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Abstract

Glioma, one of the most common intracranial tumors, account for 81% of all malig-
nant brain tumors. Although occuring rarely, they are often fatal.
In this work, an analysis pipeline was implemented in modular form to calculate
quantitative maps of multiple physical parameters, including proton density PD, the
transverse relaxation time T2, and the longitudinal and effective transverse relax-
ation rates R1 and R∗2, respectively, from multiple MR images with different contrast
weightings. The pipeline was implemented in MATLAB, partially utilizing existing
toolboxes and frameworks. The pipeline was validated with data exported from
the MR scanner directly and from the Picture Archiving and Communication Sys-
tem (PACS). Quantitative parameter maps of five healthy subjects were evaluated
with different configuration settings and were validated by comparing the estimated
parameter maps with values reported in literature. Lastly, the pipeline was used to
analyse the quantitative values in eight postoperative glioma patients in five volumes
of interest (VOI): The oedema surrounding the resected glioma, and the affected and
non-affected hemisphere in both gray and white matter.
The results indicated a trend, that glioma also affect normal-appearing tissue on a
global scale, because we observed a change of the physical parameters. However,
the patient cohort was too small to draw conclusions. R1 values in glioma patients
in both gray and white matter could clearly be separated into two groups. These dif-
ferences in R1 values could resemble the progression of disease or different types
of glioma. Further research is necessary to consolidate this assumption.
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1 Introduction

In recent years, magnetic resonance imaging (MRI) has proved to be a favorable
tool in clinical diagnosis. Due to technical improvements, both in scanner hardware
and software, the scanning time of patients can be reduced to several minutes,
while the resolution has consistently increased.
MRI is a non-invasive, real-time examination, which can routinely be applied for
screenings. Compared to computer tomography (CT), MRI has no radiation and a
higher contrast for soft tissue, making it ideal for examinations of the abdomen, the
thorax, or the brain among others. Furthermore, MRI has proved to be the most
sensitive modality for the detection of primary or recurrent breast cancer [17].
Although it is still discussed how the "value" of MRI in a clinical setting should be
measured correctly, MRI can be undoubtedly seen as one of the most powerful
tools in modern clinical diagnosis, providing multimodal information on metabolism,
function and structure [40]. Besides its application in diagnosis, MRI is also used
to guide minimal-invasive surgeries or to prognose the mortality of diseases. More-
over, its use was extended to many other fields, including functional MRI, fiber
tracking in neuroradiology or quantitative MRI in precision medicine [40].
Quantitative MRI quantifies physical properties of the tissue, such as relaxation
times or rates, proton density, or magnetic susceptibility and has greatly improved
the specificity and sensitivity in computational neuroanatomy [45]. The specific
physical parameters can also be used as biomarkers for structural changes caused
by disease, which remain unseen in conventional MRI [26].
Another recently emerging field related to quantitative MRI is the so-called histolog-
ical MRI (hMRI). Microstructural brain tissue parameters, such as myelin density or
axonal diameters, which could previously only be obtained with ex-vivo histology,
were derived in-vivo from conventional MRI using biophysical models [4]. Thus,
state-of-the-art MRI techniques proved to be a non-invasive and fast method for
histological analyses.
Glioma are one of the most common brain tumors and account for 81% of all malig-
nant brain tumors. Although they occur rarely, they cause significant mortality. For
instance, Glioblastoma , which make up around 45% of all gliomas, have a 5-year
relative survival of barely 5% [27]. In a recent study, multimodal MRI was used to
predict the WHO grade of glioma based on machine learning algorithms [48]. This
study suggests, that tumor biology is reflected in multimodal MRI information, which
can non-invasively be evaluated through MR to improve diagnosis and treatment.
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1 Introduction

Recent improvements in image analysis in MRI, such as automatic brain tumor
segmentation, progression assessment and survival prediction using machine
learning algorithms [3], often require large computational resources which are often
not available in the clinical environment.
Data processing pipelines are a way to smoothly integrate research results into
clinical routine to improve diagnosis and treatment. These pipelines connect the
MR scanner with a server with sufficient computation power, which analyses the
acquired data and sends the results back to the scanner. By doing so, costs can
be reduced, as there is no need to upgrade every scanner with higher computing
power. Additionally, maintenance is easier, since updates can be carried out re-
motely at the server.
In this work, an analysis pipeline was implemented, which calculates quantitative
maps from conventional MR images. This pipeline is then used to analyse multiple
physical parameters in glioma patients. It ensures reproducibility and is less prone
to error, as the calculation of quantitative maps is very fragmented.
In the Fundamentals section, technical and medical fundamentals concerning MR
imaging are presented. Subsequently, the Methods section covers the methods
used in this work. Thereafter, in the Results section the results are presented.
The results are discussed in the subsequent Discussion section. Finally, the work
finishes with a Conclusion.
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2 Fundamentals

The discovery of the Nuclear Magnetic Resonance (NMR) effect by Bloch and Pur-
cell in 1946, laid the ground to the development of Magnetic Resonance Imaging
(MRI) [5][33]. In 1973 the first image based on NMR was acquired by Lauterbur
[20]. Since then, the imaging quality of MRI has improved considerably, in particu-
lar due to better hardware, higher computing power and improved postprocessing.
These days, an isotropic resolution of 1mm3 or less is commonly achieved in clin-
ical imaging. In the following sections, some background concerning the physical
and technical principles as well as medical fundamentals and clinical applications
are presented.

