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Abstract

Knowledge Distillation (KD) is a way to compress neural networks. In most cases a
fully trained, large neural network is available that is used to train a smaller model.
Several factors have an influence on the success of KD. For example, the training
data used and the architecture of the models can have an impact.
The problem studied in this thesis is the transfer of a neural network to a drone which
has limited memory. Therefore, the utilization of the large network on the drone is not
directly possible and KD is employed. This work specifically examines the effects of
KD, using a model with many parameters that has been trained for a specific flight
maneuver with the help of Reinforcement Learning (RL). The knowledge of this model
is transferred to a smaller one, which will then be utilized on the drone and perform the
flight maneuver in real time and in the real world.
An experiment, examining different data generation methods, shows that the training
data used has a large impact on the distillation result. Other tests use one or more
additional models to distill the knowledge. These additional medium models have a
size that is between the large and small model. In the experiments that use a medium
model, the medium network is trained first using the large network and afterwards it is
used to train the small model. The tests reveal that additional training steps can further
improve the results. The experiments show that with the right training data and with
one or more distillation steps very good small models can be trained that outperform
the large network originally trained with RL.
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1 Introduction

In recent years, Deep Neural Networks (DNNs) have become increasingly popular
due to their improved accuracy and their ability to solve difficult problems. They are
the tool of choice for complex tasks such as natural language processing ([11], [44]),
image classification ([10], [32]) and many other applications ([13], [14], [25], [39]).
A DNN consists of several layers with hidden nodes that are connected with each
other. Due to this structure, a DNN has lots of parameters and therefore needs a large
storage space [45]. Furthermore, calculating the outputs of the neural network can
require a powerful processor. These facts suggest that accuracy is not sufficient as a
sole requirement for training DNNs.
A research area that is currently on the rise is embedded systems. Today, many
devices contain microprocessors that are often powered by a battery or accumulator.
Therefore, an important requirement for these devices is low power consumption.
This often results in low processor performance to reduce power consumption and
another requirement that may be essential in some applications is real-time capability.
Furthermore, some embedded systems are constrained due to their little memory.
To combine these two developments, a solution must be found that allows DNNs to
run on embedded systems ([1], [7], [17], [45]). This seems to be contradictory, since
a DNN has millions or even billions of parameters and thus requires a lot of memory.
Furthermore, the calculation of the outputs can be computationally intensive. Both are
problematic for an application on an embedded system and result in more stringent
requirements for the complexity of the neural networks.

This thesis focuses on a method, named Knowledge Distillation (KD), to combine
the prerequisites of embedded systems and DNNs [18]. Specifically, it involves a
small drone that is to perform a flight maneuver with the help of a neural network.
The quadrotor consists of an embedded system and has a low power microprocessor,
little memory and is battery powered. A small neural network with only a few hidden
layers is necessary, in order to utilize it on the drone and to calculate the outputs
in real time. However, the original model that is trained to perform the maneuver
using Reinforcement Learning (RL) is a DNN and cannot be transferred directly to the
quadrotor. This thesis investigates how KD can be used to train a small neural network
that achieves a similar reward as the trained original model. Particular attention will
be paid to the training data that is used for generating and transferring the knowledge
from the original network to the smaller network. For the generation of the training
data different methods are evaluated. The achieved performance of the trained small
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1 Introduction

models is compared to the original model performance, to determine the best ap-
proach. Subsequently, the superior approach is selected and it is checked, whether
the performance of the model can be further improved with the help of a method called
Teacher Assistant Knowledge Distillation [28].

One of the research questions this thesis attempts to answer is whether the re-
sults of KD can be improved by modifying training data. The goal is to find a method
that is able to generate training data that trains a small model which achieves a
similar reward as the existing larger neural network. Another research question to be
answered by this work is whether a Teacher Assistant (TA), a model with a neuron
number between the original and the small model, positively influences the training of
the smaller neural network. This work investigates a good architecture of the TA model
that is used by Mirzadeh et al. to enhance the performance of the small model [28].
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2 Related Work

There are several attempts to combine the requirements of an embedded system and
a neural network, as described in the introduction. Some of the developed methods
aim at compressing the trained neural network [7]. One approach investigated by re-
searchers is parameter pruning and quantization [9]. This method is used to reduce
the required memory space of the neural network by reducing the size of the weight
matrices. The individual weights are then represented with fewer bits and in case
of binarization even with only one bit. Zhou et al. showed that their method called
Incremental Network Quantization (INQ) is able to compress AlexNet without accuracy
loss when using 5-bit and 4-bit quantization [45]. AlexNet, introduced by Krizhevsky et
al., is a DNN trained to classify the ImageNet LSVRC-2010 data set with 1,000 different
classes [21]. When using INQ with a 5-bit or 4-bit quantization, the required memory
space to store the weight matrices of AlexNet is reduced compared to a representation
of weights with 32-bit [45].
Network pruning is another approach that reduces the memory usage and the network
size [7]. Usually in neural networks all nodes of one layer are connected with all nodes
of the next hidden layer. Network pruning deletes some of these connections. This
reduces the number of weights in the network. One technique, called Optimal Brain
Damage, searches for connections to delete or to set to zero that cause a minimum
increase of the objective function [23]. After deleting this parameters the network is
retrained and the algorithm searches again for weights to remove. With the help of
the loop it is possible that the accuracy of the neural network remains the same even
if up to 60% of the parameters are deleted or set to zero. Furthermore, low-rank fac-
torization is a possible choice that aims at reducing the size of the network and thus
using less memory space [9]. Low-rank factorization tries to generate several smaller
weight matrices factorizing a large weight matrix. A often used method for factorization
is singular value decomposition. However, calculating the decomposition uses lots of
computational resources [7].
The following section describes a method named Knowledge Distillation (KD) that can
be used in order to transfer knowledge from a large model to a model with smaller
network size [18]. This is another form of model compression.
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2 Related Work

2.1 Knowledge Distillation

During the training of a model there are usually no constraints concerning memory
space or the computational complexity. Often the main aim is to achieve a high ac-
curacy. The before mentioned requirements, like little memory usage and real-time
capability, are important when we utilize neural networks for example on mobile de-
vices or embedded systems [45].
Bucila et al. proposed a method called model compression [6]. This method is a pre-
decessor of KD. A small and fast model, called student, is trained to approximate the
function learned by a larger model, named teacher, trained with high accuracy. The
large network and its learned function can provide labels for a huge amount of training
data. The smaller model is then trained with the created samples. It is important to
note that the network with fewer layers and connections cannot overfit on the origi-
nal problem as long as the large model is not overfitting and sufficient training data
is used [6]. The student learns to approximate the function generated by the teacher
well.

Figure 2.1: Logits are inputs into the softmax-layer and probabilities the corresponding out-
puts.

Model compression uses the logits produced by the teacher model as targets for train-
ing the student model ([6], [18]). Logits are the inputs into the last softmax layer as
visualized in figure 2.1. They are used instead of the probabilities that are the outputs
of this softmax layer. The main reason not to use the probabilities, is that logits pro-
vide larger numbers and therefore richer information that can be used as knowledge
to train the smaller model [4]. For example, when the logits are [90, 40, 60] then the
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2.1 Knowledge Distillation

corresponding probabilities are [0.9999, 4.2𝑒 − 18, 2.1𝑒 − 9]. This means that the
last two targets may be ignored and the focus is solely on the first target. As a result,
probabilities provide less information that the student can learn and mimic than logits.
The used objective function is calculated as follows:

𝐿
(
𝑊, 𝛽

)
=

1

2𝑇

∑︁
𝑖

‖𝛽f
(
Wx(i)

)
− z(i) ‖22 (2.1)

where 𝑓 (.) is the activation function which is applied element by element, 𝑊 is a
weight matrix between input and hidden layer and 𝛽 is the weight matrix between
hidden layer and output layer [4]. The parameter 𝑥 (𝑖) is the input of the ith training
sample and 𝑧 (𝑖) are the corresponding logits. In order to optimize the performance
of the student model, it is best to train with new data that was not used for training
the teacher model [4]. Ba et al. stated that it is possible that the teacher model has
overfitted to the original problem at those training points [4].

The term Knowledge Distillation (KD) was introduced by Hinton et al. and it de-
scribes the transfer of knowledge from a large teacher model to a small student
model [18]. Figure 2.2 illustrates this method. Knowledge is described as a function
that maps the inputs of a system to their respective outputs. In the meantime several
papers deal with KD and its applications, some studying for example, regression
problems [38] or KD in the context of RL [2] but the focus is mainly on classification
problems ([6], [18], [28]). Given certain inputs the network is able to select one
specific class as the output, based on the maximum probability. KD benefits from
these assigned likelihoods [18]. The large teacher network calculates not only the
probability of the final output but all probabilities of each possible output called "soft
targets". These likelihoods contain information about the generalization of the model
and can be used to train the small student model. "Hard targets", on the other hand,
only provide information about the correct output but no details about which outputs
can be easily mistaken. When we use "soft targets" instead of "hard targets", the
number of training samples can often be reduced.
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2 Related Work

Figure 2.2: Illustration of the process of KD.

