
Approximative Sparse
Factorization of Neural

Network Weight Matrices
Michael Brandner

Chair of Data Processing
Technische Universität München

Master’s thesis

Approximative Sparse Factorization of
Neural Network Weight Matrices

Michael Brandner

January 25, 2022

Michael Brandner. Approximative Sparse Factorization of Neural Network Weight
Matrices. Master’s thesis, Technische Universität München, Munich, Germany, 2022.

Supervised by Prof. Dr.-Ing. Klaus Diepold and Matthias Kissel; submitted on January
25, 2022 to the Department of Electrical and Computer Engineering of the Technische
Universität München.

© 2022 Michael Brandner

Chair of Data Processing, Technische Universität München, 80290 München,
Germany, http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit http://creativecommons.or
g/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

In modern image processing applications, Convolutional Neural Networks (CNNs) are
indispensable. Especially in the domains of object classification and face recognition,
CNNs achieve impressive results. However, the increasingly accurate predictions are
accompanied by ever-larger networks and consequently more computations. The
number of operations required to compute the matrix vector product of a dense matrix
𝑀 ∈ N𝑁×𝑁 in the fully connected layer scales with 𝑂 (𝑁2), mainly responsible that
networks like VGG19 require 19.6 billion Floating-point Operations (FLOPs) to evaluate
a single image. This thesis investigates the factorization of weight matrices, of the
fully connected layer, into a product of sparse matrices, which potentially reduces the
order of operations needed to the subquadratic domain. Consequently, the number
of operations required for inference and thus, resource consumption is reduced.
I examine three approximation algorithms, namely Butterfly factorization, sparse
EigenGame, and Flexible Approximate MUlti-layer Sparse Transform (𝐹𝐴𝜇𝑆𝑇). The
approaches are compared regarding the sparseness of their approximation and
the approximation error. Furthermore, weight matrices of pre-trained Convolutional
Neural Networks are factorized and compared regarding their prediction accuracy after
approximation.
The best performance in terms of approximation error of the matrix and subsequent
prediction accuracy was achieved by 𝐹𝐴𝜇𝑆𝑇 . 𝐹𝐴𝜇𝑆𝑇 was able to make sufficiently
accurate predictions with only 20% of the parameters. Where sufficient accurate
means that the prediction accuracy drops by only 1%. For similar results, the other
algorithms needed 3% (Butterfly) and 18% (sparse EigenGame) more computations
than the original matrix-vector product.
The experiments show that Approximative Sparse Factorization (ASF) of the weight
matrices can significantly decrease resources consumption without deteriorating the
accuracy of the predictions too much. This can enable complex computer vision
algorithms to be used on devices with low computational resources or time-critical
systems.

3

Contents

1 Introduction 7
1.1 History of Convolutional Neural Networks 7
1.2 Problem Statement & Motivation . 9
1.3 Outline . 10

2 Preliminaries 11
2.1 Convolutional Neural Networks . 11
2.2 ImageNet . 13
2.3 Singular Value Decomposition . 15

3 Literature Review 19
3.1 Semiseparable Matrices . 19
3.2 Matrices of Low Displacement Rank 19
3.3 Hierarchical Matrices . 20
3.4 Approximative Sparse Factorization 21

4 Sparse Approximative Factorization Methods 23
4.1 Butterfly factorization . 23
4.2 FAµST . 26
4.3 EigenGame . 29
4.4 Sparse EigenGame . 32

5 Experiments 35
5.1 Target Matrix G . 35
5.2 Reference algorithms . 37

5.2.1 Dummy Method . 37
5.2.2 Truncated SVD . 37

5.3 Sparse EigenGame . 39
5.4 Butterfly Factorization . 40
5.5 FAµST . 41

6 Discussion 43
6.1 Summary and Interpretation . 43
6.2 Limitations and Recommendations . 48

7 Conclusion 51

5

1 Introduction

Neural Networks (NNs) are a powerful tool and a central component of modern Artificial
Intelligence (AI) algorithms. CNNs in particular are an indispensable part of modern
Computer Vision (CV), the task of extracting information from images or videos. Since
their introduction, CNNs were continuously improved, especially in terms of prediction
accuracy and the number of predictable objects.

1.1 History of Convolutional Neural Networks

The development of CNNs was mainly inspired by research on the visual cortex
[19], which revealed that cells in the visual cortex have a small receptive field [19].
Furthermore, they can be divided into simple and complex cells. The simple cells
process the input, whereas the complex cells process the output of the simple cells
[19]. The receptive field of the complex cells is, therefore, an integration of the receptive
fields of many simple cells.
With the support of these results, in 1980, the Neocognitron was developed [9]. This
predecessor of modern CNNs consisted of stacked s-cells (simple cells) for feature
extraction and c-cells (complex cells) to compensate for position changes [9]. The
introduction of these concepts revolutionized modern image processing, as it was
possible to detect shifted objects. With its seven layers and 11320 parameters, it was
able to achieve good classification results on the NIST data (predecessor of MNIST).
However, it was pointed out that the Neocognitron would achieve better results if it had
more parameters [9]. This insight determined the course for further development.

In the years between 1989 [24] and 1998 [25] the term CNN was introduced by LeCun.
The proposed LeNet models are the cornerstone of all modern CNNs. They consist of
three basic components :

• convolutional layer

• pooling layer

• fully connected layer.

The great success of this architecture can be attributed mainly to the convolutional
layer, which, like the visual cortex, processes information only in a small receptive
field. By stacking these, information is assembled layer by layer. Since this adds the

7

1 Introduction

a priori information that objects consist of locally linked components, it leads to better
generalization [24].
With seven layers and 60, 000 parameters, LeNet-5 achieved an error rate of 0.95%
on the MNIST test data.

However, CNNs breakthroughs were archived between 2010 and 2017, made possible
primarily by the annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
In the first two years, traditional methods won the competition with an error rate (top-5
error) of 28.2% (2010) and 26.3% (2011) [38]. In 2012, a CNN won the competition
for the first time. The network used, AlexNet, reduced the error by almost 10% to
15.3% [21]. More importantly, however, was the conclusion that large and deep NNs
are required to achieve record-breaking results [21]. Although AlexNet introduced new
concepts such as dropout, its success is mainly due to its size. With eight layers,
650, 000 neurons, and about 60 million parameters, it is roughly ten times larger than
LeNet.
In the following years, new records were set every year. Until finally in 2017 SENet
reached an error rate of 2.3% [18], which is barely half that of a human (error rate 5.1%)
[38]. It should be noted that during the competition period, the error rate decimated
from 28.3% to 2.3%. The number of parameters remained generally high, however,
the most remarkable development is that the networks became deeper from 8 layers
(AlexNet) to 152 (SENet).

8

1.2 Problem Statement & Motivation

Figure 1.1: Plot of the accuracy, the number of computing operations required, and the
number of parameters of common CNNs [5]. The plot illustrates the hyperbolic relationship

between prediction accuracy and resource consumption.

In summary, it can be stated that deep networks in particular have become established.
However, the general size of the networks has also increased. Figure 1.1 shows the
accuracy, the number of computing operations required, and the number of parameters
of well-known CNNs. It is obvious that the development towards higher accuracy is
mainly paid for by the number of FLOPs/inference time required. The relationship
between accuracy and inference time is hyperbolic, meaning a slight increase in
accuracy costs a lot of FLOPs/inference time [5].

1.2 Problem Statement & Motivation

CNNs are getting deeper and bigger. This development leads to higher accuracy on the
one hand, but also to increasing resource consumption on the other hand as described
in section 1.1. These resources are mainly computing power for training/inference,
memory, and energy consumption, which are mostly restricted.

The hyperbolic relationship between accuracy and resource consumption [5] is
particularly problematic for applications such as autonomous driving [43]. Since high
accuracy is mandatory, but the evaluation of the data shall also be swift. For example,
a human crossing the road has to be detected immediately. Other problematic areas

9

1 Introduction

are Internet of Things (IoT) or Industry 4.0. These applications, in particular, are driven
by mobile and embedded systems. While prediction accuracy is typically not as critical
as in self-driving cars, resources are even more limited [31].

To further advance these applications, new approaches are needed to improve the
prediction accuracy and resource consumption of CNNs. Improvements only by
increasing the size and depth of the networks are already reaching their limits.

The goal of this thesis is to reduce the resource consumption of CNNs. In particular,
the fully connected layers are investigated since most of the parameters are part of
these layers. For instance, AlexNet consists of 60 million parameters, of which 58
million are within the fully connected layer [1]. The reduction in resource consumption
should be achieved by approximating weight matrices as a product of sparse factors.
For example, assuming a weight matrix 𝑊 ∈ R𝑚×𝑛 the advantage of this approach is
that the calculation of the matrix-vector product requires only 𝑂 (𝑘) instead of 𝑂 (𝑛𝑚)
operations, where k is the number of non-zero elements.
It should be mentioned explicitly that a reduction of the resource consumption at similar
accuracy is very close to an increase of the accuracy, since it allows e.g., embedded
systems to use more accurate systems and therefore usually also larger CNNs. The
higher resource consumption during training due to the extra factorization step is not
critical since such models are trained only once on separate systems with higher
performance.

1.3 Outline

The second chapter of this thesis explains basic requirements and concepts. The
following chapter reviews the current literature on structured matrices that can
significantly reduce resource consumption. After giving an overview in chapters two
and three, I introduce the methodology of this thesis in chapter four In the subsequent
chapter, the experiment results will be presented. These results are discussed and
placed in the current scientific context in chapter 6. In the last chapter, I summarize
the results of the thesis.

10

2 Preliminaries

2.1 Convolutional Neural Networks

Figure 2.1: Architecture of the LeNet-5 network. Consisting of the three components
convolutional, pooling and fully connected layer.

CNNs have revolutionized modern image processing. In 2012, a milestone was
achieved by AlexNet. For the first time, a NN was able to classify objects with higher
accuracy than the standard algorithms of that time. As already shown, the accuracy
was improved in the following years by new concepts like dropout [21], inception
modules [40] or shortcuts [15]. However, the basic structure has remained the same
since LeNet. This basic structure is shown in figure 2.1 and can still be considered
as the nucleus of CNNs. They consist of three essential components : convolutional
layer, pooling layer, and fully connected layer. The foundation for this structure was laid
in 1959 in experiments by David H. Hubel, and Torsten Wiesel [19]. They observed in
experiments with monkeys that neurons in the visual cortex have a small local receptive
field. Meaning that they only respond to a specific region of the visual field. Also,
they demonstrated that some neurons respond to horizontal lines whereas others to
lines with a different orientation. Furthermore, they showed that some neurons have
larger receptive fields and respond to more complex patterns. These observations
led to the conclusion that higher-level neurons are based on the outputs of low-level
neurons. This behavior was replicated by stacked CNNs. While low-level neurons in
deeper layers filter information such as edges and corners, the higher-level neurons
assemble this information into objects such as houses or similar. This concept is shown
schematically in figure 2.2.

11

2 Preliminaries

Convolutional Layers

Figure 2.2: Schematic representation of feature extraction in an image.

The essential component of a CNNs is the convolutional layer. This type of layer is
likely primarily responsible for the good performance of CNNs. A significant difference
to a regular NN is that the input neurons of the convolutional layer are only connected
to the pixels in their receptive fields.
This structure allows the network to recognize coarse structures in the first
layers, which are later assembled into high-level features. This process is shown
schematically in figure 2.2 [11]. During the training process, CNNs learn filters or
convolutional kernels that are needed to recognize objects in the image. A feature
map arises when all neurons in a layer use the same filters. They highlight the areas
in the image that look most similar to the learned filter. To be able to recognize more
features and objects in an image, CNNs consist of stacked feature maps in each layer.