2.1 Technical Fundamentals

2.1.1 Image generation

In order to understand how images are generated with MRI in general, the underly-
ing physical principals are explained in the following subsections.

Signal creation

The fundamental physical property underlying every MRI technique is the quantum
mechanic property of a spin. Nuclei with non-zero spin have both an angular mo-
ment and a magnetic moment. In clinical MRI, the most common target is the proton
of the 1H isotope, which has spin equal to 1

2 . From a macroscopic, simplified view,
nuclei with non-zero spin can be interpreted as small dipoles, which, if placed in a
strong static magnetic field with field strength B0, align parallel or anti-parallel to the
direction of B0. In a collection of nuclei, the so-called spin ensemble, slightly more
nuclei align parallel to the magnetic field, which results in a small net magnetization.
A radiofrequency (RF) pulse is necessary to tilt the net magnetization away from
B0 and the nuclei become phase coherent. The longer the RF pulse is applied, the
larger the angle α between the direction of B0 and the net magnetization, which is
often referred to as the flip angle. The nuclei tilted away from the direction of B0

precess about B0 with the so-called resonance or Lamor frequency ω0, which is
described by the equation ω0 = γ ·B0 with the gyromagnetic ratio γ.
Now, the magnetic vector also possesses a transverse component, precessing
about B0, which induces a measurable voltage signal in the receive coils. If the
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2 Fundamentals

RF pulse is removed, two processes take place at the same time: The nuclei begin
to dephase and simultaneously return to their original parallel or anti-parallel orien-
tation. The longitudinal relaxation process is characterized by the time constant T1,
while the transverse dephasing is characterized by the time constants of the intrin-
sic relaxation T2 and the effective transverse relaxation T ∗2 . Transverse dephasing
takes place due to two different reasons. Firstly, microscopic spin-spin interactions
cause the spins to dephase. Also, static inhomogenities of the external magnetic
field B0 contribute to additional dephasing. T2 characterizes the transversal de-
phasing resulting only from the former effect, while T ∗2 characterizes dephasing re-
sulting from both effects [43]. While it is possible to measure T ∗2 with gradient echo
sequences, spin echo sequences can be used to avoid measuring effects from static
inhomogeneities, such that it is possible to obtain T2. Both types of sequences will
be explained in the next sections.
The strength of the received signal depends on the transverse or the longitudinal
relaxation, as well as the proton density (PD).

Spatial coding with magnetic field gradients

Now, the question arises how spatial information is encoded, such that structural
information can be obtained from these measurements.
In the simplest case of multi-slice 2D imaging, a linear magnetic gradient is first
created, which decreases in strength along one axis. Thus, the protons in each
layer along the gradient direction experience different magnetic field strengths and
according to the Lamor equation also have a different precession frequency de-
pending on their position. Therefore, by choosing the frequency of the so-called
slice selection RF pulse accordingly, only the protons in the corresponding slice will
be excited. The slice excited by the RF pulse is encoded along the remaining two
dimensions with a so-called frequency-encoding magnetic gradient and a phase-
encoding magnetic gradient. The frequency-encoding gradient is turned on along
one axis during read-out. This gradient changes the strength of the magnetic field,
which causes the protons in the slice to precess with different frequencies along
the direction of the gradient. As the protons along the gradient direction precess
with different frequencies, their positions can be reconstructed by decomposing the
contributions of the different frequencies. Similarly, the last dimension is encoded
with a phase-encoding magnetic gradient. However, signal contributions with the
same frequency, but with different phases can not be differentiated in the Fourier
spectrum. The trick is to apply multiple phase-encoding steps at different gradient
strengths and measure the dephased signals. Since measuring a dephased signal
is actually equivalent to sampling the signal over time, the rate of change, i.e. its
frequency, can be again analyzed with the Fourier Transform.
To understand, how the spatial information within the slice is encoded, the concept
of Fourier Transformation is required. Essentially, the Fourier Transformation can be
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2.1 Technical Fundamentals

understood as a method to derive the contributions of any frequency to a given sig-
nal. A mathematical more profound explanation can be found in the next subsection.
In conclusion, by analyzing the frequencies and phases of the measured signal with
2D Fourier Transformation, the image can be reconstructed.