The proposed model compression algorithm by Bucila et al. uses logits as "soft tar-
gets" [6]. KD, on the other hand, calculates probabilities based on logits [18]. These
probabilities are scaled using a temperature 𝑇 . The goal is that they are not too small,
so that they still provide information about the generalization. Hinton et al. showed that
using the original training set works well when the loss function is adjusted in a way
that the model not only learns to predict the final label, but also learns the general-
ization provided by the teacher model [18]. The used softmax function calculates the
probability 𝑝𝑖 given the logit 𝑧𝑖 compared with other logits. In contrast to the softmax
calculation in figure 2.1, they added a temperature to their softmax function. The "soft
targets" are calculated as follows:

𝑝𝑖 =
𝑒𝑥𝑝(𝑧𝑖/𝑇)∑
𝑗 𝑒𝑥𝑝(𝑧 𝑗/𝑇)

(2.2)

where 𝑇 describes the temperature and can be set to a high value to produce softer
targets. The student network is trained with the same temperature 𝑇 that was used
while generating training samples with the teacher model. After training 𝑇 is set to 1.
The training can be even further improved when the correct labels are known and a
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2.1 Knowledge Distillation

combination of two objective functions is used ([18], [28]). One function calculates the
Kullback-Leibler divergence with the "soft targets" and a high temperature 𝑇 [28]. The
same temperature is utilized that was used to generate the "soft targets". This loss
function aims at matching the "soft targets" of the teacher 𝑝𝑡 and student 𝑝𝑠:

𝐿𝐾𝐷 = 𝑇2𝐾𝐿 (𝑝𝑠, 𝑝𝑡 ) (2.3)

where KL corresponds to the Kullback-Leibler divergence loss. 𝑇2 is needed to rescale
the magnitude of the gradients [18]. The second function calculates a cross entropy
with the outputs of the student, 𝑇 set to 1 and the real labels ([18], [28]). This cross-
entropy loss function is used in supervised learning to ensure, that the output of
the student network and the corresponding label are the same and to penalize mis-
matches [28].

𝐿𝑆𝐿 = 𝐻 (𝑝𝑠, 𝑙) (2.4)

In formula 2.4 𝑝𝑠 represents the calculated output of the student network but with the
temperature 𝑇 set to 1, 𝑙 corresponds to the ground truth label and 𝐻 represents the
cross entropy function. The combination is composed of the weighted average of both
functions [18]. In order to achieve good results it is best to use a much smaller weight
on the second loss function 𝐿𝑆𝐿 [28].

𝐿𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = (1 − 𝜆)𝐿𝑆𝐿 + 𝜆𝐿𝐾𝐷 (2.5)

Logits that are a lot smaller than the other logits are ignored when a lower temperature
is used [18]. This can be beneficial in case the student model is too small to capture
the complexity of the teacher network.

2.1.1 Knowledge

There are different kinds of knowledge that can be transferred from the teacher to the
student [17]. The knowledge can either be the output of the teacher model or the
knowledge can be transferred from the hidden layers and used for training the student
model.

Response-based knowledge is the most basic kind of knowledge that is used in a
lot of distillation scenarios [17]. Model compression and KD use knowledge provided
by the last layer to train a student model ([6], [18]). Response-based knowledge uses
only the output of the last layer as knowledge that is transferred from the teacher to the
student. This output, calculated in formula 2.2, is referred to as "soft targets" [18]. A
typical structure of a response-based knowledge distillation can be seen in figure 2.3.
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2 Related Work

Figure 2.3: Training process using response-based knowledge redrawn after Gou et al. [17].
The knowledge is extracted in the last layer and used for calculating the loss function and
training the student.

Feature-based knowledge describes the knowledge learned in the hidden lay-
ers [17]. It can be used as additional information to the response-based knowledge
that can be transferred to the student. Training the student with feature-based knowl-
edge aims not at matching the outputs but the feature activations. Romero et al. used
a feature-based approach to train student models called FitNets that are thinner and
deeper than their teachers [33]. They introduced so called hints that are used to help
training the student. A hint is the output extracted of one of the teacher’s hidden layers,
the so called hint layer. In the student network a layer is chosen to be guided by the
hints of the teacher. This guided layer is trained to predict the teacher’s hint layer. In
their approach the teacher network is wider than the student and this is why they intro-
duced a regressor to match the size of the guided layer and the hint layer. The training
is structured in different stages. At first all layers up to the guided layer, including the
regressor parameter, are trained using a special introduced loss function. Afterwards,
the whole FitNet is trained using the normal KD procedure. The feature-based knowl-
edge transfer is visualized in figure 2.4.
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2.1 Knowledge Distillation

Figure 2.4: Training process using feature-based knowledge redrawn after Gou et al. [17]. The
guided layer of the student is trained to match the hint layer of the teacher.

Relation-based knowledge is the third type of knowledge that is mentioned by Gou
et al. [17]. The name implies that it uses the relationship between the hidden layers or
the data samples for training the student model.
Park et al. introduced a method called Relational Knowledge Distillation where they use
mutual relations of data samples as knowledge that is transferred from the teacher to
the student [31]. They compute a potential between 𝑛 data samples and use this knowl-
edge to train the student. One function called distance-wise potential calculates the
Euclidean distance between two data samples using the output representation. Distil-
lation then aims at matching the calculated distance-wise potentials between teacher
and student. A loss function is presented that promotes the same distance between
data samples in their output representation spaces of teacher and student. Another
introduced potential function is called angle-wise potential. This potential calculates
the angles of three data samples in their output representation space. They further
introduce a loss function to promote the same angles in the output representation of
teacher and student. In figure 2.5 a relation-based knowledge approach can be seen
that makes use of instance relations introduced by Park et al. [31].
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Figure 2.5: Relation-based knowledge redrawn after Gou et al. [17]. Relational Knowledge
Distillation calculates relational information using a potential function 𝜓(.) and uses this infor-
mation to train the student.

Another approach introduced by Yim et al. uses the relation between different feature
maps [43]. The student does not need to know the intermediate teacher results of a
specific input sample, it is more important that the student knows the steps necessary
to solve a specific task. In this approach, the student tries to mimic the generated
features of the teacher, whereas Romero et al. tries to approximate the intermediate
results [33]. The features provided by the teacher are the solution process that the stu-
dent tries to mimic. This solution process for a specific type of input is used as knowl-
edge that is distilled form teacher to student. It is defined as relationship between two
intermediate results and is stored in a so called Flow of Solution Procedure (FSP) ma-
trix. The FSP matrix of teacher and student with same spatial size is used to calculate
the loss. This loss is then used to minimize the difference between the FSP matrices
and afterwards a normal training process takes place where the students initial weights
are set to the pretrained weights.

2.1.2 Distillation

There are three different approaches towards knowledge distillation: offline-, online-
and self-distillation [17].
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2.1 Knowledge Distillation

Offline distillation is the most basic form and requires a pretrained teacher model
that is used to train the student [17]. At first the large teacher model is trained with
the original training data. The teacher model then provides additional information like
logits [6] or "soft targets" [18]. This knowledge is used to train the smaller student
model. Most papers assume that the pretrained teacher model already exists and they
search for methods to extract knowledge from that model [18]. Training the teacher
model can be computationally expensive, however, training the student afterwards is
usually more resource friendly.

Online-distillation is another method where teacher and student model are trained
at the same time [17]. It is used when there is no pretrained model available. Teacher
and student may switch their functionality while training and the teacher becomes the
student and vice versa. This means there is no fixed teacher and student model. One
method inspired by online-distillation is called codistillation [3]. This approach uses
several networks with the same layout and trains them simultaneously. All models are
trained with the same dataset and several networks are distilling from each other. This
means that there is no specific teacher and student model but each model is trained
using the provided knowledge of the other networks. An advantage of codistillation is
that it can accelerate training.

Self-distillation is the third and last form of distillation presented by Gou et al. [17].
This approach uses one network which is teacher and student at the same time. There
are several techniques of how and which knowledge is transferred within the training
time. Lan et al. proposed a method called Self-Referenced Deep Learning [22]. This
method does not need a teacher model. At first the network is trained using a nor-
mal supervised approach with a conventional loss function and afterwards the learned
knowledge is used to further train the model. During this training stage it is tried to min-
imize two loss functions, the ordinary loss used for supervised training and a imitation
loss that uses the extracted knowledge.

2.1.3 Teacher Student Architecture

The quality of the resulting student model is not only determined by the knowledge
that is transferred from the teacher, but also by the network architecture of both mod-
els [17]. In most distillation scenarios the teacher and the student network size is fixed
and there are no changes during distillation. KD was first used to transfer knowledge
from a teacher to the student, a smaller network with little depth and width [18]. The
teacher on the other hand is usually a large model with lots of layer and a high capacity.
This large discrepancy in the network size is called capacity gap.
Mirzadeh et al. showed that this can be ineffective and cause an inferior performance
of the student [28]. They proposed a method called Teacher Assistant Knowledge
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Distillation that can reduce the gap and improve the student’s accuracy. In their paper
they were able to illustrate that a student distilled from a teacher with a large capacity
performs worse than a student trained with the help of a smaller teacher network. The
basic recipe for this method is to use an additional model called Teacher Assistant (TA),
which has a size that is smaller than the teacher but larger than the student. The TA is
trained with the help of the teacher model and afterwards the student model is distilled
form the TA. A TA is especially useful when the size of the teacher and student are
fixed beforehand.
Mirzadeh et al. show that a larger and more complex teacher model leads to an in-
creased accuracy of the teacher model itself [28]. The student model that is distilled
from the teacher model, however, can benefit from a slightly larger teacher model but
once the teacher gets too complex, the accuracy of the distilled student decreases.
There are three factors that influence this result. The first one is the increased teacher
accuracy that leads to better predictions which are superior for supervising the stu-
dent model and therefore increase the distillation performance. The second factor that
needs to be considered is that a larger teacher model is more complex and it is possible
that the small student network is not able to mimic the learned function of this com-
plex model. And finally the teacher achieves an increased accuracy and gets more
confident about the predicted output this leads to "soft targets" that cannot convoy as
much information to the student because they become closer to the "hard targets".
These last two factors are reasons why the student’s performance decreases once
the teacher model becomes too complex and predominate the first factor. With the
help of a TA, the second and third factor can become less important. This is because
the student learns from the TA network, which is less complex than the teacher. Fur-
thermore, the TA produces softer targets and is less certain about its decisions. On
the other hand, introducing a TA may reduce the positive influence of the first factor.
However, Mirzadeh et al. showed that this does not lead to an inferior performance of
Teacher Assistant Knowledge Distillation because improving the second two factors
outweighs the negative impact on the first factor [28]. They further investigated what
the best size of the TA is and found out that distillation benefits from a TA regardless of
its size. However, they discovered that the best performance provides a network size
that is close to the teachers and students average performance. To evaluate the best
size, networks with different number of neurons are trained from scratch and without
distillation. Based on the performances of these networks, the average performance is
calculated. The network size with a performance closest to the average performance
is the best size for a TA. The accuracy of the student model can be even further im-
proved when several TAs are used.
The student model does not have to have fewer layers than the teacher. There are
other architectures possible too. Distillation is advantageous even when the architec-
ture of teacher and student is similar [3]. The important point is that there are some
dissimilarities between them, like another training set, mixed order of training samples
or a different weight initialization.
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2.2 Deep Neural Networks and Shallow Neural Networks