Pooling Layers

Typically, each convolutional layer is followed by a pooling layer. The goal of this layer
is to reduce the parameters. Thus, on the one hand, the required computing power
is diminished. On the other hand, it improves generalization and therefore to avoiding
overfitting [11]. The basic principle is very similar to the convolutional layer. Thus
pooling layers are linked only with outputs in their receptive field from the previous
layer. However, aggregation functions are used instead of filters to process the data
further. These are typically a maximum or a mean function. The maximum aggregation
leads to the exclusion of all values except the maximum value in the given receptive
field.

12

2.2 ImageNet

Fully Connected Layers

The fully connected layer consists of regular artificial neurons that are connected to
all neurons of the previous layer. Thus, a single neuron in layer 𝑛 is connected to all
outputs of the neurons in layer 𝑛 − 1. The outputs are each weighted with a factor
assigned to the specific neuron. These values plus bias are then summed and an
activation function is applied to them. Typically the activation function is a ReLu, LReLU
or tanh function. Due to the full interconnectedness and weighting, it should be noted
that the fully connected layers consist of many parameters, which massively affect the
resource consumption [1].

2.2 ImageNet

Benchmark Data

There are a few reasons why benchmark datasets are needed, especially in Machine
Learning (ML). Foremost, it is difficult for a single researcher to collect and label 14
million images on his own. This would probably consume most of the resources, money
and time. Another problem is the evaluation of results. It is not possible to compare
models with each other and to estimate which model performs better without having
standardized benchmarks. Without this ranking, it is difficult to assess which new
techniques or methods are worth examining in more detail. A prime example of the
progress that can be achieved through benchmark data coupled with a competition is
ImageNet. Table 2.1 shows the development of the error rate at the ILSVRC in the
period from 2010 to 2017. In this short period, the error rate was reduced to one tenth.
Furthermore, competition showed the limits of traditional methods, which paved the
way for CNNs.

Year Winner Error rate (%)
2010 NEC-UIUC (TM) 28.2
2011 XRCE (TM) 25.8
2012 AlexNet 16.4
2013 ZFNet 11.7
2014 VGG 7.3
2014 GoogleNet 6.7
2015 ResNet 3.6
2016 ResNeXt 3.0
2017 SENet 2.3

Table 2.1: Table of winning networks of ILSVRC with the corresponding error rate in the
period from 2010 to 2017. Traditional methods are marked with (TM).

13

2 Preliminaries

The data

Figure 2.3: An excerpt of sample images from the imagenet dataset. The first row shows a
tench, the second row a dial telephone, the third a fly agaric [38].

The ImageNet project is an image database that is mainly used for research purposes.
ImageNet consists of roughly 15 million images divided into about 20,000 classes [21].
The images were taken from the internet and classified using Amazon Mechanical Turk.
An excerpt is shown in figure 2.3. ImageNet became known mainly for its annual image
classification competition, ImageNet Large-Scale Visual Recognition Challenge, held
between 2010 and 2017. For the competition, a subset of 1000 classes with at least
1000 images was selected each year [21]. Resulting in 1.2 million train, 50,000
validation and 100,000 test images. The contest had a significant impact on CNN’s
rapid development during this period [5]. It is one of the reasons that classification
accuracy increased dramatically during this period. This allowed ImageNet to become
the defacto standard benchmark for CNNs [2]. Many platforms such as Pytorch or
Tensorflow offer CNNs pre-trained on ImageNet. Since the experiment is based on
such pre-trained models, it is mandatory to validate the results with ImageNet data.

14

2.3 Singular Value Decomposition

2.3 Singular Value Decomposition

There are many examples of large matrices with non-random entries, such as images,
neural network weight matrices, and measured data. These data are often described
by several dependent variables which are generally correlated and include noise [22]
When decomposing the eigenvalues of such matrices, it can be observed that they
have few large eigenvalues (signal) and many very small ones (noise). If this is true,
the matrices can be compressed by setting small eigenvalues and the corresponding
eigenvectors to zero [39]. In general, however, images or weight matrices are not
squared. Consequently, a different decomposition is necessary. The solution is a
generalization of the eigenvalue decomposition, the Singular Value Decomposition
(SVD).

The SVD, decomposes a matrix 𝐴 ∈ R𝑚𝑥𝑛 into a product

𝐴 = 𝑈Σ𝑉𝑇 . (2.1)

where 𝑈 is a unitary matrix ∈ R𝑚×𝑚 , Σ a rectangular diagonal matrix ∈ R𝑚×𝑛 with
non-negative values on the diagonal and𝑈 is a unitary matrix ∈ R𝑛×𝑛.
The basic idea to compute the SVD is the fact that for each matrix 𝐴 the product
𝐴𝑡𝐴 or 𝐴𝐴𝑡 is symmetric and positive semidefinite [3]. It is possible to calculate
the eigenvalue decomposition for the correlation matrix 𝐶 = 𝐴𝑇𝐴. The roots of the
determined eigenvalues of 𝐶 are called singular values and have similar properties to
the eigenvalues. They are arranged by size on the diagonal of Σ. The eigenvectors of
𝐴𝑇𝐴 and 𝐴𝐴𝑇 are two orthogonal bases, forming the columns of U and V [39]. This is
shown in equation 2.2 for the right eigenvectors, analogously this also applies for the
left eigenvectors.

𝐶 = 𝑋𝑇𝑋

= (𝑈 · Σ · 𝑉𝑇)𝑇 · (𝑈 · Σ · 𝑉𝑇)
= (𝑉 · Σ ·𝑈𝑇)𝑇 · (𝑈 · Σ · 𝑉𝑇)
= 𝑉 · Σ · Σ · 𝑉𝑇

(2.2)

The SVD allows compression for arbitrary data matrices. The so called truncated SVD
is one of the central methods for many engineering and scientific tasks. It allows the
best possible low-rank approximation of a matrix, measured by the Euclidean or 𝑙2
distance [14]. A typical example is the compression of the well-known Lenna image
as shown in figure 2.4.

15

2 Preliminaries

Figure 2.4: Original as well as compressions of Lenna image, with ranks 60, 100 and 120.
The image demonstrates that an approximation with rank 100 is sufficient for most

applications 1.

Another concept closely related to SVD is Principal Component Analysis (PCA). PCA
is a linear transformation of variables, so that as few orthogonal variables as possible
describe the relevant information [4]. PCA aims to simplify the data and is used for
regression tasks as well as for detection of outlier in the data. It can be shown that
these principal components are the eigenvectors of the covariance matrix [42]. Thus,
the PCA of a given matrix 𝑋 ∈ R𝑚×𝑛 can also be viewed as the sum of rank-1 matrix
approximations. Each summand consists of the individual left eigenvectors (called
scores) and right eigenvectors (called loadings) times the corresponding singular value
as shown in equation 2.3.

𝑋 =

𝑚∑︁
𝑖=1

= 𝜎𝑖 · 𝑢𝑖 · 𝑣𝑖 (2.3)

Numerical Computation

The analytical approach for calculating SVD is usually not applicable. Over time,
algorithms for numerical calculation have been developed. Since the columns of
V are eigenvectors of 𝐴𝑇𝐴, methods for calculating eigenvalues can be used. A
well-known approach for calculating these is the power iteration [12]. However, due to
its relatively poor convergence properties [28], this algorithm has been superseded by
other approaches like random projections, but it is still the basis of several techniques.

1http://i.stack.imgur.com/FAC0i.png

16

2.3 Singular Value Decomposition

The algorithm is used to calculate the dominant eigenvalue and the corresponding
eigenvector of a given symmetric matrix 𝐴 ∈ R𝑛×𝑛, with eigenvectors 𝑣1, 𝑣2, ..., 𝑣𝑛
ordered according to the size of the associated eigenvalues. So that |𝜆1 | ≧ |𝜆1 |... ≧
|𝜆𝑛 |. Since the eigenvectors of 𝐴 span R𝑛 we can write for any vector 𝑏 :

𝑏 = 𝑐1𝑣1 + 𝑐2𝑣2 + ... + 𝑐𝑛𝑣𝑛 (2.4)

Following one can derive

𝐴𝑏 = 𝑐1𝐴𝑣1 + 𝑐2𝐴𝑣2 + ... + 𝑐𝑛𝐴𝑣𝑛
= 𝑐1𝜆1𝑣1 + 𝑐2𝜆2𝑣2 + ... + 𝑐𝑛𝜆𝑛𝑣𝑛

= 𝜆1(𝑐1𝑣1 + 𝑐2
𝜆2

𝜆1
𝑣2 + ... + 𝑐𝑛

𝜆𝑛

𝜆1
𝑣𝑛

𝐴2𝑏 = 𝜆21(𝑐1𝑣1 + 𝑐2
𝜆2

𝜆1

2

𝑣2 + ... + 𝑐𝑛
𝜆𝑛

𝜆1

2

𝑣𝑛

...

𝐴𝑘𝑏 = 𝜆𝑛1 (𝑐1𝑣1 + 𝑐2
𝜆2

𝜆1

𝑛

𝑣2 + ... + 𝑐𝑛
𝜆𝑛

𝜆1

𝑛

𝑣𝑛

(2.5)

For 𝑘 → ∞, the ratio (𝜆𝑖
𝜆1
)𝑘 → 0 for 𝑖 ∈ 2, 3, ..., 𝑛 since 𝜆1 is the biggest eigenvalue

by definition. Leading to the approximation :

𝐴𝑘𝑏 ≈ 𝜆𝑘1𝑣1 (2.6)

Thus, one can numerically calculate the dominant eigenvalue and the corresponding
eigenvector with the following procedure.

Algorithm 1 Calculating the dominant Eigenvalue 𝑣 and corresponding Eigenvector 𝜆
using Power iteration

1: Given : Matrix 𝐴, non-zero random vector 𝑣
2: while not converged do
3: 𝑣 ← 𝐴 · 𝑣
4: 𝑛𝑜𝑟𝑚 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑛𝑜𝑟𝑚(𝑣)
5: 𝑣 ← 𝑣

𝑛𝑜𝑟𝑚(𝑣)
6: 𝜆← 𝑣𝑇 𝐴𝑣

𝑣𝑇𝑣
return 𝜆, 𝑣

17

3 Literature Review

As mentioned in section 1.2, this thesis focuses on efficient matrix-vector computation
for neural networks by approximately decomposing a matrix in a product of sparse
factors. It should be mentioned that such a factorization is not only of significant
interest for neural networks. There exist several other applications, like solving inverse
problems, that can enormously benefit from such a factorization. The reason that
motivates the extra factorization step is that the matrix-vector product of a dense
weight-matrix𝑊 ∈ R𝑚×𝑛 requires𝑂 (𝑚𝑛) computations. In contrast, the ASF reduces
these to 𝑂 (𝑘), where 𝑘 is the number of non-zero elements. In literature, there exist
lots of approaches to minimize resource consumption. One method is for example
to exploit structures in the matrices to reduce the required computations. Since such
structured matrices are data-sparse, I want to put sparse matrices and their products
in relation to these. In the following sections the structures are described on the basis
of a matrix 𝑀 ∈ R𝑚×𝑛 with 𝑚 < 𝑛.

3.1 Semiseparable Matrices

Since semiseparable matrices are a vast field of research containing many subclasses,
we want to define them in the most general way. These are non-symmetric quasi-
semiseparable matrices, defined as matrices wherein all subblocks of the upper or
lower triangular part are of rank 𝑟 ≤ 1 [41]. There exist several representations
of semiseparable matrices e.g., generator, diagonal-subdiagonal, givens-vector, or
quasiseparable representation. However, since not every representation can express
all subclasses of semiseparable matrices, one has to choose it according to whose
application.
If all subblocks are of rank 𝑟 = 1, it is possible to calculate the matrix-vector product
using 𝑂 (𝑛) operations.