Image Reconstruction

The final step now left, is to reconstruct the MRI image from the received signal
S. The measured signals described in the previous subsection are equivalent to
data points kn ∈ D in the so-called k-space, which is also known as the frequency
spectrum, where D is the set of sampled k-space points. The k-space points kn
in the rectilinear sampling case, assuming frequency encoding along the x-axis and
phase encoding along the y-axis, are defined as:

kn = a ·∆kx + b ·∆ky, a, b = ...,−2,−1, 0, 1, 2... (2.1)

with {
∆kx = γ|Gx|∆t
∆ky = γ∆GyTpe

(2.2)

whereGx is the frequency-encoding gradient, ∆t is the readout sampling time inter-
val, ∆Gy is the phase-encoding gradient step size and Tpe is the phase-encoding
interval. Mathematically, the reconstruction problem can be formulated as follows:
Find the image I(r), given

S(kn) =

∫
I(r)e−i2πkn·rdr (2.3)

Since the multidimensional Fourier transform is separable into multiple one-
dimensional Fourier transforms, we only need to consider the one-dimensional case
here. For uniformly sampled data

D = {kn = n∆k, n = ...,−2,−1, 0, 1, 2, ...} (2.4)

the imaging equation becomes

S[n] = S(n∆k) =

∫ +∞

−∞
I(x)e−i2πn∆kxdx. (2.5)

An important formula proven in [21], describes how to reconstruct I(x) from
S(n∆k):

∞∑
n=−∞

S[n]ei2πn∆kx =
1

∆k

∞∑
n=−∞

I(x− n

∆k
) (2.6)
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2 Fundamentals

In the ideal case of infinite sampling, which means that infinite data points kn were
measured, the image can be completely reconstructed as long as the sampling sat-
isfies the Nyquist sampling criterion. It states that an image I(x) of finite dimension,
i.e. there is aWx such that I(x) = 0 for |x| > Wx/2, can be reconstructed uniquely,
if the relationship Wx < 1/∆k is fulfilled.
Then the image I(x) can be simply reconstructed with following infinite Fourier se-
ries

I(x) = ∆k
∞∑

n=−∞
S[n]ei2πn∆kx, |x| < 1

∆k
. (2.7)

However, in practice an infinite sampling is not feasible. In finite sampling the Fourier
series becomes truncated and is often referred to as the "Fourier reconstruction
formula":

I(x) = ∆k

N/2−1∑
n=−N/2

S[n]ei2πn∆kx, |x| < 1

∆k
, (2.8)

where N + 1 is the number of sampling points
Note that the image reconstructed through finite sampling does not represent the
imaged object perfectly, since the truncation of the sum has led to a loss of informa-
tion.

2.1.2 Basic Pulse Sequences

In the following subsections, two pulse sequences are presented, which are the ba-
sis for most pulse sequences.
By manipulating imaging parameters, such as the repetition time (TR) and the echo
time (TE) accordingly, it is possible to weigh the contributions of the physical pa-
rameters T1, T2, T ∗2 and PD to the final contrast. TR refers to the time period
between two excitation pulses, while TE is the time interval between application of
the excitation pulse and the measurement of the MR signal. T1-weighted images,
i.e. images, where T1 influences the final contrast the most, can be achieved with
short TR and short TE, T2-weighted images can be acquired with long TR and long
TE and PD-weighted images can be acquired with long TR and short TE.

Spin Echo Sequences

In spin echo (SE) sequences (see Figure 2.1), the slice-selective 90◦ RF pulse is
followed by a 180◦ RF pulse after the time interval TE/2 to refocus the spins, which
have dephased after the application of the 90◦ RF pulse. Due to the static inho-
mogenities of B0, the spins precess with a slightly different Lamor frequency and
start to dephase. By applying the 180◦ pulse, the spins are flipped in their orienta-
tion which can be compared to reversing the direction of their precession. The faster
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2.1 Technical Fundamentals

precessing spins are now behind the slower ones. However this means, that the
spins behind now have a slightly higher Lamor frequency and will catch up. Thus,
after another TE/2, that is at the time the signal is read out, the spins are again
phase coherent. However, the 180◦ pulse can only compensate for the dephasing
caused by the static field inhomogenities of B0, but cannot revert the effects caused
by microscopic spin-spin interaction. The signal measured with SE is characterized
by the intrinsic relaxation time constant T2.
Images acquired with spin echo sequences have very good image quality, but due
to their relatively long scanning time they are highly sensitive to motion [43].

Figure 2.1: (a) Pulse timing diagram of a spin echo sequence. The time points 1-5 in the
diagram correspond to the time points illustrated in (b). At time point 2, a 90◦ RF-pulse is
applied simultaneously to the slice-selection gradient. Following, the signal begins to decay
due to spin dephasing. At time point 4, a 180◦ refocusing pulse is applied to reverse the
spins which leads to the rephasing of spins and an echo at time point 5. Note, that the
phase encoding is done between time point 3 and 4 and also, that the 180◦ refocusing pulse
is applied at the center between timepoint 2 and 5. (b) Illustration of echo generation in SE.
Illustrations taken from [43].
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2 Fundamentals

Gradient Echo Sequences

Gradient echo (GRE) sequences use, as the name suggests, the magnetic field
gradients to create an echo. This is done by applying a negative frequency-encoding
gradient to dephase the spins. Subsequently, the gradient is reversed and the spins
rephase to create an echo (see Figure 2.2). Since there is no 180◦ RF pulse, the
repetition time TR can be kept short. This reduces the overall scan time drastically,
which is a major advantage of GRE compared to SE sequences. Another effect
is, that the spins dephase faster in a GRE sequence since the static magnetic field
inhomogenities are not compensated by a 180◦ RF pulse and contribute to the signal
decay. The signal in GRE imaging decays exponentially with the effective transverse
relaxation time constant T ∗2