The universal approximation theorem states that a feedforward neural network with
a single layer is able to learn any measurable function to a desired degree of accu-
racy ([19], [20], [24]). However, Ba et al. showed that training a DNN using the original
training data produces a better performing model with higher accuracy than training
a shallow neural network with the same data [4]. Using model compression, neural
networks with a shallow architecture can be trained that achieve a better performance
than networks with the same architecture that are trained from scratch with the origi-
nal training data. They proposed several possible answers to the question why model
compression is able to train shallow networks that achieve a higher accuracy than shal-
low networks trained directly on the original data. One possibility is that in the original
training data some samples are mislabeled but the teacher has learned to predict them
correctly. The teacher is then able to provide correct labels for the synthetic data that
is used for training the student model. Another reason why mimic models may achieve
a higher accuracy is that the teacher has learned a function based on complex train-
ing data. The data provided by the teacher could be simpler. The third possibility is
that it is more difficult to learn from "hard targets" (0 or 1). The student is trained with
data labeled by the teacher and can even learn from the uncertainties of the teacher
because it is trained using "soft targets".
Whenever shallow models are trained with the original training data they tend to over-
fit [4]. This prevents them from learning the same function as a DNN when using the
same training data. Other regularization techniques could help to overcome the overfit-
ting problem. However, the results proposed by Ba et al. suggest that a shallow neural
network is as capable of learning complex functions as a DNN, sometimes even with
the same number of parameters [4]. They showed that small neural networks with only
a single layer can achieve as good or even better results than a DNN when they are
trained to mimic a powerful teacher. In their experiments they used model compres-
sion and trained at first a large teacher model. Afterwards, they employed this model
to teach a shallow student model. Based on these results, one can say that KD or its
predecessor model compression are superior methods and often perform better than
training a shallow neural network from scratch.

2.3 Data Generation Methods

Creating synthetic data is challenging [6]. Often large amounts of unlabeled data is
hard to access. Therefore, pseudo data needs to be generated. The student model
will fail to approximate the function of the larger model when the synthetic data only
reflects a small field of the distribution of the true data. However, when the pseudo data
is generated from a very large distribution then lots of samples are needed to reflect the
region of the true data well enough. It is best when the synthetic data is sampled within
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the region the true data comes from. When both data, true and artificial, come from the
same distribution, then fewer samples are needed to train the student to approximate
the function learned by the teacher well.
Three approaches to generate artificial data are presented by Bucila et al. [6]. These
three methods, RANDOM, MUNGE and Naive Bayes Estimation (NBE), enable us to
create an arbitrarily large amount of training data.

2.3.1 RANDOM

Random sampling is a commonly used and simple approach to generate artificial
data [6]. The RANDOM method mentioned by Bucila et al. uses the existing train-
ing set and generates additional data points by choosing for each attribute a value
uniformly at random from all values of the same attribute that are available in the train-
ing set [6]. Therefore, it uses a non-parametric bootstrap approach. This method can
create huge amounts of artificial samples in an easy way. However, the generated data
represents a large field that does not exactly reflect the true data distribution. Within
the true data there may be some structure present between the attributes. This struc-
ture is lost when we sample each value of the attributes independently. Loosing the
structure in the training data can lead to more data that is needed for training because
most of the artificial data does not represent the region of interest.

2.3.2 MUNGE

Bucila et al. proposed in their paper another approach to generate pseudo data named
MUNGE [6]. This method calculates the nearest neighbor of each training sample. The
algorithm differs between continues and non-continues attributes.
Whenever the samples are non-continues then one attribute of a training example
is swapped with the attribute of its nearest neighbor with a probability 𝑝. Continues
attributes 𝑒𝑎 are changed to another value with probability 𝑝, too. The new value
they get assigned is drawn randomly from a normal distribution with the mean of the
nearest neighbor 𝑒′𝑎 and a standard deviation 𝑠𝑑 = |𝑒𝑎 − 𝑒′𝑎 |/𝑠, where 𝑠 is the local
variance parameter. This method is able to approximate the true data distribution well
and preserves the structure between the attributes.

2.3.3 NBE

Naive Bayes Estimation (NBE) is another method mentioned by Bucila et al. [6]. This
method is also able to overcome the weakness proposed in the previous section 2.3.1
and the structure of the data can be maintained [6]. When using NBE the artificial data
is sampled from the joint distribution of the attributes of the training samples. With the
help of Expectation Maximum (EM) the joint distribution of the data is learned [12]. This
method allows to generate artificial samples that are lying in the region of interest. The
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NBE method is a mixture model algorithm and was first introduced by Lowd et al. [26].
It can estimate the joint distribution of continues and discrete attributes. In algorithm 1
the training process of NBE is shown step by step.

Algorithm 1 : NBE iterative learning algorithm [26]
Input : training set 𝑇 , hold-out set 𝐻, initial number of components 𝑘0, and

convergence thresholds 𝛿𝐸𝑀 and 𝛿𝐴𝑑𝑑 ;
Output : 𝑀𝑏𝑒𝑠𝑡
Initialize 𝑀 with one component;
𝑘 ← 𝑘0;
repeat

Add 𝑘 new mixture components to 𝑀 , initialized using 𝑘 random examples
from 𝑇 ;

Remove the 𝑘 initialization examples from 𝑇 ;
repeat

E-step: Fractionally assign examples in 𝑇 to mixture components, using
𝑀 ;

M-step: Adjust parameters of 𝑀 to maximize the likelihood of this
fractional assignment;

if 𝑙𝑜𝑔𝑃(𝐻 |𝑀) is highest so far then
𝑀𝑏𝑒𝑠𝑡 ← 𝑀 ;

end
until 𝑙𝑜𝑔𝑃(𝐻 |𝑀) fails to improve by ratio 𝛿𝐸𝑀 over the last iteration;
𝑘 ← 2 x 𝑘 ;

until 𝑙𝑜𝑔𝑃(𝐻 |𝑀) fails to improve by ratio 𝛿𝐴𝑑𝑑 over the last iteration;
Execute E-step and M-step twice more on 𝑀𝑏𝑒𝑠𝑡 , using examples form both 𝐻
and 𝑇 ;

2.4 Data Exploration Methods

Another approach to generate synthetic data is to use data exploration methods. In
Reinforcement Learning (RL) exploration strategies are needed to improve the actor
performance [36]. RL uses an agent that takes actions within an environment and
the environment returns an observation and the corresponding reward. The ultimate
goal of RL is to maximize the total reward the agent achieves and to minimize the time
it takes to train the agent. An actor that acts only in the environment it knows and
tries to improve its performance within this space, may not discover the parts of the
environment that would yield an even better reward. On the other hand, if an agent
only acts randomly, the training can take a long time and require a lot of computational
resources. Therefore, a good balance between exploration and exploitation is neces-
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sary.
The pretrained teacher model that is used in KD is able to provide labels to a random
set of inputs. In this thesis the same simulation environment is used for data gener-
ation as for the training of the teacher model. Using data exploration methods one
can generate new actions or inputs that are then labeled with the help of the teacher
network. Training the student network with these generated samples can improve the
overall performance since the added samples introduce new states of the agent which
is additional knowledge that is transferred to the student. These new states differ from
the states that are introduced using only the data provided by the simulation. This can
be beneficial for the student’s performance.
The 𝜖 -greedy exploration approach or random exploration is a simple method often
used in RL [36]. This strategy has only one parameter 0 ≤ 𝜖 ≤ 1 that is used to de-
cide which action to take. With a probability of 𝜖 the actor takes a random action and
otherwise, the actor chooses the optimal action based on the prediction of the teacher
network.
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This master thesis was created as part of a project called Phoenix. The project is a
work of several PhD students and students of the Chair of Data Processing. The goal
of the project is to train a drone within a simulation using Reinforcement Learning (RL).
Different flight maneuvers are trained and afterwards the neural network is transferred
to the drone to perform the flight maneuvers in the real world. The drone used to test
the neural network in the real world is the Crazyflie 2.11 which is produced by Bitcraze
AB.

3.1 Crazyflie 2.1

Figure 3.1: Image of the drone Crazyflie 2.11.

