet
[2], Pascal VOC [3] and LINEMOD Dataset [4]. These datasets
are very hard to create, especially if not only a bounding
box of an object is required but a pixel-wise segmentation
or a 6D-pose. Generating large amounts of data synthetically
is beneficial because the annotation can be automated and
created scenes with different lighting and other conditions can
be created. However, most synthetic data is too simplistic to
achieve good results.

There are different methods to bridge the gap to real
data, such as photo-realistic rendering, domain adaptation and
randomization. Photo-realistic rendering tries to capture the
physics of the world and should hence be able to render
realistic images. Domain adaptation uses a generative adver-
sarial neural network that learns to transform images created
in a simulation to a more realistic version of it while domain
randomization applies different types of noises or objects to
an image to emulate the variability of the real world.

Throughout this work we will use these approaches to train
neural networks for object detection, segmentation and pose
estimation. We test the performance of the training on real
data and compare different methods of data generation and
their effect on the results. We also combine approaches to
create the training datasets.

Methods for generating realistic synthetic images are pre-
sented in section II. We evaluate these methods based on
existing object detection pipelines in section III. The main
implementation details feature in section IV. Experiments are
explained in V.

II. RELATED WORK
A. Object Recognition and Segmentation

Learning-based approaches for object detection and grasping
have become very successful and in a lot of cases eclipsed
more traditional approaches in efficiency and accuracy rates
[5]. Some of the most popular object detection methods include
YOLO [6] which provides bounding boxes of objects in an
image as well as Mask R-CNN [7], an instance segmentation
method.

Mask R-CNN is the model we train for evaluating the data
generation methods. In contrast to older instance segmentation
methods, such as DeepMask [8], the segmentation and clas-
sification are processed in parallel which is faster and more
flexible. Therefore, Mask R-CNN is an instance-first strategy
and not a segmentation-first one. Mask R-CNN is an extension
of Fast-RCNN. It has the same first stage as Fast-RCNN,
namely a Region Proposal Network (RPN). The second stage
is used to predict classes and boxes. Mask R-CNN has a third
output, a mask, for each region of interest (Rol). [7]

These approaches require large annotated datasets for train-
ing. Generating all this data in real settings is usually time
consuming and not always possible. Therefore, synthetic data
is used and different methods are applied to close the gap to
real data. The main approaches are: Domain Randomization,
Domain Adaptation, and Photo-realistic Rendering.

B. Domain Randomization (DR)

The idea is to make the network to learn the most important
feature that enables the object detection because the training
data is versatile enough that it can generalize to the real world.
Aspects that can be randomized include [9]-[11] :

e changing backgrounds, thereby creating new scenes

e adding a random amount of different geometric shapes

to the scene

e sampling poses of the targeted object

e varying the object’s texture

o different lighting scenarios

e type of noise and its amount added to the image
When training for grasping some other randomizations are
added, such as random forces, or time [12].

C. Domain Adaptation (DA)

In DA images are transformed from one domain to another.
DA is based on Generative Adverserial Networks. These
are networks that are split into two parts, hence the term
adverserial. One part of the network, the generator, tries to
imitate as well as possible and the other part, the discriminator,
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Fig. 1: Our Approach relies on generating data using three methods. We use these datasets to train a deep learning method and
compare the performance on a real dataset.

tries to determine if it is a fake or not. [13]

DA relies on GANSs to recreate the target domain as well as
possible. The fact that the models are independent of a specific
task and can be used for any domain adaptation is beneficial.
The target domain either has paired or unpaired images [14].
Older methods [15] use feature vectors as input instead of
synthetic images in the case of GANs. CycleGAN utilizes
unpaired images with the idea of minimizing adversarial loss.
The most important difference is the cycle consistency which
should ensure that if the image is transferable from domain A
to B then domain A can be reconstructed again [16]. It’s been
shown that Conditional Adversarial Network achieve the best
results [17], [18]. The difference in conditional and regular
GANSs is the fact that the network does not only learn the
mapping between two domains but the loss function that trains
the mapping as well. In case of pix2pix, which is an exemplary
approach that uses conditional GANS, the loss is conditioned
on the input image. That means the generator and discriminator
both observe the input image [17].