Figure 2.2: (a) Pulse timing diagram of a gradient echo sequence. The time points 1-5 in
the diagram correspond to the time points illustrated in (b). At time point 2, a RF pulse with a
nominal flip angle of α is applied simultaneously to the slice selection gradient. At time point
3, a negative frequency-encoding gradient is applied to dephase the spins. The gradient
is then reversed at time point 4 to rephase the spins, leading to an echo at time point 5.
Note, that the phase encoding is done between time point 2 and 3. (b) Illustration of echo
generation in GRE. Note, that for simplicity, the flip angle α in 2) was chosen to be 90◦, but
can be chosen arbitrarily. Illustrations taken from [43].
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2.1 Technical Fundamentals

2.1.3 Quantification of T1, T2/T2* and PD

In the previous sections, only qualitative image acquisition was introduced to obtain
images weighted with the parameters T1, T2, T ∗2 , and PD. For quantitative imaging,
models are necessary to relate the signal characteristics to the absolute values of
these parameters.
In the case of fast gradient echo imaging, the signal is given by the Ernst equation
[8]:

S = A · sin(α)
1− e(−TR/T1)

1− cos(α)e(−TR/T1)
· e−TE/T ∗

2 (2.9)

where A is the initial signal amplitude, which is proportional to PD, α is the flip an-
gle, TR is the repetition time, and TE is known as the echo time. The measurement
of T1 and PD in this work was based on the dependence of the steady-state signal
in GRE images on TR and flip angle, which is referred to as the "variable flip angle
technique" [22].
Equation 2.9 can be simplified for short TR (i.e. TR/T1 � 1), and short TE (i.e.
TE/T ∗2 � 1) by approximating the exponential term with e−TR/T1 ≈ (1−TR/T1)
and the other exponential term with e−TE/T

∗
2 ≈ 1. This simplifies the equation in

order to facilitate evaluation:

S ∼= A · sin(α)
TR/T1

1− cos(α)(1− TR/T1)
. (2.10)

By applying the tangent half-angle substitution t = tan(α/2), leading to sin(α) =
2t

1 + t2
and cos(α) =

1− t2

1 + t2
, the equation can be further simplifyied by getting a

rational term

S ∼= A · 2t · TR/T1

2t2 + (1− t2) · TR/T1
(2.11)

Now, T1 and A can be calculated from signals S1 and S2 with different flip angles
α1 and α2.
With t1 = tan(α1/2) and t2 = tan(α2/2), we get [12]

T1 = TR · (S1/t1 − S2/t2) + (S2t2 − S1t1)

2(S2t2 − S1t1)
(2.12)

and

A =
S1S2(t2/t1 − t1/t2)

2(S2t2 − S1t1)
(2.13)

Quantitative T ∗2 maps are estimated with an exponential fitting approach, commonly
using weighted images acquired at different echo times. However, it has been
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2 Fundamentals

shown, that motion artifacts can be drastically reduced when the exponential fit-
ting is done over echoes of multiple contrasts [46].
Assuming a monoexponential decay, the signal is described by:

SPD(t) = SPD(0) · e−t/T ∗
2 (2.14)

SPD(t) refers to the signal of a PD weighted sequence. Now T ∗2 is estimated by a
log-linear fit, which is equivalent to minimizing the error ε:

ε =

nmax∑
n=1

[ln(SPD(TE(n))) + TE(n)/T ∗2 − ln(SPD(0))]2 (2.15)

where both SPD(0) and T ∗2 are estimated. TE(n) refers to time of the nth echo,
assuming equidistant echo times.
Analogously, T2 maps can be estimated with the exponential fitting approach. While
T ∗2 are estimated from images acquired with GRE sequences, the estimation of T2

requires data from SE sequences.

2.1.4 Coregistration

Image coregistration is the process of geometrically aligning two or more images,
such that corresponding voxels in the different images represent the same region
within an extended object. This is an absolute prerequisite, in order to do further
quantitative post-processing, if several different contrasts are needed to reconstruct
the image. Coregistration can be generally split into inter-subject coregistration be-
tween different individuals and intra- or within-subject coregistration of different im-
ages acquired from a single individual. Inter-subject coregistration is, for instance,
necessary to compare the quantitative maps of individuals with each other in a
group, or similarly to compare the maps of a patient with a healthy reference group.
Intra-subject coregistration is useful to correct for motion, and for differences in se-
quence measurements [15]. Also, as described previously, intra-subject coregistra-
tion is important for the quality of the quantitative maps, which rely on recordings of
multiple sequences such as in Weiskopf et al. [46].

Transformation and Cost functions

The goal of coregistration is to find a transformation to coregister the voxels in a
map to the corresponding voxels in the reference map, which stays static. For inter-
subject coregistration, non-linear coregistration is more appropriate due to variation
in anatomical structures between different subjects. In the case of within-subject
coregistration, a rigid transform is sufficient, which is essentially a combination of
three rotations along each axis and three translations, since the skull of an indi-
vidual is rigid and the brain moves little within the skull [15]. Thus, the problem
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2.1 Technical Fundamentals

of coregistration can be reduced in this case to find appropriate parameters of the
transformation matrix M . In order to evaluate how well the obtained transformation
parameters align the images, a metric is required to measure the difference between
the images. This metric is called the cost function. There are multiple ways to define
cost functions; the most common ones are described briefly here.