The project uses the Crazyflie 2.1, because it has an open source platform like its
predecessor Crazyflie 2.0 and is therefore particularly suitable for research and devel-
opment [16]. All technical data can be found in the data sheet of the Crazyflie 2.11.
The system is very light with 27 grams and small, about the size of a hand, as can be

1https://store.bitcraze.io/products/crazyflie-2-1
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seen in figure 3.1. It is equipped with four coreless DC motors and a 250mAh battery,
which allows a flight time of up to seven minutes. On the board there are two micro-
controllers, one main microcontroller and one for the radio and power management.
The controller for main applications is a Cortex-M4 processor that runs with 168MHz
and has a SRAM with the size of 192kb. The Crazyflie 2.1 supports Bluetooth Low
Energy and can be controlled with a smartphone. Furthermore, it provides a so called
Crazyradio which enables communication with a personal computer. This is tested to
one kilometer range line-of-sight. The Crazyflie 2.1 is also able to perform real-time
logging and variable setting, which makes it a perfect fit for the Phoenix-Project.
In 2009 the three founders of Bitcraze2 startet to create the Crazyfie. They decided
to provide an open source development platform for their products. This enables the
users of the Crazyflie to conduct research and to modify the product according to their
individual needs. The client API of the Crazyflie 2.1 is written in Python but other im-
plementations can be downloaded from GitHub like Ruby, C#, C/C++, Java and more.

3.2 Simulation Environment

Figure 3.2: Image of the simulation environment gym-pybullet-drones.

OpenAI Gym3 can be used when working with RL, because it offers a collection of dif-
ferent benchmark problems [5]. It provides several abstractions of environments that

2https://www.bitcraze.io/about/bitcraze/
3https://gym.openai.com/
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share a common interface. OpenAI Gym uses a series of episodes to demonstrate the
agent’s experience. The agent starts his actions from an initial state which is randomly
sampled. The interaction between agent and environment is stopped when a terminal
state is reached by the environment. One advantage of OpenAI Gym is that each en-
vironment has a version number that is changed each time the environment changes.
This ensures that published results are reproducible.
Gym-pybullet-drones is a Gym environment that can handle multiple agents [30]. It
is especially designed for quadcoptors. In the Phoenix-Project, RL is used to train a
drone in a simulation environment to accomplish different flight maneuvers. The ac-
quired model is then applied to a quadcoptor and performs the flight maneuver in the
real world. However, there are some effects in the real world that need to be considered
in the simulation as well, in order to train a stable flight maneuver. Gym-pybullet-drones
is a suitable environment because it supports realistic collisions, extensible dynamics
via Bullet Physics and some aerodynamic effects [30]. The supported effects are drag,
ground effect and downwash. With the help of PyBullet it is possible to model these ef-
fects separately and use them in combination [30]. Drag is a force that is produced by
the rotating propellers and acts in the direction opposite to the movement. The ground
effect appears whenever the quadcoptor hovers near the ground. The proximity to the
ground results in a change in air circulation, which leads to increased thrust. Finally,
the downwash is an effect that appears when two drones fly over each other. This
effect can cause a reduced lift for the drone at the bottom. These three aerodynamic
effects are included in the simulation environment and improve the experience when
the models are applied in real world. However, in the end, we are not able to model
all effects that appear in the real world. Another positive aspect of this simulation en-
vironment is that their default quadcopter model is the Bitcraze Crazyflie 2.x which
corresponds to the used drone in the Phoenix-Project.

3.3 Scope of Work

This section describes the experimental setup and the performed experiments in more
detail. The objectives of the work and the approaches to achieve these objectives are
also described more precisely. Furthermore, the thesis uses a modified version of KD
which is explained below.

3.3.1 Experimental Setup

In the project, a neural network is trained using Reinforcement Learning (RL) within
a simulation. The model learns a specific flight maneuver, such as hovering at a cer-
tain point. Depending on how well the model performs the given task, a reward is
calculated. Various penalties reduce the actor’s reward. Whenever the actor turns too
fast, the reward will be reduced or if the episode terminates before the maximum time
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steps have expired. These penalties are used to calculate the actor’s final reward.
With the help of the simulation and RL a few models are trained with different sizes,
but all models have one thing in common, they have two hidden layers and several
hidden nodes. This results in a large network with many parameters, which requires
a lot of memory. One of these networks will later be transferred to the drone and will
execute the previously trained flight maneuver in the real world. The problem here is
that models of this size cannot be utilized on the drone. It has been empirically shown
that two hidden layered neural networks with 32 neurons each are small enough in
order to be executed with the required control frequency on the drone. Based on this
experience the target size for neural networks in this thesis is set to two layers each
with a maximum of 32 neurons.
This raises the question of why smaller models are not trained directly using RL. Train-
ing with RL is very time-consuming and the project is still in the initial phase. Many
of the current problems deal with different settings and architectures that are possible
and are looking for ways to optimize them. For example, if a new RL model has to
be trained for each architecture, this takes much more time than training once a large
teacher model and use this teacher to distill different student architectures using KD.

Figure 3.3: Crazyflie 2.11 controlled by a neural network using sensor data as inputs and the
attitude as outputs to control the drone.

The sensor data of the drone serve as inputs on which the calculations of the neural
network are based. Here the position, the velocities, roll, pitch and yaw and their
derivatives, as well as the last executed action are transferred and used as input into the
neural network. Based on this data, the values of the output from the neural network,
the attitude, are calculated and passed to the quadrotor. Figure 3.3 visualizes the
neural network and its corresponding inputs and outputs.
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3.3.2 Applied Knowledge Distillation

The Knowledge Distillation (KD) used in the project is different from the one presented
in section 2.2 by Hinton et al. [18]. In the project KD is used without the transfer of
additional knowledge. Furthermore, no temperature is adjusted during the training.
The teacher learns in a difficult RL environment and transfers its learned function to
the student based on the outputs. In the Phoenix-Project, the problem is a regression
problem and thus, only the "hard targets" prepared by the teacher are transferred to
the student. In most KD scenarios it is a classification task where "soft targets" are
used to train the student which provide additional knowledge ([18], [15]).

3.3.3 Objectives and Approaches

One aim of this work is to investigate which data is best suited for training the student
model. Training data can be generated using the simulation and the teacher model.
The simulation provides the sensor data and the model uses this data to calculate
the outputs, the so-called action. This action is then executed in the simulation and
new input data is generated. The generated data sets are stored and used to train
the student model. Since it is a stochastic simulation, not all executed trajectories are
the same. The parameters of the environment are changed randomly. Thus, several
trajectories lead to different data sets. However, since the learned flight maneuver is
always the same, the drone’s movements are very similar in all trajectories. Therefore,
there is a risk that in case of some disturbances or deflections of the drone, it is not
able to compensate them. As a result it may be useful to add more data for training
the student when deflecting the drone to a different position during the simulation, pro-
viding new sets of sensor and output data. In the optimal case, the complete function
and all its local shapes that the teacher has learned is conveyed to the student during
training.
This thesis therefore explores different methods to generate data in addition to the
pure simulation data in order to obtain a diverse data set for the training of the student
model. The performance of the teacher is compared with that of the student and the
extent to which the results are reproducible is also evaluated. The reproducibility of the
results is evaluated by training several student models with the same architecture, the
same teacher and the same training data and comparing the results obtained in each
case. The closer the results of the individual students are to each other, the higher
the reproducibility. When the models are trained, their performance is compared by
calculating their achieved reward using the simulation. To determine the reward, the
trained model is loaded into the simulation environment and executes a predefined
number of trajectories. For each trajectory the performance of the actor is calculated
as reward, which is stored. The average reward based on the number of trajectories
is then returned and used as a basis for comparison.
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Another aim of this thesis is to study the effects of a Teacher Assistant (TA). The
best method to generate training data is chosen and used to check whether the dif-
ference in size between teacher and student leads to a decrease in performance and
whether a better model can be trained with the help of a TA. This approach aims at
reducing the capacity gap and can lead to a better result of the student [28]. Different
architectures of TAs are investigated while the architectures of student and teacher
are determined in advance. The size of the teacher model is pre-determined, since it
is available already trained and the size of the student is limited by the constraints of
the drone.
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The following section presents the data generation methods that are investigated in
this thesis. In particular, it is examined whether the method is suitable to perform a
successful KD and to generate a well-performing student. Based on the findings, it will
be determined whether the student can be further improved with the help of a TA.

4.1 Data Generation

As described in section 2.1, KD trains a student model using input data to which the
teacher generates the corresponding output labels. It is important to choose the input
data carefully, so that the student is able to learn the exact function that the teacher has
already learned. Input data can be generated with the help of the simulation presented
in section 3.2. The following subsections examine different ways to generate diverse
input data, which differ to some extent from those inputs generated in the simulation.

4.1.1 Pure Simulation Data Generation

One way to train a student model is to use only the data pairs generated in the simu-
lation, called pure simulation data. Using the simulation, an unlimited amount of data
can be created and the neural network can be trained with any number of training sam-
ples. For the generation of the data points, the simulation is performed which provides
the input data and executes the trained teacher network. The teacher then gener-
ates the corresponding actions. The input data and the produced actions are used as
training data for the student. The teacher network that is executed in the simulation
is trained and performs repeatedly the learned flight maneuver. The disadvantage of
this method, however, is that as soon as a disturbance acts on the drone, the student
model does not learn to compensate for it and thus cannot execute the flight maneuver
as desired. Although some aerodynamic effects are taken into account in the simula-
tion, there are several more in reality. These are not included in the data pairs of the
simulation. In addition, only one specific flight maneuver is performed, for example
hovering at a certain point. The teacher used in the simulation for data generation
is already trained and therefore the deflections of the drone around the target point
during the simulation are only very small. If the student is later deflected more than
the teacher in the training data, it cannot compensate for the deflection and the drone
of the student model crashes. A student model that was only trained with pure simu-
lation data performs less successful than neural networks that were trained with data
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sets that additionally consist to a certain extent of sample data that were generated
otherwise. The additional data points are used to transfer more knowledge from the
teacher to the student. Not only data pairs that reflect the simulation but additional data
pairs that represent, for example, a disturbance. To better compare the different data
generation methods, the variant with pure simulation data as reference and baseline
is included in the results.