3.2 Matrices of Low Displacement Rank

Matrices of low displacement rank contain the most prominent structured matrices, like
Toeplitz, Hankel, Vandermond, or Cauchy matrices. Their most important properties
are [36] :

• representation with a small number of parameters,

19

3 Literature Review

• matrix-vector multiplication with subquadratic resource consumption,

• close connection to computations with polynomials, particular their
multiplication, division and interpolation,

• are associated with a linear displacement operator 𝐿, allowing to recover the
original matrix easily from 𝐿 and the image matrices or displacements 𝐿 (𝑀).

In general, matrices of low displacement rank are defined as shown in equation 3.1.
Where 𝐿 : R𝑚×𝑛 → R𝑚×𝑛 is a linear operator of Sylvester type, for a fixed pair of
operator matrices 𝐴 and 𝐵.

𝐿 (𝑀) = ▽𝐴,𝐵 (𝑀) = 𝐴𝑀 − 𝑀𝐵 (3.1)

The most common operator matrices are unit f-circulant matrices 𝑍𝐹 or diagonal
matrices 𝐷 (𝑣) shown in equations 3.2 and 3.3. For each of the already mentioned
structured matrices, we can associate a linear operator 𝐿 = ▽𝐴,𝐵 (𝑀) so that the rank
of the displacement 𝐿 (𝑀) remains small e.g. 𝑂 (1) or 𝑂 (𝑚𝑖𝑛(𝑚, 𝑛)).

𝑍𝐹 =

©­­­­­«
0 . . . 0 𝑓

1
. . . 0
. . .

. . .
...

1 0

ª®®®®®¬
(3.2) 𝐷 (𝑣) =

©­­­­­«
𝑣1 0 . . . 0

0 𝑣2
...

...
. . .

...

0 𝑣𝑖

ª®®®®®¬
(3.3)

If the operator matrices are known, algorithms can be implemented that exploit the
structures of the matrices and thus save computations. For this purpose, the matrix 𝑀
is first compressed using the displacements. Afterward, the calculations are carried
out on the compressed matrix. Finally, the result is decompressed. This leads to
resource consumption of 𝑂 (𝑛 𝑙𝑜𝑔(𝑛)) for Toeplitz and Hankel matrices [36].

3.3 Hierarchical Matrices

Hierarchical matrices or short H -matrices consist of low-rank sub-matrices, as
illustrated in figure 3.1. However, this does not necessarily imply that the H -matrix
itself is low-rank. By defining index sets 𝐼 and 𝐽 of the partitions, a block cluster tree
𝑇 (𝐼 × 𝐽), the partitions 𝑃 where by 𝑃+ are the low-rank sub-blocks and 𝑃− are full
rank sub-blocks, and the rank distribution 𝑟 : 𝑃 → N+ of an H -matrix, then the set
𝐻 (𝑟, 𝑃) ⊂ R𝐼×𝐽 ofH -matrices can be defined as all matrices 𝑀 ∈ R𝐼×𝐽 for which

𝑟𝑎𝑛𝑘 (𝑀 |𝑏) ≤ 𝑟 (𝑏) for all b ∈ P (3.4)

20

3.4 Approximative Sparse Factorization

holds [13]. In general, we aim to find block cluster trees such that major parts of the
matrix can be approximated with low-rank matrices. If the partitions are known, it is
possible to exploit the block structure, leading to subquadratic resource consumption
for a matrix-vector product [13].

Figure 3.1: Hierarchical matrix. The color indicates the rank of the matrix, whereby the
orange sub-blocks have full rank and the white blocks are low-rank.

3.4 Approximative Sparse Factorization

It is assumed that for all matrices where a fast algorithm for matrix-vector computation
exists, there exists a representation as a product of sparse matrices [29]. This was
already shown for some fast linear transformations like the Fast Fourier Transformation,
the Hadarmad transformation or the Discrete Wavelet transformation. With this
knowledge, it is reasonable to assume that sparse factorizations are closely related
to structured matrices.
Sparse matrices are characterized by the fact that most of their entries are zero. An
example is shown in equation 3.5.

𝑀𝑆 =

©­­­­­­­«

∗ 0 0 0 0 0
0 0 0 ∗ 0 0
∗ 0 0 0 0 0
0 ∗ 0 0 0 0
0 0 0 0 0 ∗
0 0 ∗ 0 0 0

ª®®®®®®®¬
(3.5)

The storage of the matrix 𝑀𝑆 ∈ R𝑜×𝑝 with 𝑜 = 𝑝 = 6 in dense format would
store 80% of non-informative zero values. Since this consumes an unnecessarily high

21

3 Literature Review

amount of resources for large sparse matrices, other storage formats emerged. The
most prominent are the COOrdinate (COO) and the Compressed Row Storage (CSR)
format. The COO format stores the non-zero elements as triplets (row, column, value),
whereas the CSR format stores the row values in a compressed form, reducing the
number of row elements to be stored to 𝑜 + 1.
Since for the matrix-vector product only calculations with non-zero elements have to be
considered, the required computing power is reduced to 𝑂 (𝑘) where 𝑘 is the number
of non-zero elements. Consequently, one can define the sparsity 𝜋 of 𝑀 as 𝜋(𝑀) =
|𝑀 |0 = 𝑘 . Furthermore by specifying the sparse approximative factorization of a given
matrix 𝑀 in 𝜅 sparse factors as 𝑀 = 𝑆1𝑆2...𝑆𝜅 we can specify the overall sparsity of
the approximation as

∑𝜅
1 𝜋(𝑆𝑖) [34]. With the help of these definitions, the objective of

sparse factorization can be stated as

min
𝑆1,𝑆2,...𝑆𝜅

𝜅∑︁
1

𝜋(𝑆𝑖) 𝑤.𝑟.𝑡. 𝑀 ≈
𝜅∏
1

(𝑆𝑖). (3.6)

22

4 Sparse Approximative Factorization
Methods

Fast linear transformations like the ones mentioned in section 3.4 are indispensable
for many applications such as machine intelligence. They are common used for data
preprocessing, feature generation or kernel approximation. The joint property of these
transformations is the existence of algorithms that calculate the matrix-vector product
with subquadratic resource consumption [6]. As already discussed, I assume that all
structured matrices, for which such a fast algorithm exists, can be represented as a
product of sparse matrices [7]. As I expect that weight matrices of neural networks are
not random and thus have certain structures, I hope to find these and exploit them.
In the following, I present algorithms, which approximately decompose a matrix 𝑀 ∈
R𝑚×𝑛 into a product of 𝜅 ∈ N+ sparse factors 𝑆𝑖 as depicted in equation 4.1.

𝑀 ≈
𝜅∑︁
𝑖=1

𝑆𝑖 (4.1)

It should be emphasized that 4.1 is ideally the solution to the minimization problem
presented in section 3.4. However, this problem is non-convex and non-smooth due
to the sparsity constraints.

4.1 Butterfly factorization

The butterfly factorization can learn several fast transformations, such as the discrete
Fourier transform, the discrete cosine transform, or the Hadamard transformation [27],
with minimal prior knowledge and high approximation accuracy. It decomposes 𝑀
into a product of 𝜅 = 𝑙𝑜𝑔(𝑛) + 3 factors. The resulting factors 𝑆𝑖 have a sparsity of
𝜋(𝑆𝑖) = 𝑂 (𝑛), leading to overall resource consumption of 𝑂 (𝑛 𝑙𝑜𝑔(𝑛)).

Algorithm

This section presents the butterfly factorization for a matrix 𝑀 . For simplicity and
without loss of generality I assume 𝑚 = 𝑛 = 4𝑎 with 𝑎 ∈ N+. The restriction on
the shape of the matrix is not critical since we can add zero padding to other shaped
matrices. I also define a set of points to access the rows 𝑋 , and columns Ω, these
points are described with the help of two binary trees𝑇𝑋 and𝑇Ω of height 𝐿 = 𝑙𝑜𝑔2(𝑛).

23

4 Sparse Approximative Factorization Methods

Now I can further denote at each tree level 𝑙, the ith node at level 𝑙 in 𝑇𝑥 as 𝐴𝑙
𝑖

for
𝑖 = 1, 2, ...2𝑙−1 and the jth node at level 𝐿 − 𝑙 in 𝑇Ω as 𝐵𝐿−𝑙

𝑗
for 𝑗 = 1, 2, ...2𝐿−𝑙 − 1.

These nodes partition the matrix in submatrices 𝐾 𝑙
𝐴𝑙
𝑖
,𝐵𝐿−𝑙

𝑗

which will be referred to as

𝐾 𝑙
𝑖, 𝑗

[27]. The structure of the binary trees is illustrated in figure 4.1. We call 𝑀 of
complementary low-rank if all defined subbmatrices 𝐾 𝑙

𝑖, 𝑗
are numerically low-rank [27].

If 𝑀 has this property, the butterfly factorization can recover the original matrix up to
numerical precision. Since several fast transformations have this property, I hope to
discover similar structures, at least approximately, in neural networks weight matrices.
If the weight matrices do not have this property, I assume that it is approximated by the
best complementary low-rank matrix measured by Frobenius norm.

Figure 4.1: Matrix with associated binary trees 𝑇𝑥 and 𝑇Ω. Furthermore I highlighted the
submatrix 𝐾2

1,1.

The butterfly factorization is held out in two stages, the middle level factorization and
the recursive factorization. With the aim to approximate 𝑀 as a product of 𝐿+3 sparse
factors as depicted in equation 4.2.

𝑀 ≈ 𝑈𝐿𝐺𝐿−1 · · ·𝐺ℎ𝑀ℎ (𝐻ℎ)𝑇 · · · (𝐻𝐿−1)𝑇 (𝑉𝐿)𝑇 (4.2)

The first stage, the middle level factorization decomposes each submatrix 𝐾ℎ
𝑖, 𝑗

, using
a rank 𝑟 = 1 low-rank approximation constructed with the truncated SVD, at level
𝑙 = ℎ = 𝐿

2 and arrange them in the initial factorization.

𝑀 ≈ 𝑈ℎ𝑀ℎ (𝑉ℎ)𝑇 (4.3)

where 𝑈ℎ and (𝑉ℎ)𝑇 are block diagonal matrices and 𝑀ℎ is a permutation matrix.
The decomposition consequently looks as illustrated in figure 4.2.

24

4.1 Butterfly factorization

Figure 4.2: Middle level butterfly factorization. The alignment of the rank-1 SVD components
is shown as an example for submatrix 𝐾2

2,1

After the middle level decomposition the matrices 𝑈ℎ and 𝑉ℎ are recursively
decomposed in 𝑈𝑙 ≈ 𝑈𝑙+1𝐺𝑙 and (𝑉 𝑙)𝑇 ≈ (𝐻𝑙)𝑇 (𝑉 𝑙+1)𝑇 for 𝑙 = ℎ, ℎ + 1, ..., 𝐿 − 1.
These recursive factorization steps yield to equation 4.2 and are explained in more
detail in the following sections.

Recursive factorization of𝑈ℎ

Considering that all factorizations on level 𝑙 result in a block diagonal matrix 𝑈ℎ for
𝑙 = ℎ as shown in equation 4.4.

𝑈ℎ =

©­­­­«
𝑈ℎ0

𝑈ℎ1
. . .

𝑈ℎ
𝑛−1

ª®®®®¬
, (4.4)

with

𝑈ℎ𝑖 =

(
𝑈ℎ𝑖,0 𝑈ℎ𝑖,1 · · · 𝑈ℎ𝑖,𝑛−1

)
. (4.5)

After recalling this we can split𝑈ℎ
𝑖

in two subblocks by row, resulting in equation 4.6.