Least squares

The probably most familiar way to measure the similarity of two images is to use the
least-squares cost function, which can be defined as

C =
n∑
v=1

(Av −Bv)2 (2.16)

where Av and Bv refer to the vth voxel of the respective image. However, this might
not be very suitable in many cases, especially if both images have different intensity
distributions, which is for intance the case between quantitative T1 and PD maps.

Cross correlation

Another way to measure the similarity of two images is using the normalized cross
correlation. This is defined as

C =

∑n
v=1(AvBv)√∑n

v=1A
2
v

√∑n
v=1B

2
v

(2.17)

It can easily be seen, that the cross correlation equals 1, if A and B are identical
and equals −1, if A = −B. The cross correlation is 0, if A and B are orthogonal.

Mutual Information

The mutual information cost function is based on the concept of entropy H of a
random variable X , which is defined as

H =
N∑
i=1

pi · log(
1

pi
) = −

N∑
i=1

pi · log(pi) (2.18)

where pi is the probability ofX to have the value xi. IfX is continous, thenN refers
to the number of grouped bins. For multiple images, entropy can be extended by
analysing the so-called joint histogram, which shows the distribution of the frequen-
cies of all possible combinations across all intensities of every voxel in the images.
The joint entropy can then be computed as

H(A,B) =
∑
i

∑
j

pi,j · log(
1

pi,j
) (2.19)
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2 Fundamentals

where pi,j is defined as pi,j = p(A = Ai and B = Bj). Mutual information is then
defined as as the difference between the sum of the entropies of each image and
their joint entropy:

MI = H(A) +H(B)−H(A,B) (2.20)

Since entropies are non-negtive, MI is maximal if H(A,B) is minimal. This is the
case, if B is most predictable from A. Therefore, mutual information can be used to
measure the similarity between two images [30]. Studholme et al. showed in their
paper, that a modified version, which they called normalized mutual information,
defined as

MI =
H(A) +H(B)

H(A,B)
(2.21)

provided significantly better behaviour [37].

2.1.5 Segmentation

Segmentation of brain images usually refers to the classification of brain tissue into
gray matter, white matter and non-brain tissue. Segmentation methods can be
broadly classified into two categories, either based on a tissue classification ap-
proach or by registration with a template. In the tissue classification approach, vox-
els are classified according to their intensity values. In order to do so, the intensity
distribution of each tissue class needs to be identified, often by choosing voxels to
represent each class. The other approach requires the registration of a template
brain to the brain volume. This allows predefined regions in the template brain to be
overlayed on the brain volume to identify different structures automatically [2].

2.2 Medical Magnetic Resonance Imaging

2.2.1 Conventional MRI

In magnetic resonance imaging there are two major subgroups, which are called
functional MRI and structural MRI. As the name suggests, functional MRI focuses
on the physiology of the human body with the aim to provide dynamic information,
such as the blood flow through the brain.
In structural MRI, on the other hand, the anatomy of the human body is examined.
Here the focus lies on providing static information, such as the volume or the shape
of anatomical or pathological structures in the human brain [38]. By studying the
images generated by MRI, different types of tissues, as well as abnormalities, such
as lesions, oedemas, or tumours can be differentiated. This is possible since the
difference in the chemical composition of different tissue types also leads to different
magnetic properties of each tissue. Therefore, regions of different magnetic proper-
ties result in different signal intensities of the MR signal. Depending on the applied
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2.2 Medical Magnetic Resonance Imaging

pulse sequence different tissue types can appear very different. T1-weighted,
T2-weighted, T ∗2 -weighted, and proton density weighted sequences are among the
most frequently used contrasts. For instance, in conventional T1-weighted (T1w)
MRI, fat appears bright, while water appears dark. Note that the term "weighted"
indicates that, although the specified parameter has the strongest effect on the
contrast, the final contrast is also influenced by a combination of other physical
parameters.

Various MRI protocol routines, consisting of a combination of different conven-
tional MRI sequences, have already been broadly integrated into everyday clinical
practice and are used for diagnosing a range of different medical conditions, ranging
from a suspected stroke, brain tumours, epilepsy to neurodegenerative diseases, to
name only a few. However, it is beyond the scope of this work to examine the whole
spectrum of applications of conventional MRI. In the following, a few interesting
examples are presented. A classical example is the detection of brain tumors in
clinical MRI. Since brain tumors can be clearly delineated from surrounding tissue
and due to the high resolution of MRI, MRI has become the method of choice, not
only for the diagnosis of brain cancer, but also for treatment planning as well as for
post-therapeutic brain evaluation. By injecting a contrast agent, such as Gadolinium
chelats intravenously, the contrast between tumor and surrounding tissue is further
enhanced [41].
T2-weighted imaging is, for instance, used for detecting oedemas or distinguishing
cysts from solid tumors and T ∗2 -weighted imaging is suitable for illustrating methe-
moglobin, deoxyhemoglobin, or hemosiderin, due to its sensitivity to magnetic
field inhomogeneities caused by susceptibility differences in different tissues. This
means, that regions with higher concentration of the above named substances lead
to a faster dephasing, and therefore, to a signal loss. Those regions appear dark in
the image, as can be seen in the Figure 2.3.
Thus, T ∗2 -weighted imaging is often often applied to detect pathologic conditions
related to lesions and bleedings, including cerebral hemorrhage, tumour bleeding,
or thrombosed aneurysm [6]. Furthermore, MRI has successfully been used in
research to measure morphometric changes, such as the change of volume of the
brain in ageing [10] or with learning [51].