Figure 4.1: Original input and output data that is generated using Pure Simulation Data Gen-
eration.

Figure 4.1 shows a toy example, with two-dimensional data points. The pure simu-
lation data is also called original data. The graph shows both the original inputs and
outputs. This is an easy to understand example with simplified sample data. The real
data is generated using the simulation and the teacher network and consists of 16 dif-
ferent inputs and 4 different outputs. This graph is used to compare the different data
generation methods presented in the following sections and to better understand the
different approaches.
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4.1.2 Epsilon-Greedy Data Generation

This method is based on the 𝜖 -greedy algorithm presented in section 2.4. The Epsilon-
Greedy Data Generation method is described in algorithm 2 and uses the data pro-
duced in the simulation environment. A adjustable parameter determines the proba-
bility with which an arbitrary action is generated. This action is not added to the final
training set, but it is used to deflect the drone and the subsequent data pairs are then
included in the training set. Described differently, this method is a combination of the
pure simulation data and additional arbitrary actions leading to modified input data.
This way the drone is not only trained hovering at the optimal point but also during a
certain percentage of deflections and their subsequent movements to compensate for
them again. If the parameter of probability is set to a low value, predominantly the pure

Algorithm 2 : Epsilon-Greedy Data Generation
Input : number of training samples 𝑛, probability parameter to generate a

random action 𝜖 , teacher model 𝑡𝑚
Output : training dataset 𝑇
𝑋 ← ∅;
𝑌 ← ∅;
𝑇 ← ∅;
𝑥← reset the environment to a random initial state and get input data;
for number of samples to generate 𝑛 do

if probability 𝜖 then
𝑎← draw a random action from the action space;

else
𝑎← compute action based on the teacher model 𝑡𝑚 and input data 𝑥;
𝑋 ← 𝑥, add current input to dataset;
𝑌 ← 𝑎, add current action to dataset;

end
𝑥, 𝑑𝑜𝑛𝑒← compute a new timestep with new input data 𝑥 in the
environment based on the current action 𝑎 and indicate whether a
episode reached its end 𝑑𝑜𝑛𝑒;

if end of episode 𝑑𝑜𝑛𝑒 then
𝑥← reset the environment to a random initial state and get input data;

end
end
𝑇 ← [𝑋 ,𝑌 ];

simulation data is used. Otherwise, a deflection of the drone is produced and the fol-
lowing data is then included in the training set. Because the random actions differ from
the simulation data, the trained student model can be expected to perform better than
a model trained with pure simulation data. This can be assumed, because additional
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knowledge is transferred from the teacher to the student model. In case of occurring
disturbances and thus deviating input data, the neural network is also trained to some
extend in these regions.

Figure 4.2: Comparison between original output data and data generated using Epsilon-
Greedy Data Generation.

Figure 4.2 shows again the toy example, with two-dimensional data points. The
Epsilon-Greedy Data Generation method changes the output data. The original output
data are the data points generated by the Pure Simulation Data Generation method.
With a certain percentage, the so-called exploration probability, not the original output
data is used but an arbitrary output is generated. The graph shows both the origi-
nal output in green and the output generated by the Epsilon-Greedy Data Generation
method in blue. In the final training set, the randomly modified data points themselves
are not added, but the subsequent input and output data pairs.
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4.1.3 Random Data Generation

The Random Data Generation approach uses a certain percentage 𝜖 of randomly gen-
erated input data in addition to the pure simulation data. Algorithm 3 shows the pro-
cedure that is needed in order to generate the training data. The additional data is

Algorithm 3 : Random Data Generation [6]
Input : number of training samples 𝑛, probability parameter to take a random

input 𝜖 , teacher model 𝑡𝑚
Output : training dataset 𝑇
𝑋 ← ∅;
𝑌 ← ∅;
𝑇 ← ∅;
𝑥← reset the environment to a random initial state and get input data;
for number of samples to generate 𝑛 do

if probability 𝜖 and 𝑋 contains more than two input samples then
𝑟 ← calculate the range of each input attribute based on current

available samples in 𝑋 ;
𝑥← draw a input sample with random attributes that are calculated
within range 𝑟;
𝑎← compute an action based on the generated input sample 𝑥;

else
𝑎← compute an action based on the teacher model 𝑡𝑚 and the input 𝑥;

end
𝑋 ← 𝑥, add current input to dataset;
𝑌 ← 𝑎, add current action to dataset;
𝑥, 𝑑𝑜𝑛𝑒← compute a new timestep with new input data 𝑥 in the
environment based on the current action 𝑎 and indicate whether a
episode reached its end 𝑑𝑜𝑛𝑒;

if end of episode 𝑑𝑜𝑛𝑒 then
𝑥← reset the environment to a random initial state and get input data;

end
end
𝑇 ← [𝑋 ,𝑌 ];

produced by randomly sampling the input data based on the range of each input at-
tribute of the current training data which was generated using the simulation. This
creates new input combinations, but within the range of the usual input attributes that
are generated within the simulation. Based on these inputs, the associated outputs are
determined using the teacher model. By this strategy additional data points are gen-
erated, which are within a range that occurs in the simulation, thus, are not completely
random but possibly did not occur so far in this combination, as they are generated
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arbitrarily. This covers a larger range of possible input data than using only pure sim-
ulation data, but also keeps the range rather small compared to a completely random
version where all possible values of an attribute are considered. After all, the larger the
range in which the input data lies, the more pairs of data are necessary to adequately
represent the true data distribution that is needed by the student model to approximate
the function of the teacher model well [6]. In figure 4.3 an example is shown using
Random Data Generation. The example shown is based on an existing example pre-
sented in the work of Bucila et al. [6]. This is again the toy example with simplified data
already presented in the previous sections.

Figure 4.3: Comparison between original input data and data generated using Random Data
Generation.

The distribution of the original data forms a circle with the center at the zero point and
a radius of one. These original data points are visualized in red and represent data
points generated by the simulation. In blue the data generated using the Random
Data Generation Method can be seen. It is obvious that the true data distribution is not
exactly met and the generated data differs from the original input data. The algorithm
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used to create the random data pairs focuses on the midpoint between the minimum
and maximum value of the input attribute. Therefore, more data points are generated
around the center point than in the corners.

4.1.4 Munge Data Generation

The algorithm named MUNGE was first introduced by Bucila et al. [6]. The main goal
of this method is to produce synthetic data that is very similar to the real data distri-
bution. This method is described further in subsection 2.3.2. If we apply the method
to the problem at hand and generate synthetic training points in addition to the data
generated with the Pure Simulation Data Generation method, which serve as the orig-
inal training set, we generate a larger data set with a similar data distribution as the
original training data. Due to the very similar distribution of the artificial data and the
original data, we can expect the results obtained to be similar to the results using pure
simulation data as training data but with still some little variations. The input data has
16 different attributes and is therefore 16-dimensional. Thereby it is very likely that the
actual data distribution lies in some kind of tube within these 16 dimensions and not
simply arbitrarily.
In algorithm 4 the procedure employed in this thesis is formulated and an implemen-
tation from GitHub1 is used. The procedure is based on the MUNGE algorithm intro-
duced by Bucila et al. [6]. Using Munge Data Generation, the additional data points
are very similar to the original data. This can be seen in figure 4.4. The visualized
example is based on the experiment and toy example described by Bucila et al. [6].
The original input data provided by the Pure Simulation Data Generation method is
again visualized in red and the created data samples using the Munge Data Gener-
ation method are drawn in blue. The used number of samples is 250 and half of the
samples are swapped using the munge algorithm whereas the other half remains the
same as the original data. The example clearly shows that the Munge Data Generation
method generates data pairs that are very similar to the original data and differ only
slightly. The original data distribution is preserved.

1https://github.com/alperengormez/munge_python

41



4 Methods

Algorithm 4 : Munge Data Generation [6]
Input : number of training samples 𝑛, swap probability 𝜖 , size multiplier 𝑘 , local

variance 𝑣, teacher model 𝑡𝑚
Output : training dataset 𝑇
𝑋, 𝑋 ′← ∅;
𝑌,𝑌 ′← ∅;
𝑇,𝑇 ′← ∅;
𝑥← reset the environment to a random initial state and get input data;
for number of samples to generate 𝑛 do

𝑎← compute action based on the teacher model 𝑡𝑚 and the input data 𝑥;
𝑋 ← 𝑥, add current input to dataset;
𝑌 ← 𝑎, add current action to dataset;
𝑥, 𝑑𝑜𝑛𝑒← compute a new timestep with new input data 𝑥 in the
environment based on the current action 𝑎 and indicate whether a
episode reached its end 𝑑𝑜𝑛𝑒;

if end of episode 𝑑𝑜𝑛𝑒 then
𝑥← reset the environment to a random initial state and get input data;

end
end
𝑇 ′← [𝑋 ,𝑌 ];
for number in size multiplier 𝑘 do

for input sample 𝑥 in 𝑋 do
for attribute 𝑥𝑎 of sample 𝑥 do

if probability 𝜖 then
𝑛𝑛𝑎 ← calculate the attribute of the nearest neighbor sample
using Euclidean distance;
𝑛𝑛𝑎 ← 𝑛𝑜𝑟𝑚(𝑥𝑎, 𝑠𝑑), where 𝑠𝑑 = |𝑥𝑎 − 𝑛𝑛𝑎 |/𝑣;
𝑥𝑎 ← 𝑛𝑜𝑟𝑚(𝑛𝑛𝑎, 𝑠𝑑), where 𝑠𝑑 = |𝑥𝑎 − 𝑛𝑛𝑎 |/𝑣;

end
end
𝑎 ← calculate action based on current sample 𝑥;
𝑋 ′← add current input sample 𝑥 to the dataset;
𝑌 ′← add current action to dataset;

end
end
𝑇 ← [𝑋 ′,𝑌 ′];
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Figure 4.4: Comparison between original input data and data generated using Munge Data
Generation.