One issue with training conditional GANs is the huge amounts
of labeled data needed. Recent research has shown that using
self- and semi-supervised learning can lead to using only 20%
of the data to achieve the same results [19].

D. Photo Realistic Rendering

Opensource physics simulators or common renderers fail to
recreate the complexity of the real world. Creating a realistic
simulation is time consuming and not realistic if you wish to
recreate many different scenes. To counter that high quality
renderers can be used, according to [11], to at least take
accurate pictures of the object, such as Mitsuba!. A realistic
simulation pipeline that is also often used is Blender 2. Photo-
realistic rendering has been shown to be effective in simple
environments and when in combination with real data [20]. It
is however always imperfect. In general it has mixed results
[21]-[24]. Some researchers suggest ensuring that the physics
constraints are met when they place objects in a simulated
scene as well [9].

III. METHODOLOGY

The main idea is to generate data using the three different
approaches: Photo-realistic Rendering, Domain Random-
ization, Domain Adaptation. After generating the data we
train object recognition methods to evaluate the effectiveness

Thttp://www.mitsuba-renderer.org
Zhttps://www.blender.org



(a) Real image scene

(b) Simulated scene

Fig. 2: Real annotated data

of each approach to get the best results. We also combine the
methods to see if it can improve performance. An overview of
the approach is visualized in Fig. 1.

A. Data Generation

1) Photo-realistic Rendering: 1Tt is possible to use any of the
methods proposed in section II. However, creating a simulation
or using Mitsuba is very time consuming which is why we
use annotated real images that should present the optimal case
of accurately presenting the real world. The drawback of this
method is the limited amount of annotated data available.

Using more realistic CAD models can be helpful in improv-
ing rendered images. Scanned objects with the EinScan-Pro
Scanner® are used to render scenes and images of the real
scene are used as background. We replace our rendered object
in the scene, see Fig. 7b and thereby do not need to annotate
any real data.

2) Domain Randomization: We render the scene using a
simple renderer. The images are then augmented. The most
relevant augmentations are:

gaussian blur e average blur

additive gaussian noise e sharpening kernel
median blur e contrast normalization
adding/removing pixels e brightness manipulation

The augmentation used on every image is added randomly
during or before training. That depends on the object recog-
nition methods. Some methods already support augmentation
during training. We also change the background for a subset of
the data. The new background images are from the VOC2012
dataset [25]. For the simulation we use the scanned models, see
Fig. 7a, as well as simple models without texture, see Fig. 2b.

3) Domain Adaptation: We use two DA methods to train
models that transform the simulated images into the target
domain, pix2pix and CycleGAN. Both methods are trained
using a real annotated dataset. After training the model we
generate images by transforming real images into the target
domain and use these images to train the instance segmentation
method.

4) Combining Methods: Combining these data generation
methods is another relevant aspect for this work. Datasets are
generated containing two methods each and the evaluation is
done accordingly..

3https://www.einscan.com/handheld-scanner/einscan-pro/

B. Evaluation

For the evaluation we use a subset of a real annotated dataset
that was not used at any stage of the training. Confusion
matrices as well as mask overlapping errors and precision-
recall metrics are the main analysis tools for the effectiveness
of each approach. We set a threshold for the minimum overlap
and calculate a confusion matrix to determine the success of
training with these methods.

IV. IMPLEMENTATION DETAILS
A. Training DA

130 annotated images are available. 104 of these images are
used to train and validate pix2pix and CycleGAN. We use a
Pytorch implementation for both methods®*.

To train pix2pix we require a real image and the ground truth
poses of the objects to be able to render the objects as in the
scene. Our objects include a rail, a black object, the TM and
two kinds of switches. Fig. 2 contains an example of a real
world image and the simulated image. We use these pairs to
train pix2pix. Even if CycleGAN does not require pairs we
use the pairs because they are already available to train the
model.