2.2.2 Quantitative MRI

It is important to note here, that conventional MRI as described in Chapter 2.1.1 can
only be seen as qualitative imaging. This means, that absolute signal intensities
obtained at one site could not be reproduced at another site, due to differences
in hardware and pulse sequences [9]. From a clinical view, diagnosis based on
conventional MRI has to rely on the visual inspection and interpretation of the
physician. It is important to note that a pathology can only be distinguished from
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Figure 2.3: Axial T2*-weighted fast GRE
MR image of a tumoral hemorrhage in a
17-year-old male adolescent with thalamic
glioma. The arrow indicates the area of
hemorrhage. Taken with courtesy of [6].

surrounding healthy tissue, if the pathology is also accompanied by structural or
functional changes, which can be made visible in structural and functional MRI.
However, if the pathology is systemic, it is impossible to detect with conventional
MRI.
Quantitative MRI, however, uses the signal intensity to estimate the absolute values
of a single physical or chemical parameter such as the T2 transverse relaxation time
or the proton density, in each voxel of the brain. From a research perspective, this
is also advantageous since the quantitative estimation of physical or physiological
parameters are site-independent. Therefore, not being limited to data from a single
site increases the potential size of the patient cohort dramatically, which conse-
quently increases statistical power.
As mentioned above, conventional MRI relies highly on contrast differences to
differentiate between healthy and diseased tissue, but is mostly insensitive to subtle
global changes of tissue compositions. In quantitative MRI, in contrast, a compar-
ison between the value maps of a single subject and normative values acquired
from a healthy reference group is feasible, for instance, to monitor subtle changes
of the brain caused by disease [29]. Finally, there have been approaches to use
these quantitative values as biomarkers for malignancy [48].

In the following, an interesting example is presented. Quantitative mapping of
T1 values in glioblastoma patients, as was investigated by Müller et al., detected
cloudy-enhancing tumour compartments, which were not visible in conventional
MRI [23]. By measuring the change of volume of these compartments during
radio-chemotherapy, they were able to predict the length of the progression-free
survival of the patients. These compartments were visible in the area surrounding
the solid-tumour and it is suggested that this may represent tumour infiltration.
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3.1 Description of dataset

The dataset used in this work was acquired in five healthy subjects (2 males and 3 fe-
males, aged 23-49) and eight post-operative glioma patients (5 males and 3 females,
aged 33-67). who were scanned on a Philips 3T Ingenia Elition using a 32-channel
head-coil. For quantitative mapping of T1, PD and T ∗2 , two 3D multi-echo gradient-
echo sequences were acquired at TR=18ms and TE1/∆TE = 2.4ms/2.4ms with two
different flip angles α1 = 4◦ and α2 = 25◦. Compressed SENSE (with acceleration
factor CS = 6) was also applied to reduce the scan time. Compressed sensing is
a signal processing method that allows to acquire and reconstruct sparse signals,
which, in the case of MRI, can shorten the scan time considerably. In each case, six
echo images, each consisting of 176 slices, were acquired with a field of view (FOV)
of 240mm× 240mm× 176mm and a voxel size of 1mm× 1mm× 1mm. An-
other 3D multi-echo Gradient-Spin-Echo (GraSE) sequence consisting of 8 echoes
was acquired with a flip angle of α = 90◦, and TE1/∆TE/TR = 16ms/16ms/251ms,
which was used for T2 mapping. The FOV was 224mm× 192mm× 115.5mm
with a voxel size of 2mm× 2mm× 3.3mm. For mapping the actual flip angle, a
sequence with a voxel size of 3.5mm× 3.5mm× 5mm, a nominal flip angle of
α = 60◦, and TE1/TR1/TR2 = 2.3ms/30ms/150ms was acquired and the actual flip
angle imaging (AFI) method [50] was applied. The total scanning time including all
three sequences and B1 mapping was 8:45 min.
Four other sequences acquired in the usual dignostic protocol for glioma patients,
were used for the oedema segmentation. Two 3D T1w gradient-echo sequences,
each consisting of 267 slices, were acquired at TE/TR = 3.998ms/9ms, α = 8◦, and
compressed SENSE (with acceleration factor CS = 7.5), one before and the other
after application of contrast agent, with a FOV of 252mm× 252mm× 200mm
and a voxel size of 0.75mm× 0.75mm× 0.75mm. A T2w sequence with
fluid suppression (FLAIR), consisting of 281 slices, was acquired at TE/TI/TR =
326.29ms/1650ms/4800ms, α = 90◦, and compressed SENSE (with acceleration
factor CS = 10), with a FOV of 250mm× 250mm× 200mm and a voxel size of
0.71mm× 0.71mm× 0.71mm. Finally, a 2D spin-echo, consisting of 38 slices,
was acquired at TR/TE = 3088ms/79.82ms, α = 90◦, and compressed SENSE
(with acceleration factor CS = 1.5), with a FOV of 230mm× 230mm× 167mm and
a voxel size of 0.36mm× 0.36mm× 4.4mm.
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3.2 Structure of pipeline