𝑈ℎ𝑖 =

(
𝑈
ℎ,𝑡
𝑖

𝑈
ℎ,𝑏
𝑖

)
, (4.6)

where 𝑡 indicates the top and 𝑏 the bottom half. If we combine the equations 4.6 and
4.5, we obtain

𝑈ℎ𝑖 =
©­­«
𝑈
ℎ,𝑡
𝑖,0 𝑈

ℎ,𝑡
𝑖,1 · · · 𝑈

ℎ,𝑡
𝑖,𝑛−1

𝑈
ℎ,𝑏

𝑖,0 𝑈
ℎ,𝑏

𝑖,1 · · · 𝑈
ℎ,𝑏

𝑖,𝑛−1

ª®®¬ . (4.7)

If the assumption holds, that 𝑀 is complementary low-rank, then the subblocks(
𝑈
ℎ,𝑡

𝑖,2 𝑗𝑈
ℎ,𝑡

𝑖,2 𝑗+1

)
and

(
𝑈
ℎ,𝑏

𝑖,2 𝑗𝑈
ℎ,𝑏

𝑖,2 𝑗+1

)
are low-rank for 𝑖 = 0, 1, ..., 𝑚 − 1 and 𝑗 =

0, 1..., 𝑚2 − 1 [27]. Following the subblocks are approximated with a rank 𝑟 = 1

25

4 Sparse Approximative Factorization Methods

approximation constructed with a truncated SVD. Next, the resulting singular vectors
are embedded into the matrices 𝑈𝑙+1 and 𝐺𝑙, as shown in figure 4.3. This step is
performed recursively for the resulting 𝑈𝑙+1 matrix until the tree level 𝑙 = 𝐿 − 1 is
reached. Resulting in the factorization

𝑈ℎ ≈ 𝑈𝐿𝐺𝐿−1 ... 𝐺𝑙 (4.8)

for 𝑙 = ℎ, ℎ + 1, ..., 𝐿 − 1 with each factor having only 𝑂 (𝑛) entries.

Figure 4.3: Recursive butterfly factorization of𝑈2 = 𝑈3𝐺2 for 𝑀 ∈ R64×64. I marked the
subblocks𝑈2,𝑡

𝑖, 𝑗
and𝑈2,𝑡

𝑖, 𝑗
and furthermore highlighted the scheme to insert the calculated

singular vector of𝑈2 in𝑈3 𝐺2.

Recursive factorization of 𝑉 ℎ

The decomposition of 𝑉ℎ is very similar to 𝑈ℎ. However, (𝑉 𝑙)𝑇 is decomposed into
(𝑉 𝑙)𝑇 ≈ (𝐻𝑙)𝑇 (𝑉 𝑙+1)𝑇 . Based on the complementary low-rank property of the matrix
𝑀 , we can again conclude that 𝐾𝐿−𝑙−1

𝑖,2 𝑗 and 𝐾𝐿−𝑙−1
𝑖,2 𝑗+1 are low-rank. Consequently, we

can approximate these blocks with a rank 𝑟 = 1 low-rank approximation constructed
with the truncated SVD. Further, this factorization is done recursively, resulting in the
sparse factorization

(𝑉ℎ)𝑇 ≈ (𝐻ℎ)𝑇 ...(𝐻𝐿−1)𝑇 (𝑉𝐿)𝑇 . (4.9)

In summary, the Butterfly factorization decomposes a matrix 𝑀 into a product of 𝐿 + 3
sparse factors. It follows that only 𝑂 (𝑛 𝑙𝑜𝑔(𝑛)) arithmetic operations are necessary
to calculate a matrix-vector product. If modern methods like randomized projections
are used for factorization, it is possible to calculate the butterfly factorization with
𝑂 (𝑛 𝑙𝑜𝑔(𝑛)) operations [27].

4.2 FAµST

The 𝐹𝐴𝜇𝑆𝑇 algorithm is a technique to approximative factorize a matrix into a product
of sparse factors. The algorithm allows 𝑀 to be approximative decomposed into any

26

4.2 FAµST

number of factors 𝜅 with any sparsity constraints regarding them. Typical sparsity
constraints are for example the limitation of the number of non-zero elements per
matrix or the number of non-zero elements per row or column. While this increases the
algorithm’s search space, it also makes it more potent than comparable approaches.

PALM

The possibility to pose a problem as a non-convex optimization problem is interesting
in many cases and gives immense modeling power. However, non-convex problems
are often NP-hard to solve [20]. The recently emerged algorithm Proximal Alternating
Linearized Minimization (PALM) is able to handle non-convex problems as described
in 4.10.

min
𝑋1,𝑋2,...,𝑋 𝑗

Φ(𝑋1, 𝑋2, ..., 𝑋 𝑗) = 𝐻 (𝑋1, 𝑋2, ..., 𝑋 𝑗) +
𝑗∑︁
𝑖=1

𝑓𝑖 (𝑋𝑖) (4.10)

whereby 𝐻 is smooth and all 𝑓𝑖 ’s are lower semi-continuos [23]. For simplicity, one
can assume that all 𝑓𝑖 ’s are indicator functions of the constrains 𝜏𝑖 . With these
assumptions, the PALM algorithm can guarantee convergence up to a stationary point.
This is achieved by alternately updating all blocks of variables with a projected gradient
step. The algorithm is shown in 2 where 𝑃𝜏𝑖 denotes the projections operator on 𝜏𝑛,
𝑎𝑛 indicates the step size which depends on the Lipschitz constant of the gradient of
H.

Algorithm 2 Summary of PALM algorithm.
1: Input : Number of iterations 𝐼, Number of components 𝑗
2: for 𝑖 = 1 : 𝐼 do
3: for 𝑛 = 1 : 𝑗 do
4: Set 𝑋 𝑖+1𝑛 = 𝑃𝜏𝑛

(
𝑋 𝑖𝑛 − 1

𝑎𝑛
▽𝑥𝑛 𝐻 (𝑋 𝑖1, 𝑋 𝑖2, ..., 𝑋 𝑖𝑛)

)

Algorithm

If the target as defined in 3.6 is reformulated as :

min
𝜆,𝑆1,𝑆2,...,𝑆𝜅

Φ(𝜆, 𝑆1, 𝑆2, ..., 𝑆𝜅) =
1

2

𝑀 − 𝜆 𝜅∏
𝑖=1

𝑆𝑖

2
𝐹

+
𝜅∑︁
𝑖=1

𝛿𝜖𝑖 (𝑆𝑖) (4.11)

with 𝜆, that is used as as normalization factor avoiding the scaling ambiguities arising
naturally when the constraint sets are (positively) homogeneous [23], so that each
∥𝑆𝑖 ∥𝐹 = 1 and the indicator function, defining the subset of interest, 𝛿𝜖𝑖 (𝑆𝑖) of the

27

4 Sparse Approximative Factorization Methods

constraint set of 𝜖𝑖 . Typical constraint sets are explained in the following section. We
can state that the PALM algorithm is applicable to the sparse factorization problem. In
the following I will first introduce required concepts, these will then be assembled to
the 𝐹𝐴𝜇𝑆𝑇 algorithm.

Projection Operator

The basic component of PALM is the projection on the constraints. These should
be simple and easy to calculate. The most straightforward constraint 𝜖 is to limit the
number of non-zero elements of a factor 𝑆𝑖 to 𝑘 . So that for the sparse and normalized
factors ∥𝑆𝑖 ∥0 ≤ 𝑘 and ∥𝑆𝑖 ∥𝐹 = 1 holds. The projection 𝑃𝜖 of this constraint then keeps
only the 𝑘 absolute largest values and sets all others to 0. After that, the matrix is
normalized to satisfy the second constraint [23]. Typical desirable sparsity constraints
𝜖 are :

• Constraints on the total number of non-zero elements per factor,

• Number of non-zero elements per row or column,

• Impose non-negativity,

• Imposing a circulant structure,

• Triangular matrices constraints,

• Diagonal matrices constraints.

Gradient and Lipschitz modulus

We are now interested in the update rule for a specified factor 𝑆𝑖 at time 𝑡 further
denoted as 𝑆𝑡

𝑖
. Also, we can summarize all left and right factors as :

𝐿 =

𝑗−1∏
𝑛=1

𝑆𝑡+1𝑛 (4.12) 𝑅 =

𝜅∏
𝑛= 𝑗+1

𝑆𝑡𝑛 (4.13)

Thus, we can consequently summarize 𝐻 as :

𝐻 (𝑆𝑡+11 , 𝑆𝑡+12 , ..., 𝑆𝑡+1𝑖−1, 𝑆
𝑡
𝑖 , ..., 𝑆

𝑡
𝜅 , 𝜆

𝑖) = 𝐻 (𝐿, 𝑆𝑡𝑖 , 𝑅, 𝜆)

=
1

2

𝑀 − 𝜆𝑡𝐿𝑆𝑡𝑖𝑅

2𝐹 (4.14)

Resulting in the subsequent gradient w.r.t 𝑆𝑖 at iteration 𝑡 [23]:

▽𝑆𝑖 𝐻 (𝐿, 𝑆𝑡𝑖 , 𝑅, 𝜆𝑡) = 𝜆𝑡𝐿𝑇
(
𝜆𝑡𝐿𝑆𝑡𝑖𝑅 − 𝑀

)
𝑅𝑇 (4.15)

28

4.3 EigenGame

Once all factors are updated we still need to update the normalization term 𝜆 for this
we define 𝑀̂ =

∏𝜅
𝑖=1 𝑆

𝑡+1
𝑖

leading to the update rule w.r.t. 𝜆 as follows.

▽𝜆𝑡 𝐻 (𝑆𝑡+11 , 𝑆𝑡+12 , ..., 𝑆𝑡+1𝜅 𝜆𝑡) = 𝜆𝑖𝑇𝑟 (𝑀̂𝑇 𝑀̂) − 𝑇𝑟 (𝑀̂𝑇 𝑀̂) (4.16)

Using these concepts, we can specify the PALM for Multi-layer Sparse Approximation
(PALM4MSA) algorithm that decomposes the matrix 𝑀 .

Algorithm 3 PALM for Multi-layer Sparse Approximation (PALM4MSA) algorithm [23]
1: Given :
2: Operator 𝑀 , desired number of factors 𝜅
3: constraint sets 𝜖𝑖 and initialization {𝑆0

𝑖
} for 𝑖 ∈ {1, 2, ...𝜅}

4: number of iterations 𝑁
5: for 𝑡 = 0 : 𝑁 − 1 do
6: for 𝑖 = 1 : 𝜅 do
7: 𝐿 ←∏𝑖−1

𝑙=1 𝑆
𝑡
𝑙

8: 𝑅 ←∏𝜅
𝑙=𝑖+1 𝑆

𝑡+1
𝑙

9: 𝑐𝑡
𝑖
> (𝜆𝑡)2 ∥𝐿∥22 ∥𝑅∥22

10: 𝑆𝑡+1
𝑖
← 𝑃𝜖𝑖

(
𝑆𝑡
𝑖
− 1
𝑐𝑖
𝜆𝑡𝐿𝑇

(
𝜆𝑡𝐿𝑆𝑡

𝑖
𝑅 − 𝑀

)
𝑅𝑇

)
11: 𝑀̂ ←∏𝜅

𝑖=1 𝑆
𝑡+1
𝑖

12: 𝜆𝑡+1 ← 𝑇𝑟 (𝑀𝑇 𝑀̂)
𝑇𝑟 (𝑀̂𝑇 𝑀̂)

return Estimated factorization 𝜆𝑁 , 𝑆𝑁
𝑖

for 𝑖 ∈ {1, 2, ..., 𝜅}

4.3 EigenGame

The EigenGame algorithm recently introduced by DeepMind is a novel approach to
calculate the PCA. It tries to solve the PCA from the point of view of a game. Each
eigenvector to be computed is controlled by a player who tries to maximize his own
utility function. From this perspective the eigenvectors form the unique strict Nash
equilibrium of the proposed game [10].