4.2 Teacher Assistant Knowledge Distillation

A Teacher Assistant (TA) is used to check if the performance of the student models can
be further improved. In subsection 2.1.3 the method presented by Mirzadeh et al. is
described in more detail [28]. In this chapter, the implementation within this experiment
is discussed, as well as the training data used. For a TA to be useful in the training
process, one needs defined teacher and student network architectures. This part of the
thesis uses a teacher architecture with two layers of 500 neurons each and a student
architecture with two layers of 32 neurons each. This teacher is used because it was
available and fully trained at the beginning of the thesis. The TA also consists of two
layers, but experiments are performed with different numbers of neurons. However,
the number must be between that of the teacher and the student. The Epsilon-Greedy
Data Generation method is used to generate the training data for the TA. This method
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was selected because it achieved the best results when comparing the different data
generation methods. First, the TA is trained with a data set that was created with the
Epsilon-Greedy Data Generation method, where the outputs were calculated using
the teacher model. Subsequently the training data for the student uses the input data
from the already created training set for the TA. The corresponding outputs are then
calculated with the help of the trained TA model. The TA then becomes the teacher
and trains the student. In summary, the input data is the same for the TA and student
training, but the output data is adjusted by the outputs of the respective teacher.
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In the following, the experiments performed and their results are described. If KD is
used, then the student model is trained to reproduce the teacher’s results as closely as
possible. Thus, the student model cannot overfit the original problem, if one assumes
that the teacher himself has not overfitted and sufficient training data is used as stated
by Bucila et al. [6]. This property was also confirmed empirically using pure simulation
data. Due to this fact, overfitting will not be considered further in the experiments.
All experiments in this section were performed with a patience of 40 and 10 student
models were trained in each case, which are evaluated in the different graphs. In order
to compare the models with each other, the performance of the individual models was
determined. The calculated reward was used as a measure for the performance. The
higher it is, the better the generated student model. The trained model was tested in
the simulation in which the training data was generated. However, test and training
data differ from each other because the simulation selects random initial states and
there are also some noise parameters which lead to unique data sets. Furthermore,
the different data generation methods introduce further variations in the training data.
With the help of the simulation, the reward of the respective model can be calculated.
For the calculation of the reward, several trajectories are flown which consist of 500
data points each. In the following section, 500 trajectories were used in each case to
achieve rewards that are comparable. This leads to a total of 250,000 data points that
were used for testing the individual models.

5.1 Settings

Good parameters must be found for each data generation method in order to compare
all experiments in a fair way. In this thesis, a manual search was used to find well per-
forming parameters for each method. Since it takes a long time to find these settings,
first the number of training samples needed to train a model that achieves satisfactory
results is investigated.

5.1.1 Amount of Training Data

When training a neural network, it is important to strike a balance between sufficient
training data and the training duration. In this work, the training duration describes
the time needed to generate training data in addition to train the neural network until a
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satisfactory performance is achieved or in our case until the early stopping criteria is
met. The time needed to generate the training data is dependent on two influencing
factors. On the one hand, the amount of data and on the other hand, the used method
for the data generation.
In order to find an appropriate number of training samples for the following experiments,
the performance of different data amounts is examined in this section. Pure simulation
data was used as data set and four different sizes of sets were investigated. The
first size called "small" contains 100 files, each including 2,000 data samples. One
trajectory, using the simulation, consists of 500 samples. A slightly larger data set
called "middle", uses 100 files with 20,000 samples a file, which corresponds to 40
trajectories per file. The "large" set consists of 50 files and the "extra large" set of 100
files with 200,000 data samples or in other words 400 trajectories per file. The results
of the trained students are shown in the following boxplot 5.1.

Figure 5.1: Experiment using different number of training samples of pure simulation data to
identify best data set size.

The outcome of the experiment shows that with using the Pure Simulation Data Gen-
eration Method to generate training data we can reach a model performance of the
student that is about as good as the performance of the teacher. Further, one can see
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that using more data leads to better reproducible results. This means that the 10 mod-
els generated using the same data set have a more similar performance. Of course
it is not practical to use vast amounts of data because the training time will increase
drastically. This experiment was conducted in order to find the appropriate amount
of data that is necessary to achieve good results while keeping the training duration
low. When investigating the plot in figure 5.1 we can see that when using the data set
named "small" the results vary strongly, especially for an architecture of two hidden lay-
ers with 16 neurons each. On the other hand, if one uses the data set called "middle",
one generates models that achieve a higher reward and are also more reproducible.
Compared to all other numbers of training data, it achieved nearly as good results while
keeping the training effort low. If doubling the data from the data set called "large" to
"extra large", no significant improvement is visible. Weighing up the additional train-
ing time required, it is advisable to work with the smaller data set called "large". In
summary, it can be concluded from this experiment that the data set named "middle"
is sufficient to perform smaller experiments, such as determining the best parameters
of a method and the data set size named "large" represents a good trade off between
training duration and achieved reward for the final investigation and comparison of the
different student models that are trained in the following experiments.

5.1.2 Random Data Generation

The random method has only one parameter and that is the probability with which an
input sample is used that was not produced using the teacher model and the simulation
but an input sample that was generated randomly. The method is described in more
detail in section 4.1.3.
Initial tests with data sets of size "small" showed that the best performance is achieved
with a probability value around 15%, so this area was investigated in more detail in the
experiment. Figure 5.2, showing the results of the experiment with a data set size
"middle", confirms the initial experiments and demonstrates that a probability factor
of 15% achieves the best results. This seems to be a good balance between pure
simulation data and random deflections of the drone via changed input data.
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Figure 5.2: Experiment using different probabilities 𝜖 with which a random input sample is
generated.

5.1.3 Epsilon-Greedy Data Generation

The only parameter that can be adjusted in the Epsilon-Greedy Data Generation
method is the probability parameter as well. Therefore, another experiment was con-
ducted in order to find a proper value for this parameter. The same settings were used
as in the experiments before.
The boxplot in figure 5.3 shows the results of the 10 models trained using a data set
of size "middle". The best trained model of a run is represented either by the whiskers
or by an outlier marked as a circle outside the whiskers. If one examines with which
parameters the best model can be trained, one finds that the larger the probability pa-
rameter, the better the reward the best model achieves. However, at the same time the
reproducibility of the results decreases, which can be seen in the larger boxes. There-
fore, a good balance must be found, which seems optimal at a parameter of 25%.
Based on this experiment 𝜖 = 25% is used in all further tests.
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Figure 5.3: Experiment using different probabilities 𝜖 with which a random action is generated.

5.1.4 Munge Data Generation

The Munge Data Generation method has several parameters for which a suitable value
must be found, the size multiplier 𝑚, a local variance 𝑣 and a swap probability 𝑝.
A disadvantage of this method is that it takes a long time to generate the data and,
therefore, the training time is significantly longer than with the other methods presented
in this section. Due to this disadvantage and the fact that the Munge Data Generation
method uses three hyperparameters instead of one, the search for good settings takes
much more time. Therefore, the preselection of the parameters of this method was
made with the help of the data set size "small".
At first several variances were tested while keeping the swap probability 𝑝 and the size
multiplier 𝑚 the same.
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Figure 5.4: Experiment using different local variances 𝑣 for the Munge algorithm with 𝑚 = 1
and 𝑝 = 50%.

In figure 5.4 again the results are shown, which were obtained with the help of 10 runs
and a patience of 40. Since the main focus is on the local variance, the other two
parameters were not changed. In the graph one can see that a very small variance
leads to highly scattered results. In this example, a variance of 0.2 seems to be the
most suitable.
With the help of this observation, further tests were carried out to find a good size
multiplier. The parameter of the local variance was set to 0.2 and a swap probability
of 50% was used. The results are shown in figure 5.5.
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Figure 5.5: Experiment using different size multipliers 𝑚 for the Munge algorithm with 𝑣 = 0.2
and 𝑝 = 50%.

In this experiment it is more difficult to determine the best parameter. On the one hand
the results are closer to each other and thus more reproducible with a size multiplier
of one, but on the other hand, with 𝑚 = 2 a higher median is obtained. If the size
multiplier is increased further, the results are even more scattered and the median
also deteriorates. For further tests, a size multiplier of two is selected, since it can be
expected that the scattering of the results will be reduced even further with a larger data
set. This assumption was made based on the results in subsection 5.1.1, which show
that with a larger data set, the results of the trained students become more similar.
With the help of the previous experiments good values for the local variance and the
size multiplier have been found, these are now used to find a suitable value for the
swap probability. If a low swap probability is used, the generated data set is very
similar to the pure simulation data and the original data is changed only very little. Due
to this fact, the assumption can be made that a very low probability leads to worse
rewards, which can also be seen in the graph in figure 5.6. However, if a very high
swap probability is used, almost all data points are changed and only a few training
samples correspond to the simulation data, which may also lead to worse results. This
is due to the fact that the pure simulation data is important for the training process. Only
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a few additional deflections of the drone should be included in the data set to provide
additional stability while still training the basic movements of the flight maneuver.