In order to evaluate multiple different quantitative datasets sequentially and auto-
matically, a pipeline for data processing and analysis was developed. This means,
that all datasets can be evaluated sequentially without the need of user intervention.
This makes the analysis process much less time consuming and less prone to errors
from changes in manual inputs.
The pipeline was implemented in Matlab and made use of the software packages
hMRI toolbox [39] and the brain extraction tool (BET) [36] of the FMRIB Software
Library [49]. Also, MRIcron [34], a cross-plattform Neuroimaging Informatics Tech-
nology Initiative (NIfTI) format image viewer, was used for visual inspections.
During each scanning procedure, multiple imaging sequences were acquired. The
resulting images were exported from the MRI scanner in the DICOM (Digital Imaging
and Communications in Medicine) file format, an international standard to transmit,
store, process, and display medical imaging information [7]. However, it is quite
cumbersome to work with images in DICOM format in post-processing, particularly
because DICOM is a 2D image file format and 3D volumes are described as a se-
ries of DICOM 2D images. This means that up to several thousand of separate
files are stored after each scanning procedure, which has become unhandy. For
post-processing the NIfTI file format [25] is more preferable, particularly because it
can be used to save images as 3D volume. This is why the NIfTI format has been
adopted to be the default format in many widespread software packages, such as
in the statistical parametric mapping (SPM) framework or in the FMRIB software li-
brary (FSL) framework [19]. In this pipeline, the output datatype was thus chosen to
be NIfTI, while the input datatype was DICOM. The overall structure of the pipeline
can be seen in Figure 3.1a.

In order to be processed correctly by the pipeline implemented in this work, all
images belonging to one subject need to be stored in DICOM format in a folder
called "DICOM". This folder must be located in an arbitrarily named folder with the
name for this dataset, e.g. "Dataset 1". All dataset-folders need to be in the same
arbitrarily named parent folder, e.g. "Data". This folder structure is also illustrated in
Figure 3.1b. An illustration of the processing procedure implemented in the pipeline
can be found in Figure 3.2 and is described in the following.
In the first step, the header of each DICOM file in the subfolder ’DICOM’ is read in
sequentially. The protocol name parameter in the DICOM header indicates, which
sequence the DICOM file belongs to. According to the protocol name, the DICOM
file is moved to the respective, eponymous subfolder. Subfolders for the protocol
names "B1 map Yarnykh", "T1w fa25", "PDw", and "T2 3D GRASE" are created in
advance, because they are required for further processing of quantitative parameter
maps (qMaps). For every additional sequence, a new subfolder is created to store
the respective DICOM files.
A final subfolder ’Analysis’ is also created, where the final qMaps of the brain will be
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3.2 Structure of pipeline

(a) (b) (c)

Figure 3.1: (a) Macrostructure of data processing pipeline. The extensions .dcm and .nii
refer to the file formats DICOM and NIfTI respectively. (b) Folder structure of input datasets.
A simple folder structure is a prerequisite for the pipeline to work properly. Here, the overall
parent folder is called "Data" and the datasets "Dataset 1", "Dataset 2"... each have a
subfolder "DICOM". (c) Exemplary final folder structure. Note that subfolders starting with
’WIP’ are additional sequences recorded from the same subject, which are also part of the
dataset, but not needed for further analysis.