Nash Equilibrium

Game theory, is a mathematical concept that allows to model conflicts and cooperation
between intelligent rational decision-makers [32]. It not only considers the players
own behavior but also the behavior of other players. Basically, two types of games
are distinguished, the cooperative and the non-cooperative game. In non-cooperative
games, the players act in pure self-interest [33]. The Nash equilibrium describes the

29

4 Sparse Approximative Factorization Methods

solution of a non-cooperative game. It is a state in which each player makes the best
choice for himself, taking into account the actions of other players [17].

Algorithm

PCA is often interpreted as learning a projection of a matrix 𝑋 to a subset that captures
maximum variance. In the following I assume 𝑋 to be symmetric. I will also refer to
the true eigenvectors as 𝑣𝑖 , whereas the approximated eigenvectors will be referred to
as 𝑣𝑖 . The matrix of all eigenvectors, ordered according to their eigenvalues, is further
denoted by 𝑉 resp. 𝑉 . The subset 𝑣 𝑗<𝑖 denotes the set of eigenvectors {𝑣 𝑗 | 𝑗 ∈
{1, 2, ...𝑖 − 1}}.
The interpretation of maximizing variance is equivalent to maximizing the diagonal
elements of a matrix 𝑅(𝑉) = 𝑉𝑇𝑋𝑇𝑋𝑉 = 𝑉𝑇𝑀𝑉 ,

max
𝑉𝑇𝑉=𝐼

∑︁
𝑖

𝑅𝑖𝑖 = 𝑇𝑟 (𝑅) = 𝑇𝑟 (𝑉𝑇𝑀𝑉) = 𝑇𝑟 (𝑉𝑉𝑇𝑀) = 𝑇𝑟 (𝑀). (4.17)

However, it is also possible to solve the inverse problem of minimizing all non-diagonal
entries.

min
𝑉𝑇𝑉=𝐼

∑︁
𝑖≠ 𝑗

𝑅𝑖 𝑗 (4.18)

By further examining the entries of R it can be stated, that the diagonal entries 𝑅𝑖𝑖 =
⟨𝑣𝑖 , 𝑀𝑣𝑖⟩ are Rayleigh quotients which map each eigenvector 𝑣𝑖 to its corresponding
eigenvalue 𝜆𝑖 . The non-diagonal elements 𝑅𝑖 𝑗 =

〈
𝑣𝑖 , 𝑀𝑣 𝑗

〉
with 𝑖 ≠ 𝑗 measure

the alignment between the two approximated eigenvectors 𝑣𝑖 and 𝑣 𝑗 . By minimizing
the non-diagonal elements or maximizing the diagonal elements we can determine all
eigenvectors, however, if we are only interested in the top-k eigenvectors the problems
arise that, 𝑉 is not square anymore so 𝑉𝑉𝑇 ≠ 𝐼. For the top-k eigenvectors 𝑉𝑉𝑇 = 𝑃

is a projection since we can still assume, that 𝑉 is orthogonal. Furthermore, equation
4.18 places no preference on recovering large over small eigenvectors [10], it only
forces the columns of 𝑉 to be eigenvectors. This results in the conclusion to minimize
non-diagonal and maximizing the diagonal elements. Leading to an objective function
as shown in equation 4.19.

max
∑︁
𝑖

𝑅𝑖𝑖 −
∑︁
𝑖≠ 𝑗

𝑅𝑖 𝑗 (4.19)

This objective function still ignores the hierarchy of eigenvectors. Thus 𝑣1 is penalized
for aligning with any 𝑣𝑘 . That should not be the case because the approximation of
the largest eigenvector should be free to search for the direction that captures the
maximum variance independent of the other vectors [10]. This problem leads to the
consideration to penalize the vectors only by the alignment to parent vectors. We

30

4.3 EigenGame

define parent vectors as eigenvectors with a larger singular value i.e. 𝑣 𝑗<𝑖 . These
considerations result in the utility function 𝑢𝑖 (𝑣𝑖 |𝑣 𝑗<𝑖) we aim to maximize.

𝑢𝑖 (𝑣𝑖 |𝑣 𝑗<𝑖) = 𝑣𝑇𝑖 𝑀𝑣𝑖 −
∑︁
𝑗<𝑖

(𝑣𝑇
𝑖
𝑀𝑣 𝑗)2

𝑣𝑇
𝑗
𝑀𝑣 𝑗

= ∥𝑋𝑣𝑖 ∥2 −
∑︁
𝑗<𝑖

⟨𝑋𝑣𝑖 , 𝑋𝑣 𝑗⟩2

⟨𝑋𝑣 𝑗 , 𝑋𝑣 𝑗⟩

(4.20)

To determine the maxima of the utility, a gradient ascent method is used. For this
purpose, the following gradient of the utility function is required. The gradient consists
of a generalized Gram-Schmidt step followed by a standard matrix product similar to
power iteration and Oja’s rule.

▽𝑢𝑖 (𝑣𝑖 |𝑣 𝑗<𝑖) = 2𝑀 [𝑣𝑖 −
∑︁
𝑗<𝑖

𝑣𝑇
𝑖
𝑀𝑣 𝑗

𝑣𝑇
𝑗
𝑀𝑣 𝑗
]

= 2𝑋𝑇 [𝑋𝑣𝑖 −
∑︁
𝑗<𝑖

⟨𝑋𝑣𝑖 , 𝑋𝑣 𝑗⟩
⟨𝑋𝑣 𝑗 , 𝑋𝑣 𝑗⟩

𝑋𝑣 𝑗]
(4.21)

To calculate the eigenvectors the following algorithm is proposed [10].

Algorithm 4 Algorithm to calculate a single eigenvector 𝑣𝑖
1: Given :
2: Matrix 𝑋𝑡 ∈ R𝑚×𝑛, maximum error tolerance 𝜌,
3: random initial vector 𝑣0

𝑖
, step size 𝛼

4: 𝑣𝑖 ← 𝑣0
𝑖

5: 𝑇 =

⌈
5
4𝑚𝑖𝑛

(
∥ ▽𝑣0

𝑖
𝑢𝑖 ∥ /2, 𝜌𝑖

)−2⌉
6: for 𝑡 = 1 : 𝑇 do
7: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠← 𝑋𝑡𝑣𝑖

8: 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠← ∑
𝑗<𝑖

⟨𝑋𝑡𝑣𝑖 ,𝑋𝑡𝑣 𝑗 ⟩
⟨𝑋𝑡𝑣 𝑗 ,𝑋𝑡𝑣 𝑗 ⟩ 𝑋𝑡𝑣 𝑗]

9: ▽𝑣𝑖 ← 2𝑋𝑇𝑡 [𝑟𝑒𝑤𝑎𝑟𝑑𝑠 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠]
10: ▽𝑅

𝑣𝑖
← ▽𝑣𝑖 − ⟨▽𝑣𝑖 , 𝑣𝑖⟩𝑣𝑖

11: 𝑣′
𝑖
← 𝑣𝑖 + 𝛼▽𝑅𝑣𝑖

12: 𝑣𝑖 ←
𝑣′
𝑖

∥𝑣′
𝑖
∥

return 𝑣𝑖

Algorithm 4 not only guarantees convergence it also is possible to decentralize and
parallelize the calculations. This is possible because the hierarchical restriction to
calculate parent vectors first seems unnecessary since parent vectors become quasi-
stationary as they approach their optimum [10].

31

4 Sparse Approximative Factorization Methods

Related Work

PCA is a well known tool, one approach to calculate it, is to compute the SVD
with randomized projections. Nevertheless, there are other approaches like Hebb’s
rule [16] which is mainly used in neuroscience and allows to determine the top-k
eigenvectors 𝑣 of a matrix 𝑀 , with a given learning rate 𝜂 using the update function
𝑣 ← 𝑣+𝜂𝑀𝑣. Similarly, Oja’s rule updates the vectors according to 𝑣 ← 𝑣+𝜂

(
𝐼 − 𝑣𝑣𝑇

)
[35]. For 𝜂→∞ Oja’s rule becomes the power iteration [10]. Whereas Oja’s rule and
power iteration are able to determine the top-k eigenvectors in sequence, however,
these methods enforce the orthogonality by removing the learned subspace from the
matrix. This deflation step prevents effective parallel execution, which is not the case
for EigenGame. In the sequential calculation of eigenvectors, Heb’s rule is very similar
to EigenGame, but the update term is not a gradient of a function [10].

4.4 Sparse EigenGame

The EigenGame algorithm presented in the last section has the task to find the
(top-k) principal components of a matrix. For this reason, I want to introduce
modified algorithm, the Sparse EigenGame, which decomposes the matrix based on
EigenGame into sparse factors. To achieve this, I combined EigenGame with the
PALM algorithm presented in section 4.2. The new aspect of this method is, that
instead of a regularization term, a projection of the gradient according to the sparsity
constraints is used to solve the problem.

Sparse Coding

Sparse coding aims to find a representation of a matrix or vector as a weighted linear
combination of basis vectors called atoms. These atoms form the dictionary𝐷 ∈ R𝑛×𝐾
and do not have to be orthogonal. Typically, dictionaries are over-complete, meaning
𝐾 > 𝑚 [26]. This allows modeling the problem with higher dimensionality. Sparse
coding aims to determine the sparsest representation 𝑅 by solving the minimization
problem

min
𝐷,𝑅
∥𝑀 − 𝐷𝑅∥22 + 𝛽 ∥𝑅∥0 . (4.22)

Several algorithms try to solve problem 4.22, e.g., Lasso-regression, Orthogonal
Matching Pursuit (OMP), or Least Angle Regression (LARS). We decided to use LARS
due to its numerical characteristics and the stable implementation in scikit-learn [37].
LARS is an improved version of forward stepwise regression, which for a given set
of predictors 𝑥 always selects the one with the highest absolute correlation 𝑥 𝑗1 to the
target 𝑦 and performs linear regression. This procedure leaves a residuum orthogonal
to 𝑥 𝑗1 . After projecting the other predictors orthogonal to 𝑥 𝑗1 we repeat the selecting

32

4.4 Sparse EigenGame

process [8]. However, This greedy approach is often too aggressive and may eliminate
valuable information.
LARS tries to improve this aggressive greedy behavior. Similar to the stepwise forward
regression, the regressor 𝑥 𝑗1 with the highest correlation to the target 𝑦 is selected first.
After that we take the largest step possible in the direction of 𝑥 𝑗1 until another regressor
𝑥 𝑗2 has as much correlation to the residuum as 𝑥 𝑗1 . At this stage, LARS proceeds in the
direction equiangular between 𝑥 𝑗1 and 𝑥 𝑗2 till a third regressor has the same correlation
to the residuum. This is continued until a certain termination condition is reached.

Algorithm

The algorithm consists of two steps. In the first step, I aim to calculate the "sparse
eigenvectors". This is done by the sparse EigenGame. We have to keep in mind, that
we want to maximize the utility of a given vector 𝑣𝑖 according to :

𝑢𝑖 (𝑣𝑖 |𝑣 𝑗<𝑖) = 𝑣𝑇𝑖 𝑀𝑣𝑖 −
∑︁
𝑗<𝑖

(𝑣𝑇
𝑖
𝑀𝑣 𝑗)2

𝑣𝑇
𝑗
𝑀𝑣 𝑗

= ∥𝑋𝑣𝑖 ∥2 −
∑︁
𝑗<𝑖

⟨𝑋𝑣𝑖 , 𝑋𝑣 𝑗⟩2

⟨𝑋𝑣 𝑗 , 𝑋𝑣 𝑗⟩

(4.23)

similarly to EigenGame. However to include sparsity I used a projection on the sparsity
constraints 𝜖𝑖 as described in section 4.2. Leading to a updated version of calculating
the "eigenvectors" as presented in algorithm 5.