After training pix2pix and Cycle_gan models we choose the
best five models based on the loss recorded and use these
to generate datasets to train the Mask R-CNN> models. We
choose the 5 with the smallest losses for each model and
generate new datasets. We generate simulated datasets with
400 random images each and then use the model to transfer
it to the real domain. Examples of inferred images for the
CycleGAN and pix2pix model are visible in Fig. 3 and Fig. 4.

t 4

(d) gen. with model 3 (e) gen. with model 4 (f) gen. with model 5

Fig. 3: A simulated image and then its transformation into
the target domain using 5 different CycleGAN models

B. Simulation Details

We use pybullet to create the simulated scenes °. Each image
contains a rail instance and an instance of each switch as well

“https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
Shttps://github.com/matterport/Mask_RCNN
Ohttps://github.com/bulletphysics/bullet3



Fig. 4: A simulated image and then its transformation into
the target domain using 5 different Pix2pix models

as the black TM. For DA we use these randomly generated
images to infer new images from the new domain. For DA we
augment the images using the imgaug library 7.

V. EXPERIMENTS

An overview of all the experiments is listed in TABLE 1. It
includes the information about the method used to generate
the data, as well as the precision, recall recorded on the test
data. In the case of multiple methods for one experiments it
is also clear how the data is divided.

Exp. # | methods #images precision|%]| recall[%)
1 CycleGAN 320 400 77.6 83.9
2 CycleGAN 200 400 63.0 70.2
3 CycleGAN 340 400 70.2 79.8
4 CycleGAN 260 400 62.0 79.0
5 pix2pix 300 400 ]7.2 76.6
6 pix2pix 180 400 86.8 79.8
7 pix2pix 260 400 75.4 76.6
8 real images 105 98.2 91.1
9 scanned models with real cell back- 300 93.5 81.5
grounds
10 DR 400 84.7 84.7
11 DR with scanned CAD models 300 74.7 87.9
12 real + simulated data without DR 105 + 200 100.0 94.4
13 rDele;l images + simulated data with 105 + 200 100.0 95.2
14 real images + CycleGAN 105 + 200 100.0 90.3
15 DR + CycleGAN 200 + 200 82.8 85.5

TABLE I: Overview of experiments

A. Domain Adaptation Experiments

For our DA experiments we train a CycleGAN and pix2pix
models. These are the experiments 1 through 7. We train
Mask R-CNN with four CycleGAN models. Looking at the
results it is clear that the precision is better than recall for
each experiment. We will look at the first experiment closely
with the help of the confusion matrix displayed in TABLE II.

7https://github.com/aleju/imgaug

The confusion matrices for experiment 2-4 are similar. It is
clear that the model struggles in detecting the switches which
is why it has a high precision but lower recall. Due to the
rail’s unique shape and size there does not seem to be any
issues with the detection. The TM has a very high recall but
low precision which is due to the fact that a lot of background
objects are predicted as TMs. An image from the validation
dataset, Fig. 5a, is provided to the trained network and the
segmented output is visualized in Fig. 5b. You can see when
the model falsely detects the camera on the robot as a TM.
This happens often and can be explained by the fact that the
model does not transform the robot hands precisely.

gt_rail | gt_Switch | gt_background | gt_TM
predicted_rail 24 0 3 0
predicted_switch 0 37 7 3
predicted_background 2 10 0 4
predicted_TM 0 1 16 43

TABLE II: CycleGAN epoch 320 confusion matrix

(a) Input test image

(b) Segmented Image

Fig. 5: Model was trained with data generated by a
CycleGAN model

As for the pix2pix experiments one thing that stands out

is that pix2pix has better precision than CycleGAN models.
Based on the example in Fig. 6 pix2pix struggles with the
controller that is sometimes in the background because it is
not in the simulation. Therefore, it is not surprising that even
with the high precision the mistakes in detection are related
to that controller. The controller is often mistaken as TM or a
cabinet.
Potential ways to improve the training would be to include
random backgrounds in training and see if that helps improve
precision. It could be also beneficial to train CycleGAN or
pix2pix with more data. That could help improve the quality
of the domain adaptation.