Figure 5.6: Experiment using different swap probabilities 𝑝 for the Munge algorithm with 𝑣 =

0.2 and 𝑚 = 2.

Looking at the results, it can be seen that a probability of 50% yields solid results. Of
course, not every combination of parameters was tested with this manual search and
it is possible to find a even better combination. However, for the following experiments
these values, 𝑣 = 0.2, 𝑝 = 50% and 𝑚 = 2, are used to compare this method to the
others.

5.2 Comparison of Data Generation Methods

In this chapter, the different methods for data generation are compared. The best
method is the one that creates student models that achieve the highest rewards. For
this experiment the data set size "large" was used. In section 5.1.1 it was shown that
this size achieves well evaluable results without an extensive training duration using
most of the data generation methods.
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Figure 5.7: Comparison of the achieved rewards of students trained with different data gener-
ation methods.

In figure 5.7 the performance of the student models is visualized, which were trained
with different data sets. The settings determined in the previous section were used
to generate the training data. Again, 10 student models each were trained with the
same data set and a patience of 40 was used. To make the comparison meaningful,
some student models were trained with pure simulation data. This data set generated
student models that achieved approximately the same reward as their teacher. Using
the Random Data Generation method with a probability factor of 𝜖 = 15% resulted
in even better models that achieved higher rewards as their teacher. The median of
the two architectures trained with the random data set was significantly higher than
the median of the pure simulation data. However, the results of the students varied a
lot. This means that the reproducibility of the results was rather low, which is evident
from the large boxes. The third experiment shown in the graph are the student models
trained with data from the Epsilon-Greedy Data Generation method. The previously
determined probability value of 𝜖 = 25% was used. With the help of this data set
even better models were trained and at the same time the results were much more
reproducible than when using data of the Random Data Generation method. The last
boxes show the performance of a data set created with the Munge Data Generation
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method. The obtained rewards of the trained models were significantly better than
those of the models trained with the pure simulation data, but at the same time worse
than those trained using the Epsilon-Greedy data set. In addition, generating the data
points took a lot of time. Looking at the results of the different methods, it is clear that
each of the approaches studied represents an improvement over the pure simulation
data. The student models trained with the different data generation methods outper-
form the teacher. This seems very surprising at first and needs an explanation. In
most cases where KD has been used in previous research, the teacher still achieves
higher rewards than the student ([29], [40], [42], [46]). However, some experiments
have been conducted in which the student performs better ([15], [27], [33], [41]). So
far, there is a lack of studies which fully describe this phenomenon. However, in this
work we try to find an possible explanation.
A model with the same architecture as the students, for example with two layers and 32
neurons each, trained using only RL, achieved a reward of about -0.3. This result was
determined by averaging the achieved rewards of 500 trajectories and it shows that KD
produces superior models, which are better than the models currently trained directly
using RL within the project. This phenomenon was already tried to be explained by Ba
et al. and can be read in section 2.2. Since in this experiment no additional knowledge
was transferred from the teacher to the student except the outputs of the teacher, this
can be neglected as possible reason. However, the problem that the teacher tries to
learn with the help of RL is much more complex than the provided input-output pairs
that the student has to learn. This may explain the better performance of the student
compared to a model with the same size trained with RL. But, this still does not explain
why the student outperforms its teacher. One possible reason is that the student has
learned to generalize better and therefore achieves higher rewards.
When comparing the different data generation methods, we can see clear differences
in performance. If we analyze the student models of the Random Data Genera-
tion method and compare them to the Epsilon-Greedy method, we can see that with
Epsilon-Greedy data students can be trained that achieve more similar and at the same
time better rewards. This can also be explained by the fact that with the Random Data
Generation approach the inputs are chosen randomly to a certain extent, whereas with
the Epsilon-Greedy approach the outputs are determined randomly. Since there are
16 different input data, they are chosen from a 16-dimensional space, whereas the
space for the outputs is only 4-dimensional. This makes it more likely that the ran-
dom chosen outputs are closer to the actual distribution of the data that can occur
in the simulation than the inputs, since the 16-dimensional space allows much more
leeway in the randomly chosen samples. Presumably, the input data that can occur
in the simulation and also in reality lie within some sort of hose in this 16-dimensional
space, but this may not be reflected very well by the additional data points created with
the used Random Data Generation method. However, if we look at the models that
were generated using the Munge Data Generation method, we see that the dispersion
of the rewards of the individual models is very low. Similarly low as for the models
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trained with pure simulation data. The performance of the students trained with data
generated by the Munge Data Generation method is better than the performance of
models trained with pure simulation data, but still worse than the performance when
using other methods. This is probably because this approach generates very similar
data points to the data generated by the Pure Simulation Data Generation method and
the additional data points are very likely to lie within the before mentioned hose. This
means the additional data points lie very close to the simulation data points within the
hose and reflect the true data distribution but they do not capture the whole hose very
well. Therefore, these samples provide some variation, which improves the results,
but the variations are not as diverse as in the Epsilon-Greedy approach for example.
This may create the difference in the achieved rewards of the student models.

5.3 Comparison of different Teacher Sizes

Figure 5.8: The performance of students trained with different teacher sizes is compared. The
architecture of the teachers consists of two layers with 64, 128, 256, 500, 512 or 1024 neurons
each.
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In the course of this thesis, further teacher models were trained in different sizes within
the project. This section investigates which size is able to train the best students. The
Epsilon-Greedy Data Generation method was used, since it achieved the best results
in the previous section.
Figure 5.8 shows the results of the experiment. The student architectures trained con-
sist of two layers with 32 neurons each and 16 neurons each. The size of the teacher
used for the training is indicated as label on the x-axis. The achieved reward of the
teacher is shown as a dashed line and the performance of the 10 students trained is
visualized using a boxplot. This experiment used a patience of 40 and 500 trajectories
were evaluated to determine the rewards. If one looks at the achieved rewards of the
teachers with different sizes, one can already see differences. The situation is similar
for the trained students.
It is striking that the largest teacher with 1024 neurons achieved the worst reward and
furthermore, produced the worst performing students. It seems like this teacher could
not be trained sufficiently with RL and the simulation. Although some papers state that
larger models with more parameters usually produce better results ([21], [35], [37]),
this does not seem to be the case in the problem at hand. At the very least, the ar-
chitecture used is unfavorable to other architectures with fewer neurons when training
with RL. Consequently, students trained with this teacher perform significantly worse
than students trained with other teacher sizes. Another reason why these students
perform worse, could be that the teacher has to many parameters. Cho et al. showed
that large models with many parameters often perform worse as teachers than smaller
ones, even if they themselves achieve a higher accuracy than a smaller teacher archi-
tecture [8]. That is, regardless of the achieved reward of the large model, it can be a
poor teacher from which the student cannot learn successfully.
If we look at the other teachers and their respective students, we see that the teacher
with 64 neurons in each layer achieved the best reward but did not train the best stu-
dents. This means that the teacher’s performance is not directly related to the perfor-
mance of the students that are trained with the help of this teacher. The teacher with
512 neurons trained the best students in this experiment, and the student architecture
with two layers of 16 neurons each performed particularly well. Both the teacher itself
and the students achieved very good rewards.
In summary, this section shows that there are variations in the performance of stu-
dents trained by different teachers in different sizes. The best teacher with the highest
rewards does not necessarily train the best students. Similar observations have been
made by Cho et al. [8].

5.4 Teacher Assistant Training

In this section, the experiments performed with the help of a Teacher Assistant (TA)
are described in more detail. The size of the teacher is, as stated in section 4.2, two
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layers each consisting of 500 neurons and the student models that are trained have a
size of two layers each with 32 neurons. Since the other teacher models with different
sizes were only created and evaluated in the course of the thesis, the model with 500
neurons is still used in the following section, although it was shown in the previous
experiment that significantly better students can be generated using the model with
512 neurons as teacher.
As described in section 2.1.3, at first the teacher trains a TA which is then used to
train a student model. The settings used in the following experiments are again a
patience of 40 and 500 test trajectories to evaluate the rewards. The Epsilon-Greedy
Data Generation method was used to generate the training data, since it performed
best in section 5.2.

5.4.1 Single Teacher Assistant

Different architectures of TAs were used to find a size that trains well-performing stu-
dents. First, 10 different TAs were trained in different sizes. The best TA was then
used to train 10 students.

Figure 5.9: Comparison of the student performance trained with different TA architectures us-
ing Epsilon-Greedy Data Generation method with 𝜖 = 25%.
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In figure 5.9, one can see a boxplot of the 10 different students that were trained using a
single TA. The achieved reward of the corresponding TA is drawn beneath the student
performance as dotted line in the diagram. The size of the TA is visible as a label at the
bottom. The achieved reward of the TA, which is shown in the graph, corresponds to
the achieved reward of the best TA out of the 10 that were trained. On the far right one
can see the performance of the students which were trained directly by the teacher
with 500 neurons per layer. In comparison, the other boxplots show the rewards of
the students trained with the corresponding TAs. These also have an architecture
consisting of two layers but with a varying number of neurons [128, 96, 64, 48]. The
solid line visualizes the performance of the teacher, which was used to train the TA.
The median of all student models trained with a TA is better than that of the student
models trained directly by the teacher. The graph shows that all TAs achieved higher
rewards than the teacher shown in green. If we now compare the different architectures
of the TAs, we see that two layers each with 48 neurons trained the best students
which achieved the highest rewards. These are, as already mentioned, better than
the achieved rewards of the students which were trained directly using the teacher.
Similar to the experiments of Mirzadeh et al. the number of neurons of the best TA is
not the average between teacher and student size [28]. Looking at the results, we can
conclude that the use of a TA definitely improves the final rewards of the students. In
our experiment, a smaller TA with 48 neurons in each layer achieved higher performing
student models than those with more neurons.