Algorithm 5 Algorithm to calculate a single sparse eigenvector 𝑣𝑖
1: Given :
2: Matrix 𝑋𝑡 ∈ R𝑚×𝑛, maximum error tolerance 𝜌,
3: random initial vector 𝑣0

𝑖
, step size 𝛼

4: 𝑣𝑖 ← 𝑣0
𝑖

5: 𝑇 =

⌈
5
4𝑚𝑖𝑛

(
∥ ▽𝑣0

𝑖
𝑢𝑖 ∥ /2, 𝜌𝑖

)−2⌉
6: for 𝑡 = 1 : 𝑇 do
7: 𝑟𝑒𝑤𝑎𝑟𝑑𝑠← 𝑋𝑡𝑣𝑖

8: 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠← ∑
𝑗<𝑖

⟨𝑋𝑡𝑣𝑖 ,𝑋𝑡𝑣 𝑗 ⟩
⟨𝑋𝑡𝑣 𝑗 ,𝑋𝑡𝑣 𝑗 ⟩ 𝑋𝑡𝑣 𝑗]

9: ▽𝑣𝑖 ← 2𝑋𝑇𝑡 [𝑟𝑒𝑤𝑎𝑟𝑑𝑠 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠]
10: ▽𝑅

𝑣𝑖
← ▽𝑣𝑖 − ⟨▽𝑣𝑖 , 𝑣𝑖⟩𝑣𝑖

11: 𝑣′
𝑖
← 𝑃𝜖𝑖

(
𝑣𝑖 + 𝛼▽𝑅𝑣𝑖

)
12: 𝑣𝑖 ←

𝑣′
𝑖

∥𝑣′
𝑖
∥

return 𝑣𝑖

33

4 Sparse Approximative Factorization Methods

In the second step I used the calculated vectors 𝑉 as a dictionary to learn a sparse
code 𝐶 so that :

𝑀 ≈ 𝐶𝑉 (4.24)

To determine 𝐶 I used the already presented Least Angle Regression (LARS)
algorithm.

34

5 Experiments

To compare the different algorithms with respect to their applicability for the
approximation of weight matrices of neural networks, I approximate the weight matrix
𝐺 of the last (fully connected) layer of a pre-trained googlenet network. The network is
provided by Pytorch1. The approximation is held out with different Relative Complexitys
(RCs), if possible, which is defined as

𝑅𝐶 =

∑𝜅
𝑖=0 𝜋 (𝑆𝑖)
∥𝐺∥0

. (5.1)

Where 𝜅 is the number of factors 𝑆𝑖 and 𝜋(𝑆) is the corresponding sparsity. In the first
section I will briefly discuss some peculiarities of 𝐺, in the second part I will present
the results. The evaluation of the approximations is based on the criteria :

• RC

• The approximation error

𝐺 −∏𝜅

𝑖=1 𝑆𝑖

𝐹

• Prediction accuracy of the network with an approximated last layer on the
imageNet validation data from 2012.

The used methods to approximate 𝐺 are :

• Butterfly factorization

• 𝐹𝐴𝜇𝑆𝑇

• Sparse EigenGame

The results of these approaches are compared with a truncated SVD, and a dummy
method keeping only the absolute top k values of the matrix.

5.1 Target Matrix G

𝐺 has the shape (1000, 1024) and consequently 1, 024, 000 parameters. The
maximum entry in the matrix is 0.35, the smallest −0.24. It is notable, that not a single
entry in the matrix is exactly 0. The weights are approximately normally distributed

1https://pytorch.org/

35

5 Experiments

with a mean of −9.55−10 and a variance of 0.003. A histogram of the weights is shown
in figure 5.1 this also reveals the slight positive skewness of 0.54.

0.2 0.1 0.0 0.1 0.2 0.3
Weights

0

5000

10000

15000

20000

Co
un

t

Histogram of weights (GoogleNet)

Figure 5.1: Histogram of the weights of 𝐺. A normal distribution with mean −9.55−10 and
variance of 0.003 is evident. Furthermore, the slight positive skewness of 0.54 is

recognizable.

I would like to emphasize that each class 𝑖 can be assigned to the i-th neuron in the last
layer. Consequently, we can assign the weights of the respective neuron 𝑔𝑖 to class
𝑖. When examining 𝑔𝑖 , the fluctuation of the 𝐿2-norm of the vectors is conspicuous,
ranging from 1.55 for tabby’s to 2.24 for pencil sharpener. The norm of the individual
vectors 𝑔𝑖 is presented in figure 5.2. This deviation is astonishing, since one would
have expected the norm to be relatively constant. I assume the deviations are since
the number of images per class in the training set is not identical. The number ranges
from 732 to 1300 images per class [38].

36

5.2 Reference algorithms

0 200 400 600 800 1000
Class

1.6

1.7

1.8

1.9

2.0

2.1

2.2

No
rm

Frobenius norm of weight vectors gi

L2 norm of gi

Mean

Figure 5.2: Plot of the 𝐿2-norm of 𝑔𝑖 . The highest value belongs to pencil sharpeners, the
lowest to tabby’s.

𝐺 was further examined for hierarchical structures. However, no such structures were
found.

5.2 Reference algorithms

5.2.1 Dummy Method

The dummy method of setting the smallest values of 𝐺 to zero performed poorly. If
about 10% of the values are zero, the network does not perform better than a random
predictor. I think this is due to two reasons. The first is that the ratios of the weights
in the matrix get disturbed. Since the result of the last layer still passes through a
softmax function, it can be assumed that the ratio of the weights to each other is more
critical than the approximation accuracy.To demonstrate that the ratio of the weights
is important, I multiplied the weight matrix with various factors up to 50. The resulting
approximation error was with 2873.14 relatively high. However, the prediction accuracy
dropped only slightly from 69.78 to 67, 37%.
The assumed second reason is, that the heuristic is too simple. Just because a
value in the weight matrix is small does not necessarily imply that it carries less or
no information.

5.2.2 Truncated SVD

The truncated SVD is not an algorithm for sparse factorization. However, we need to
recall that the truncated SVD with rank 𝑟 results in the best low-rank 𝑟 approximation of

37

5 Experiments

a matrix, measured by the Frobenius norm. The obtained factors of this factorization
have the known form

𝑀 ≈ 𝑈Σ𝑉𝑇 , (5.2)

where 𝑀 ∈ R𝑛×𝑚,𝑈 ∈ R𝑛×𝑟 , Σ ∈ R𝑟×𝑟 , and 𝑉𝑇 ∈ R𝑟×𝑚. Thus, we can avoid
calculations by decreasing the rank of the approximation. Thereby the resource
consumption is reduced from 𝑂 (𝑛𝑚) to 𝑂 (𝑟 (𝑚 + 𝑛)). I use this relation to diminish
the number of calculations to a fraction of the conventional number of calculations. I
assume it is a suitable reference algorithm. The approximation error as well as the
corresponding prediction accuracy are presented in plot 5.3.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Complexity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ed

ict
io

n
Ac

cu
ra

cy

10

20

30

40

50

Ap
pr

ox
im

at
io

n
Er

ro
r

Experiment Results (Truncated SVD)

Prediction Accuracy
Approximation Error

Figure 5.3: Prediction accuracy as well as the approximation error plotted over RC. A higher
RC causes a lower approximation error, resulting in better predictions.

As expected, the approximation error decreases with higher RC. The lower
approximation error is presumably responsible for the increase in the prediction
accuracy of the network. The most interesting operating points for real-world problems
are between a RC of 0.3 and 0.5 in this range, many computations can be saved.
However, the prediction accuracy is not significantly worse than in the original network.
To reach the point where the prediction accuracy drops by only one percent, the
truncated SVD requires 70% of the parameters compared to the original matrix.

38

5.3 Sparse EigenGame

5.3 Sparse EigenGame

The learning of the factors of the sparse EigenGame consists of two steps. In the first
step, the sparse dictionary 𝐷𝑆 is learned. In the second, 𝐷𝑆 is used to learn a sparse
code 𝐶𝑆 so that 𝐺 ≈ 𝐶𝑆𝐷𝑆 . The hyperparameters of the sparse EigenGame are :

• Number of components or atoms of the dictionary

• Sparsity of the atoms

• Regularization factor 𝛾 of the dictionary learning algorithm.

A grid-search algorithm was used to obtain good parameters for this problem. The
search resulted in the choice of the hyperparameters 𝛾 = 0.0001 and the sparsity of
the atoms of 0.4. The number of components was used as the setting value of the RC.
I compared the results to a random dictionary with a equal setting to evaluate if the
"sparse eigenvectors" are a suitable choice as a dictionary. The results are shown in
plot 5.4.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

Pr
ed

ict
io

n
Ac

cu
ra

cy

SVD
Sparse EigenGame
Random Dictionary

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative Complexity

10

20

30

40

50

Ap
pr

ox
im

at
io

n
Er

ro
r

Experiment Results (Sparse EigenGame)

Figure 5.4: Approximation results of the sparse EigenGame. For comparison, the results of
the truncated SVD as well as the approximation with a random dictionary are presented. The
results of the sparse EigenGame were worse than those of the truncated SVD but better than

ones of the random dictionary.

39

5 Experiments

Plot 5.4 shows that the sparse EigenGame performs relatively well, however not as well
as the truncated SVD. It is noticeable that the approximation error of the EigenGame
decreases linearly. However, that of the SVD decreases quadratically. Furthermore, it
turns out that the "sparse eigenvectors" are a good choice as a dictionary, however
definitely not the best. Surprisingly, the approximation error is only slightly better
compared to the random dictionary.

5.4 Butterfly Factorization

Only square matrices can be factorized using the investigated Butterfly Factorization
algorithm. Since G is not square, the matrix was padded with zeros. As there are
several possibilities for the padding, I tested to place 𝐺 in the four corners without
noticeable differences. For this reason, I decided to put G in the upper left corner and
fill the rest with zeros.
The standard butterfly factorization obtained a matrix approximation error of 57.77. By
definition of the algorithm, the rank 𝑟 of the approximated submatrices is 1 [27]. This
leads to an RC of roughly 0.02, corresponding to about 21000 non-zero elements.
Even if the computational cost saving is immense, the algorithm performs with a
prediction accuracy of 0.70%, only slightly better than a random predictor (0.01%).
The truncated SVD, with similar RC, performed, with a prediction accuracy of 2.22%,
a bit better then the Butterfly factorization. However, both factorizations perform
insufficiently for real-world applications. It can be seen that too few parameters are not
sufficient to approximate G well enough. This results in the poor prediction accuracy
of the networks. Since the recursive factorization with higher rank turned out to be too
complex, I tried to perform the middle level factorization with different RC. The results
in comparison to the truncated SVD are shown in plot 5.5.

40

5.5 FAµST

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

Pr
ed

ict
io

n
Ac

cu
ra

cy

SVD
Butterfly
Butterfly (Middle level factorization)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Complexity

20

40

60

Ap
pr

ox
im

at
io

n
Er

ro
r

Experiment Results (Butterfly Factorization)

Figure 5.5: The results of the Butterfly factorization were worse than those of the truncated
SVD but similar in behavior.

The behavior of the middle-level butterfly factorization is very similar to the truncated
SVD. However, the performance is consistently worse. It is also noticeable that the
approximation error decreases nearly linear and more slowly compared to SVD.