B. Domain Randomization Experiments

For our DR experiments use the imgaug library to augment the
images during training. We use pybullet to render images. In
experiment 11 we use untextured models and add a color for
the whole mesh in the URDF file. In this case we achieve the
same recall as the best DA model and a far better precision.
The main struggle in this case is detecting switches, see
TABLE III. It is clear that the depiction of the switches in



(a) Input test image

(b) Segmented Image

Fig. 6: Model was trained with data generated by a pix2pix
model

simulation does not allow for easy detection in real settings.
The false detection of TMs is usually the camera attached
to the robot hand. To improve training we can potentially
use scanned models to see if that improves performance.
Another possibility is changing trying to model the camera
more realistically than currently in the simulation.

In experiment 12 we use the textured scanned models. Images

gt_rail | gt_Switch | gt background | gt TM
predicted_rail 24 0 4 0
predicted_switch 0 33 1 0
predicted_background 2 13 0 2
predicted_TM 0 2 12 48

TABLE III: confusion matrix for training done with DR

with textured models are in Fig. 7a. We could not scan the rail
easily because it has a reflective surface which is problematic
with the scanner we used. It is clear that the recall for
switches improves tremendously. However, the precision for
TMs decreases. That can be explained by looking at simulated
images. When we add the TM texture, it is possible that
the network does not need to learn the exact shape of the
object because the robot hands are lighter in the simulation.
Therefore, anything with similar size like parts of the robot
hands get recognized as the TM. When we do not use scanned
models, the robot hands and the TM have the same colour
which would explain why it forces the network to learn the
shape of the TM better.

gt_rail | gt_Switch | gt_background | gt_TM
predicted_rail 23 0 1 0
predicted_switch 0 41 5 0
predicted_background 3 5 0 5
predicted_TM 0 2 29 45

TABLE IV: confusion matrix for training done with DR +
scanned models

C. Photo-Realistic Rendering Experiments

For this part two experiments are relevant, 8 and 9. Even
though we use as little as 105 images we achieve the best
precision and recall in comparison to any data generation

(b) Scanned models with random real
background of the scene

(a) Scanned models placed in the
simulation environment

relying on one method for data generation. Looking closer at
the results, it is clear that this model detects and TMs and rails
perfectly but the only mistakes are because of the switches.
As for our second experiment to try and recreate realistic
images by using scanned models with realistic backgrounds,
see Fig. 7b and experiment 9. In this case we improve the
precision in comparison to any stand alone method but the
recall isn’t as high as using real images.

D. Combinations

There are a few things we notice when combining multiple data
generation methods. Combining methods improves precision
drastically. It is also notable that when we combine real images
with simulated images augmenting the data we achieve the
best results (exp. 12 and 13). The difference in performance
when we augment images or not would indicate that realistic
images contain enough differences to make the augmentation
not essential. The confusion matrix for experiment 13 looks
as follows, TABLE V.

It is also clear that combining DR and real data is the

gt_rail | gt_Switch | gt_background | gt_TM
predicted_rail 26 0 0 0
predicted_switch 0 44 0 0
predicted_background 1 4 0 1
predicted_TM 0 0 0 49

TABLE V: confusion matrix for training done with DR and
real data

only experiment that does improve recall and precision in
comparison to just training with real images.

VI. DISCUSSIONS

In conclusion, with this amount of real data it does not make
sense to use DA. Training an instance segmentation method
through DA generated data performed the worst out of the three
possibilities even when combined with the other methods. For
future work it could be interesting to train pix2pix to do the
segmentation directly instead of using it as a way to generate
data for training.

The performance of DR with a very simple simulation is
better than DA and does not require any real annotated data.
It achieves a recall of 85 %. In case real annotated data is



available it makes sense to combine it with a DR method
because it achieves the best performance.

VIL

Using learning based methods for object recognition is a
widely researched topic. However, it is associated with gen-
erating large amounts of data. The best results are typi-
cally achieved with real data. Annotating real data is time-
consuming and complicated. We inspect different methods to
generate data and then train an instance segmentation method.
These methods include photo-realistic rendering, domain adap-
tation and domain randomization. We also combine these
methods.

In conclusion, we recommend using DR methods in combina-
tion with small amounts of real data to achieve the best results.
For very small amounts of data the DA methods we used did
not perform well. Using the same data to train directly did
achieve better results.

CONCLUSION
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