5.4.2 Comparison of Teacher Assistant Training and Vanilla-KD

This subsection investigates whether the use of a TA is beneficial even if the teacher
is very large, or whether it is better to use a smaller teacher and perform KD without
a TA in this experimental setting. In this experiment we first used a large teacher ar-
chitecture with two layers each consisting of 1024 neurons and trained 10 TAs with
500 neurons in each layer. The best TA was further used to train 10 students with
two layers each consisting of 32 neurons. Afterwards, the results were compared with
students trained directly using a smaller teacher with 500 neurons in each layer.
Figure 5.10 visualizes the results of the experiment. The large teacher with 1024 neu-
rons per layer trained TAs that achieved similar results than the teacher itself. The
best TA was slightly better than the large teacher but worse than the teacher with 500
neurons. The best trained TA was then used to train students. These students finally
achieved better results than the teacher and also than the TA. However, the rewards
achieved by the 10 students were widely spread and lower than the rewards of the
students trained with the smaller teacher. One possible reason for the better results
that can be achieved with the help of the smaller teacher, is that the teacher itself al-
ready achieves a better reward than both, the large teacher with 1024 neurons and
its TA. Moreover, we have already found in subsection 5.3 that the large teacher with
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1024 neurons trains the worst students compared to the other teacher architectures
that were investigated.

Figure 5.10: Students trained using a teacher with 1024 neurons and a TA with 500 neurons
compared to students trained using only a teacher with 500 neurons.

In this experimental setup it is therefore not reasonable to use a larger teacher, unless
the teacher himself achieves a reward that is much better than that of the smaller
teachers which were trained. In such a case, the results should be re-evaluated. If
one compares the students that were trained by the large teacher with 1024 neurons
and a TA with those that were trained directly by the large teacher (section 5.8), one can
recognize the positive influence of a TA here as well. Just as in the previous section,
training with a TA improves the achieved rewards of the students, even though the TA
does not represent a major increase in performance compared to the teacher.

5.4.3 Two Teacher Assistants

In this section, we investigate whether multiple TAs further improve the results. Since
the TAs with an architecture of two layers each with 96 neurons and 48 neurons
achieved good results in the previous section, these architectures were used as TAs
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in this experiment. The teacher with two layers and 500 neurons trained 10 TAs with
96 neurons. The best of these TAs was used to train 10 smaller TAs which have an
architecture of two layers each with 48 neurons. Afterwards, the best TA with this
architecture then trained 10 students.

Figure 5.11: Training students with the help of two TAs. Visualized is the performance of the
teacher, TAs and students.

Figure 5.11 shows the performances of teacher, TAs and the trained students. It is
evident that the performance improved with each step of the experiment.
The graph in figure 5.12 visualizes the different performances that students achieved
when they were trained with one or two TAs and compares this to students that were
trained without any TA. In the graph on the right the achieved rewards of the students
are visualized which were trained without a TA. In the middle the results of the students
trained with a single TA are shown. The respective architectures of teacher and TA
as well as the student architecture is indicated as label on the x-axis. On the left
the performance of the students trained with two TAs is shown. It is clearly visible
that the additional TA improved the achieved rewards even more. These students
outperformed the conventional method without a TA, as well as the students trained
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with only one TA. This means that the rewards achieved by these students that were
trained with two TAs have a higher median than the rewards of the other students.

Figure 5.12: Comparison of students trained with one or two TAs and students trained without
a TA.

Mirzadeh et al. came to the conclusion that each TA improves the performance further,
even if from a certain number of TAs only small improvements are visible [28]. This ex-
perimental setup confirms their results and more TAs do improve the achieved reward
compared to a single TA or the direct training without one.

5.4.4 Sequential Knowledge Distillation

Previous experiments have shown that each trained TA improves the results of the
corresponding students. Therefore, this subsection investigates whether sequential
knowledge distillation also achieves performance improvements. The Born Again
Neural Networks presented and studied by Furlanello et al. represent a similar ap-
proach [15].
For this experiment, a teacher was used which has an architecture with two layers and
32 neurons. This teacher then trained TAs or students with the same architecture,
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which in turn trained other models with a similar architecture. This experiment differs
from the experiments before because the TAs have the same size as the teacher and
the student model. In each training step 10 models are trained from which the best
model is used to train 10 models of the next TA or student generation. As in the previ-
ous experiments, the data generated by the Epsilon-Greedy Data Generation method
was used as training data.

Figure 5.13: Knowledge distillation applied to models with the same architecture. The shown
TAs and students were trained with the best trained model on their left side.

The line on the left side of figure 5.13 shows the performance of the teacher, which
was used to train the TAs visualized on its right. The best TA was then used to train
the next generation of TAs and so on. As in the experiments before, it is evident that
the TAs and students perform better than the teacher. Furlanello et al. also reported
similar results, where in most cases the students outperform their teacher [15]. A re-
search work based on the Born Again Networks also confirms these results and states
that in the first generations, the obtained results are improved but at some point they
remain the same [41].
Looking at the results shown in figure 5.13, we can see that compared to the original
teacher, the results are slightly improved in each step. However, it is visible that the
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improvement becomes smaller from step to step which could be evidence for a satu-
ration that is mentioned by Yang et al. [41].
This experiment does not aim at compressing the models, rather teacher and students
have the same architecture. Thus, the improvements achieved cannot be explained
by the different network architecture of teacher and student. Since in this experimental
setup no additional knowledge of the teacher is transferred to the student and only the
outputs are adjusted, this explanation for the improved performance of the students
is also not meaningful. Rather, this experiment shows that the training data used is
crucial for the good rewards of the students and could be the reason why the students
in this thesis outperform their teacher.
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In this thesis, the first part investigated which method for data generation achieves
the best results in KD. Different approaches were examined and it was shown that
the Epsilon-Greedy Data Generation method trains the best students. This simple
approach uses random actions to deflect the drone in the simulation. Using a certain
amount of random actions generates a diverse data set that is able to train students
with a good performance. Surprisingly, the trained students are even better than their
teacher. This is probably mainly due to the training data set, since the pure simulation
data produces students that achieve a comparable performance to their teacher.
Furthermore, it is possible that a smaller architecture, similar to that of the students, is
beneficial for this problem setting. This could also be a reason why, even when using
the pure simulation data, the students perform about as well as the teacher without
an decrease in the achieved rewards. On the other hand, RL was also used to train
a model with two layers and 32 neurons, the same architecture as the students, and
this model achieved a reward of about -0.3 which is roughly equivalent to the teacher
with 500 neurons and worse than its trained students. The experiment with sequential
knowledge distillation also shows that improvements can be achieved even with the
same architecture. This observation suggests that the data set is the key reason why
the students perform better than their teacher.
Furthermore, the thesis investigated whether a certain teacher architecture achieves
better results in KD than others. Since these networks with different architectures
were only available in the course of the thesis, most of the experiments were per-
formed with the help of a teacher with two layers and 500 neurons each. Already, the
teachers themselves, achieve different rewards and thus also produce students that
perform differently. Surprisingly, the best teacher does not necessarily generate the
best students. However, more precise assumptions about the best architecture for
teacher and student cannot be made solely with one experiment. It only shows that
of the available teachers, the one with 512 neurons is able to train the best students.
Specifically, students with 16 neurons in each layer perform even better than those
with 32.
In the last section of the paper, it was examined whether a TA can further positively
influence the training. The first step was to investigate to what extent a single TA
influences the performance of the students. Already a single TA could confirm the
positive influence independent of its size. Adding a second TA improved the results
even more. However, in another experiment it was shown that it makes more sense
to think about the optimal teacher size instead of just adding a TA. For example, if a
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very large teacher is used, which, as in our case, also achieves worse rewards, and
a TA is added, the trained students achieve significantly worse results than students
trained directly with a better fitting teacher. One experiment shows the results that can
be obtained with the same architecture of teacher, TA and student but with multiple
distillation steps. In the experiment, TAs were trained three times and afterwards the
corresponding students. The results show that even with the same architecture, the
performance of TAs and students become better and better per distillation step. From
this experiment, it can be seen that the use of a TA can be worthwhile even if there is
no difference in size between teacher and student.

Currently, several other research questions regarding KD are investigated in the
Phoenix-Project, which among other things also examine a proper network architec-
ture. In the future it would be interesting to investigate whether the optimal architecture,
trained using RL, performs better than a trained RL model in combination with KD.
In addition, it should be investigated whether other architectures of students achieve
better results and which combination of teacher and student architecture performs
best. Shin et al. showed that students with more layers may achieve better results,
as they are often better able to generalize the knowledge they have learned [34].
According to them, this is due to the architecture of a deep network being able to
handle complicated features.
In this work, the settings for the methods were determined by a manual search. In
this approach, only a few parameters were tested. It is possible that even better
parameters can be found using a different hyperparameter search. In subsequent
investigations, the parameter search can be extended to achieve even better results.
Further work could also investigate whether a data set consisting of different flight ma-
neuvers yields even better results than the Epsilon-Greedy Data Generation method.
With a mixed data set of several flight maneuvers such as hovering, flying in circles,
flying up and down and so on, a very diverse data set can be created, which could
train models that are able to compensate well for different deflections of the drone.
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