5.5 FAµST

The search space of the 𝐹𝐴𝜇𝑆𝑇 algorithm is determined by its constraints. For the
approximation of 𝐺, I chose the most straightforward constraint 𝜋(𝑆𝑖) = 𝑘 . This limits
the number of non-zero elements per factor to k, which is equal for all factors. In order
to be able to adjust the RC of the approximation, the number of parameters 𝑘 was
determined as follows

𝑘 =

⌈
∥𝐺∥0

𝑅𝐶

𝜅

⌉
. (5.3)

Furthermore, the approximation was tested with three and with five factors. The
three-factor variant was chosen for better comparison with the SVD approach, which
decomposes a matrix into three factors. The five-factor variant was chosen to

41

5 Experiments

investigate whether a "deep" approximation is more powerful. The results are shown
in plot 5.6.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

Pr
ed

ict
io

n
Ac

cu
ra

cy

SVD
FAµST (3 factors)
FAµST (5 factors)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Complexity

10
20
30
40
50

Ap
pr

ox
im

at
io

n
Er

ro
r

Experiment Results (FAµST)

Figure 5.6: The results of the 𝐹𝐴𝜇𝑆𝑇 algorithm were constant better than those of the
truncated SVD for the three and five-factor variants. Surprisingly, the five-factor variant

performed worse than the three-factor variant.

Plot 5.6 shows that 𝐹𝐴𝜇𝑆𝑇 can approximate 𝐺 very well, even with few parameters.
It is the only algorithm examined that achieved better results than the truncated SVD.
The prediction accuracy is already with 20% of the parameters close to the original
(1% loss of accuracy). This approximative factorization makes it possible to save a
massive amount of resources without significantly affecting the prediction accuracy.

42

6 Discussion

6.1 Summary and Interpretation

The high resource consumption of modern image processing algorithms is enormous
for both training and inference. In the previous chapter, I have shown that resource
consumption can be reduced to some extent. The algorithm with the best performance
was 𝐹𝐴𝜇𝑆𝑇 . It was the only algorithm that performed better than the truncated SVD.
However, it was surprising that the five-factor version performed slightly worse than the
three-factor version. I assume that this is mainly caused by the fact that the number
of parameters per factor in the five-factor version is heavily reduced compared to the
three-factor version. Since the factors are trained hierarchically, it is conceivable that
the number of parameters per factor is not sufficient to obtain solid results.

The good approximation of 𝐹𝐴𝜇𝑆𝑇 is quite interesting for other applications, like the
approximative solving of inverse problems. The approximation error measured by the
Frobenius norm, for example was already with a RC of 0.3 as good as that of the
Butterfly factorization with a RC of 1, similar applies to the sparse EigenGame.

43

6 Discussion

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10
Pr

ed
ict

io
n

Ac
cu

ra
cy

 p
er

 P
C

SVD
FAµST (3 factors)
FAµST (5 factors)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Complexity

101

102

103

Ap
pr

ox
im

at
io

n
Er

ro
r p

er
 R

C

Experiment Results per RC (FAµST)

Figure 6.1: Approximation results normalized to the RC of 𝐹𝐴𝜇𝑆𝑇 . For comparison, the
results of the truncated SVD are presented.

Plot 6.1 shows the relative prediction accuracy as well as the relative approximation
error normalized to the RC to depict the relative information content per parameter
of the 𝐹𝐴𝜇𝑆𝑇 algorithm and the truncated SVD. For the truncated SVD, the
approximation error per RC was expected to decrease steadily as the information
content of the singular vectors decreases monotonically. This was confirmed in the
experiments. The relative prediction accuracy increases for smaller values up to the
maximum at a RC of 0.1, for smaller values of RC the relative prediction accuracy
collapses. I assume that this is because the number of parameters is no longer
sufficient to approximate 𝐺 well enough, hence the predictions are poor.

The performance of the 𝐹𝐴𝜇𝑆𝑇 algorithm was similar to the truncated SVD for the
relative approximation error. The relative prediction accuracy, on the other hand, was
still high even for very small values of RC. It can be suspected that this is since the
search space of the 𝐹𝐴𝜇𝑆𝑇 algorithm is less restricted than that of the truncated
SVD. 𝐹𝐴𝜇𝑆𝑇 only requires that the global sparsity of the factors does not exceed 𝑘 .
The SVD must also satisfy the condition that the singular vectors are orthogonal.

The sparse EigenGame tries to learn "sparse eigenvectors," which are then used

44

6.1 Summary and Interpretation

as a dictionary for a sparse coding algorithm. The "sparse eigenvectors" were
determined using a modified variant of the recently presented EigenGame algorithm.
This approach to solve PCA as a game was honored with the outstanding paper award
of the International Conference on Learning Representations. However, it should be
noted that EigenGame is not really a game since there is no interaction between the
players. Information flows only in one direction (to the eigenvector with the smallest
eigenvalue). Consequently, the eigenvector with the largest eigenvalue does not
interact with any other eigenvector. So I assume that EigenGame will not contribute
to a better understanding of k-player games as mentioned in the paper [10]. With this
knowledge, the question arises whether it is worth formulating the PCA as a game
theory problem.

I assume that the combination of power-iteration and Oja’s rule with generalized
Gram-Schmidt orthogonalization, coupled with the new perspective on the problem to
be solved, is worthwhile. It is an interesting contribution to better parallelization and
decentralization, which is a fundamental requirement for the calculation of the PCA of
large data sets.

For the sparse EigenGame, the modification was to combine EigenGame with the
PALM algorithm. The calculated eigenvectors were projected onto the sparsity
constraints in each update step. This sparsity constraint limited the number of non-
zero elements per vector. I expected to obtain a well-suited and sparse dictionary
used for a sparse coding algorithm to approximate 𝐺. I created a similar sparse
random dictionary for comparison. In plot 5.4, the results of the two approximations
are shown. The predictions of the sparse EigenGame were significantly better than
the predictions of the random dictionary, although the approximation error was only
slightly better. This fact is quite astonishing. It can be assumed that this is due to the
better approximation of the inner structures of the matrix by the "sparse eigenvectors."

However, the results were worse than the truncated SVD with similar RC. This can
be explained by the fact that the results of EigenGame and the truncated SVD are
identical, and the projections of the PALM algorithm disturbed the results.

45

6 Discussion

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1

2

3
Pr

ed
ict

io
n

Ac
cu

ra
cy

 p
er

 R
C

SVD
Sparse EigenGame
Random Dictionary

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative Complexity per RC

101

102

103

Ap
pr

ox
im

at
io

n
Er

ro
r

Experiment Results per RC (Sparse EigenGame)

Figure 6.2: Approximation results normalized to the RC of the sparse EigenGame. For
comparison, the results of the truncated SVD are presented.

Plot 6.2 shows that the sparse EigenGame achieves similar, but not as good, results
as the truncated SVD per RC. The approach to creating a dictionary out of sparse
eigenvectors can thus be considered as successful. Compared to the random
dictionary, the results are much better. The random dictionary is as expected not able
to approximate 𝐺 well, especially with few parameters.

The results of the butterfly factorization were slightly worse than those of the
truncated SVD. However, the algorithm’s performance was still quite good (plot
5.5). I suspect that the lower performance is mainly because 𝐺 suposedly has not
hierarchical structure and is not complementary low-rank. Consequently, the low-rank
approximations of the subblocks are worse. One can suppose that this is the case for
most weight matrices. For other matrices, such as the Fourier matrix, which have the
required complementary low-rank property, I obtained better approximation results
with the butterfly factorization then with the truncated SVD.

However, other approaches exist to obtain sparse weight matrices in neural networks.
In our case, I first trained a neural network and then approximated the last layer of
the network as a product of sparse factors. Another approach is to specify certain

46

6.1 Summary and Interpretation

structures in the weight matrices and then train the network. These structures are
usually hand-crafted and combine fast transformations like the Hadamard or fast
Fourier transformation, the selection of suitable transformations is generally costly
[27]. The butterfly structure can solve this problem, as it can learn several fast
transformations. The structure is depicted in figure 6.3 for a 64 × 64 matrix.

Figure 6.3: Decomposition of a 64 x 64 random matrix into its butterfly factors non-zero
elements are dark orange zero elements light orange.

The time-consuming selection process is thus eliminated [6]. Experiments have
already shown that the butterfly structure is well suited to replace fully connected layers,
higher prediction accuracies were obtained for weight matrices with butterfly structure
than for fully connected layers [6]. These results are astonishing since the network is
able to learn the butterfly structure even without specification.
However, the same applies to convolutional layers in CNNs, which specify structures
that can also be learned by a fully connected network [30]. Nevertheless, CNNs are
better suited for image processing and achieve more accurate predictions. This is
achieved by exploiting the local spatial coherence of images in the convolutional layer.
By considering this fact it is conceivable, that the reason for the good performance of
butterfly layers is similar to these of CNNs.

47

6 Discussion

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3
Pr

ed
ict

io
n

Ac
cu

ra
cy

 p
er

 R
C

SVD
Butterfly
Butterfly (Middle level factorization)

0.0 0.2 0.4 0.6 0.8 1.0
Relative Complexity

101

102

103

Ap
pr

ox
im

at
io

n
Er

ro
r p

er
 R

C

Experiment Results per RC (Butterfly Factorization)

Figure 6.4: Approximation results normalized to the RC of the butterfly factorization. For
comparison, the results of the truncated SVD are presented

As expected, the relative prediction accuracy as well as the relative approximation
error per RC behaves very similarly to SVD, as depicted in figure 6.4. I suspect that
the reasons for this are identical.

6.2 Limitations and Recommendations

In this thesis, the last layer of the googlenet network was approximated with sparse
factors to reduce the resource consumption of the inference. For simplicity, the thesis
was limited to the approximation of one layer. Approximating all layers would go
beyond the scope of this work. However, it should be noted that all layers must be
considered if one aims to reduce resource consumption significantly. Furthermore,
methods that approximate 𝐺 with other structures and methods that assume specific
structures during the training of the networks were not examined. It is difficult to
assess whether the results obtained for googlenet can be applied to other networks.
This was also not investigated in this thesis.

In conclusion, the 𝐹𝐴𝜇𝑆𝑇 algorithm is best suited to decompose the weight matrix

48

6.2 Limitations and Recommendations

𝐺 into sparse factors after training. It is recommended to test this also for other
pre-trained neural networks and also for more layers. The butterfly algorithm did not
perform better than the truncated SVD. Still, it has been shown in other experiments,
as mentioned previously, that the butterfly structure can perform better than a fully
connected layer. This property makes the butterfly structure probably the most
interesting algorithm of this work. It is advisable to investigate this in further work.
However, the algorithm is not suggested for sparse approximation after training. The
sparse EigenGame also performed worse than the comparative algorithm, but it could
be optimized considerably. For example, it would be conceivable to continuously
reduce the vectors sparsity to obtain better approximations.

49

7 Conclusion

This thesis aimed to reduce resource consumption for the inference of neural networks.
This should be achieved by sparse approximative factorization of the weight matrices.
In the context of this work only the last layer of the network was approximated, however
it is to be noted that all layers must be considered in order to reduce the resource
consumption significantly. Also, only the fully connected layers were analyzed in order
not to go beyond the scope of this work. For this purpose, three algorithms were
investigated, namely, Butterfly factorization, sparse EigenGame, and 𝐹𝐴𝜇𝑆𝑇 . To
test the applicability of the approximate sparse factorization for real-world problems, I
approximated the last layer of the googlenet network. Then, the neural network with
approximated last layer was validated with the ImageNet validation data from 2012
to test whether the approximations achieved valid results. Based on the performed
experiments, it can be stated that algorithms exist which are well suited for such a
factorization. The 𝐹𝐴𝜇𝑆𝑇 algorithm was able to reduce the parameters of the last
fully connected layer to fifth and still achieved results that were only 1% worse than the
original layer. The other algorithms did not perform as well. However, it was made clear
that different approaches exist to obtain sparse layers. In our case, neural networks
were trained first, then the last layer of the network was approximated by a product of
sparse matrices. Other methods specify certain structures in the matrices and then
train the networks. Other experiments showed that the butterfly structure is better
suited for the second approach [27]. The sparse EigenGame is not the best choice for
either the first or second approaches.
In conclusion, the goal of reducing the resource consumption of CNNs, through the
approximate sparse factorization, has been achieved. Based on these results, it
is conceivable to approximate all layers in neural networks by a product of sparse
matrices. This can reduce the resource consumption of neural networks considerably,
possibly allowing an application in time-critical systems or low-resource devices.

51

Acronyms

𝐹𝐴𝜇𝑆𝑇 Flexible Approximate MUlti-layer Sparse Transform. 3, 26, 28, 35, 41–44, 48,
51, 56

AI Artificial Intelligence. 7

ASF Approximative Sparse Factorization. 3, 19

CNN Convolutional Neural Network. 3, 7, 8, 10–12, 47, 51

CV Computer Vision. 7

FLOP Floating-point Operation. 3, 9

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 8, 13

IoT Internet of Things. 10

LARS Least Angle Regression. 32, 33

ML Machine Learning. 13

NN Neural Network. 7, 8, 11, 12

OMP Orthogonal Matching Pursuit. 32

PALM Proximal Alternating Linearized Minimization. 27, 28, 45

PCA Principal Component Analysis. 16, 29, 30, 45

RC Relative Complexity. 35, 38–41, 43–46, 48, 56

SVD Singular Value Decomposition. 15, 16, 24, 26, 37–46, 48, 49, 56

53

List of Figures

1.1 Plot of the accuracy, the number of computing operations required, and
the number of parameters of common CNNs [5]. The plot illustrates
the hyperbolic relationship between prediction accuracy and resource
consumption. 9

2.1 Architecture of the LeNet-5 network. Consisting of the three
components convolutional, pooling and fully connected layer. 11

2.2 Schematic representation of feature extraction in an image. 12
2.3 An excerpt of sample images from the imagenet dataset. The first row

shows a tench, the second row a dial telephone, the third a fly agaric [38]. 14
2.4 Original as well as compressions of Lenna image, with ranks 60, 100

and 120. The image demonstrates that an approximation with rank 100
is sufficient for most applications 1. 16

3.1 Hierarchical matrix. The color indicates the rank of the matrix, whereby
the orange sub-blocks have full rank and the white blocks are low-rank. 21

4.1 Matrix with associated binary trees𝑇𝑥 and𝑇Ω. Furthermore I highlighted
the submatrix 𝐾2

1,1. 24
4.2 Middle level butterfly factorization. The alignment of the rank-1 SVD

components is shown as an example for submatrix 𝐾2
2,1 25

4.3 Recursive butterfly factorization of 𝑈2 = 𝑈3𝐺2 for 𝑀 ∈ R64×64. I
marked the subblocks 𝑈2,𝑡

𝑖, 𝑗
and 𝑈2,𝑡

𝑖, 𝑗
and furthermore highlighted the

scheme to insert the calculated singular vector of𝑈2 in𝑈3 𝐺2. 26

5.1 Histogram of the weights of 𝐺. A normal distribution with mean
−9.55−10 and variance of 0.003 is evident. Furthermore, the slight
positive skewness of 0.54 is recognizable. 36

5.2 Plot of the 𝐿2-norm of 𝑔𝑖 . The highest value belongs to pencil
sharpeners, the lowest to tabby’s. 37

5.3 Prediction accuracy as well as the approximation error plotted over RC.
A higher RC causes a lower approximation error, resulting in better
predictions. 38

55

List of Figures

5.4 Approximation results of the sparse EigenGame. For comparison, the
results of the truncated SVD as well as the approximation with a random
dictionary are presented. The results of the sparse EigenGame were
worse than those of the truncated SVD but better than ones of the
random dictionary. 39

5.5 The results of the Butterfly factorization were worse than those of the
truncated SVD but similar in behavior. 41

5.6 The results of the 𝐹𝐴𝜇𝑆𝑇 algorithm were constant better than those of
the truncated SVD for the three and five-factor variants. Surprisingly,
the five-factor variant performed worse than the three-factor variant. . . 42

6.1 Approximation results normalized to the RC of 𝐹𝐴𝜇𝑆𝑇 . For
comparison, the results of the truncated SVD are presented. 44

6.2 Approximation results normalized to the RC of the sparse EigenGame.
For comparison, the results of the truncated SVD are presented. 46

6.3 Decomposition of a 64 x 64 random matrix into its butterfly factors non-
zero elements are dark orange zero elements light orange. 47

6.4 Approximation results normalized to the RC of the butterfly factorization.
For comparison, the results of the truncated SVD are presented 48

56

Bibliography

[1] S. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee. “Impact of fully
connected layers on performance of convolutional neural networks for image
classification”. In: Neurocomputing 378 (2020), pp. 112–119.

[2] L. Beyer, O. J. Hénaff, A. Kolesnikov, X. Zhai, and A. van den Oord. “Are we
done with ImageNet?” In: CoRR abs/2006.07159 (2020).

[3] S. Bosch. Lineare Algebra. Vol. 4. Springer, 2006.
[4] R. Bro and A. K. Smilde. “Principal component analysis”. In: Analytical methods

6(9) (2014), pp. 2812–2831.
[5] A. Canziani, A. Paszke, and E. Culurciello. “An Analysis of Deep Neural Network

Models for Practical Applications”. In: CoRR abs/1605.07678 (2016).
[6] T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Ré. “Learning fast algorithms for

linear transforms using butterfly factorizations”. In: International conference on
machine learning. PMLR. 2019, pp. 1517–1527.

[7] C. De Sa, A. Cu, R. Puttagunta, C. Ré, and A. Rudra. “A two-pronged progress
in structured dense matrix vector multiplication”. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2018,
pp. 1060–1079.

[8] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. “Least angle regression”. In:
The Annals of statistics 32(2) (2004), pp. 407–499.

[9] K. Fukushima and S. Miyake. “Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition”. In: Competition and
cooperation in neural nets. Springer, 1982, pp. 267–285. isbn: 978-3-642-
46466-9.

[10] I. Gemp, B. McWilliams, C. Vernade, and T. Graepel. “EigenGame: PCA as a
Nash Equilibrium”. In: International Conference on Learning Representations.
2020.

[11] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
2019. isbn: 978-1-4920-3264-9.

[12] G. H. Golub and H. A. Van der Vorst. “Eigenvalue computation in the 20th
century”. In: Journal of Computational and Applied Mathematics 123(1-2)
(2000), pp. 35–65.

57

Bibliography

[13] W. Hackbusch. Hierarchical matrices: algorithms and analysis. Vol. 49. Springer,
2015. isbn: 978-3-662-47323-8.

[14] C. O. B. Hage. “Robust Structured and Unstructured Low-Rank Approximation
on the Grassmannian”. Ph.D. thesis. Technische Universität München, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[16] D. O. Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[17] C. A. Holt and A. E. Roth. “The Nash equilibrium: A perspective”. In: Proceedings
of the National Academy of Sciences 101(12) (2004), pp. 3999–4002.

[18] J. Hu, L. Shen, and G. Sun. “Squeeze-and-excitation networks”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 7132–7141.

[19] D. H. Hubel and T. N. Wiesel. “Receptive fields and functional architecture of
monkey striate cortex”. In: The Journal of physiology 195(1) (1968), pp. 215–
243.

[20] P. Jain, P. Kar, et al. “Non-convex Optimization for Machine Learning”. In:
Foundations and Trends® in Machine Learning 10(3-4) (2017), pp. 142–363.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012), pp. 1097–1105.

[22] T. Kurita. “Principal Component Analysis (PCA)”. In: Computer Vision: A
Reference Guide. Ed. by K. Ikeuchi. Cham: Springer International Publishing,
2021, pp. 1013–1016. isbn: 978-3-030-63416-2.

[23] L. Le Magoarou and R. Gribonval. “Flexible multilayer sparse approximations
of matrices and applications”. In: IEEE Journal of Selected Topics in Signal
Processing 10(4) (2016), pp. 688–700.

[24] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. “Handwritten digit recognition with a back-propagation network”. In:
Advances in neural information processing systems 2 (1989).

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied
to document recognition”. In: Proceedings of the IEEE 86(11) (1998), pp. 2278–
2324.

[26] H. Lee, A. Battle, R. Raina, and A. Y. Ng. “Efficient sparse coding algorithms”.
In: Advances in neural information processing systems. 2007, pp. 801–808.

[27] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. “Butterfly factorization”. In:
Multiscale Modeling & Simulation 13(2) (2015), pp. 714–732.

58

Bibliography

[28] F. Lin and W. W. Cohen. “Power iteration clustering”. In: ICML. 2010, pp. 655–
662.

[29] Y. Liu, X. Xing, H. Guo, E. Michielssen, P. Ghysels, and X. S. Li. “Butterfly
factorization via randomized matrix-vector multiplications”. In: SIAM Journal on
Scientific Computing 43(2) (2021), A883–A907.

[30] W. Ma and J. Lu. “An equivalence of fully connected layer and convolutional
layer”. In: arXiv preprint arXiv:1712.01252 (2017).

[31] M. Motamedi, D. Fong, and S. Ghiasi. “Fast and energy-efficient cnn inference
on iot devices”. In: arXiv preprint arXiv:1611.07151 (2016).

[32] R. B. Myerson. Game theory. Harvard university press, 2013.
[33] J. Nash. “Non-cooperative games”. In: Annals of mathematics (1951), pp. 286–

295.
[34] B. Neyshabur and R. Panigrahy. “Sparse matrix factorization”. In: arXiv preprint

arXiv:1311.3315 (2013).
[35] E. Oja. “Simplified neuron model as a principal component analyzer”. In: Journal

of mathematical biology 15(3) (1982), pp. 267–273.
[36] V. Pan. Structured matrices and polynomials: unified superfast algorithms.

Springer Science & Business Media, 2001.
[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn: Machine
learning in Python”. In: Journal of machine learning research 12(Oct) (2011),
pp. 2825–2830.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet Large
Scale Visual Recognition Challenge”. In: International Journal of Computer
Vision (IJCV) 115(3) (2015), pp. 211–252.

[39] G. Strang, G. Strang, G. Strang, and G. Strang. Introduction to linear algebra.
Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993. isbn: 978-1-73314-
665-4.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. “Going deeper with convolutions”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1–9.

[41] R. Vandebril, M. Van Barel, and N. Mastronardi. Matrix computations and
semiseparable matrices: linear systems. Vol. 1. JHU Press, 2007.

[42] M. E. Wall, A. Rechtsteiner, and L. M. Rocha. “Singular value decomposition
and principal component analysis”. In: A practical approach to microarray data
analysis. Springer, 2003, pp. 91–109.

59

Bibliography

[43] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and J.-M.
Frahm. “Re-thinking CNN frameworks for time-sensitive autonomous-driving
applications: Addressing an industrial challenge”. In: 2019 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE. 2019,
pp. 305–317.

60

	Introduction
	History of Convolutional Neural Networks
	Problem Statement & Motivation
	Outline

	Preliminaries
	Convolutional Neural Networks
	ImageNet
	Singular Value Decomposition

	Literature Review
	Semiseparable Matrices
	Matrices of Low Displacement Rank
	Hierarchical Matrices
	Approximative Sparse Factorization

	Sparse Approximative Factorization Methods
	Butterfly factorization
	FAµST
	EigenGame
	Sparse EigenGame

	Experiments
	Target Matrix G
	Reference algorithms
	Dummy Method
	Truncated SVD

	Sparse EigenGame
	Butterfly Factorization
	FAµST

	Discussion
	Summary and Interpretation
	Limitations and Recommendations

	Conclusion