stored after processing. The final folder structure can be found in Figure 3.1c.
The next step is the conversion of all DICOM files of one sequence to one 3D NIfTI
file. This is performed for all sequences for each dataset. If the dataset contains
other sequences, which are not required for quantitative mapping, the DICOM files
of these sequences are also converted to NIfTIs, but are not used for further pro-
cessing.
After this sorting step, the NIfTI files of the sequences ’B1 map Yarnykh’, ’T1w fa25’,
and ’PDw’ are used to generate quantiative PD, R1 and R∗2 maps, using the hMRI
toolbox, with R1 and R∗2 being the reciprocal values of T1 = 1/R1 and T ∗2 = 1/R∗2.
The NIfTI files of the sequence ’T2 3D GRASE’ are used to estimate a T2 map. The
hMRI toolbox as well as the method to estimate the T2 map is elaborated later in the
subsections 3.2.2 and 3.2.3 respectively. As a final step, brain tissue is segmented
from non-brain tissue, such as the eyeballs, skin, fat, muscle, etc., which are also
recorded in a MR image. For this, the brain extraction tool of the FSL toolbox [49][36]
is used. This results in qMaps restricted to the brain tissue volume. These qMaps
are further segmented into gray and white matter tissue maps using the "Segment"
tool of the hMRI toolbox to evaluate the quantitative values inside the volume of in-
terest (VOI). Subsequently to the creation of the quantitative maps, a segmentation
of the oedema surroung the glioma is performed if the data is from a glioma patient,
using BraTS (Brain Tumor Segmentation) orchestra, an ensemble code developed
by Kofler et al., based on docker images used in the BraTS Challenge 2018 [16]. In
particular, the docker image of an implementation presented in [24] is used.
The segmented oedema is then used as a mask to analyze the particular region of
interest in the quantitative maps.
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Figure 3.2: Detailed illustration of the data processing. The input of the pipeline are DICOM
files belonging to one dataset. These files are first sorted into subfolders, according to the
protocol name parameter in their header file. DICOMs inside the same subfolder belong to
the same MRI sequence. Next, the DICOM files inside each folder are converted into a 3D
NIfTI volume. Depending on the type of sequence, these NIfTI volumes are either used for
quantitative mapping or tissue segmentation into oedema, gray matter, and white matter.
Subsequently, the quantitative maps are skull stripped. The segmented oedema and the
skull stripped qMaps are used together to analyse the oedema.
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3.2.1 FSL Toolbox and Brain Extraction Tool

The FMRIB software library was created by the analysis group of the Wellcome
centre of integrative neuroimaging in Oxford [49]. It is a comprehensive library of
analysis tools for FMRI, MRI and DTI brain imaging data, which runs both on macOS
and Linux. The brain extraction tool (BET) [36], which is used as part of this work,
can be run both from command-line or with a Graphical User Interface (GUI). In
this work, BET is run from command-line, called from inside a Matlab script. BET
is an fully automated method, which segments MR images of the human head into
brain and non-brain tissue, which is also known as skull-stripping. It is based on a
deformable model that evolves to fit the brain’s surface.
In this work, BET was used to improve the results of the oedema segmentation and
the segmentation into different tissue types used in the validation process.
BET is applied to the estimated quantitative PD Map, which worked best for skull
stripping, and the extracted brain mask was then applied to all qMaps. The quality of
skull stripping was checked visually by overlaying the extracted brain on the original
MRI with MRIcron.

3.2.2 SPM and hMRI Toolbox

The hMRI toolbox is a framework for multi-parametric quantitative MRI written in
Matlab, developed by Tabelow et al. [39] for applications in neuroscience and clin-
ical research. It is embedded into the SPM framework and can be used together
with the established tools of the SPM framework. All of the tools can be run from
a GUI, but there is also an option to save batches and scripts for setting up an au-
tomatic pipeline. The toolbox is organised into five main modules, from which the
modules "Configure Toolbox", "DICOM import" and "Create hMRI maps" are used
in this work. In the module "Configure Toolbox", some acquisition and processing
parameters are customized. As the name suggests, the module "DICOM import"
imports DICOM files and converts them into the NIfTI format. This module must be
run for every subject and every sequence separately. In this work, a default batch
was created, which converts all DICOM images inside each subfolder called ’DCM’,
such that the image format conversion is automated. Lastly, "Create hMRI maps"
is used for the calculation of quantitative PD, R1, and R∗2 maps. The creation of
these qMaps is based on the MPM multi-echo protocol introduced by Weiskopf et
al. in [44] and [47]. The maps created in the hMRI-toolbox are additionally corrected
for the bias introduced by B1 transmit field inhomogenities, if specific B1 transmit
field measurements were acquired. In this work, the Actual Flip Angle Imaging (AFI)
method [50] was applied for B1 mapping.
Furthermore, the tools "Coregister and Reslice" and "Segment" of the SPM frame-
work are used as well. The "Coregister and Reslice" tool coregisters and reslices
a source image to a given reference image. This is important, as has been elabo-
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rated in the fundamentals section, to ensure that voxels at the same position of two
different images refer to the same position in the brain. Also, since the sequences
are acquired at different FOV and resolutions, reslicing is necessary to make voxel-
based operations, such as masking images, applicable on every acquired image.
With the help of the "Segment" tool, a given MR image can be segmented into
probability maps of white matter tissue, gray matter tissue, cerebrospinal fluid, air,
and skull. This tool is used in the validation process and in the analysis of glioma
patients. The results are improved if a skull stripped MR volume is provided.

3.2.3 T2 Map Generation and Evaluation

The estimation of the T2 map by mono-exponential fitting was implemented in Mat-
lab according to a method proposed by Pei et al. [28]. This method is based on
Auto Regression on Linear Operation (ARLO) and was chosen over Non-linear least
squares based Levenberg-Marquard and Log-Linear, since it proved to be both fast
and more accurate [28].
Assuming an ideal signal of a SE sequence, the amplitude of the signal m(TE) can
be expressed by a mono-exponential decay:

m(TE) = M0 · e−TE/T2 , (3.1)

where TE is the echo time and M0 is the proton density scaled by multiple se-
quence and hardware parameters. By integrating m(TE) over two consecutive
echoes from the ith echo time TEi onwards, we get

si =

∫ TEi+2

TEi

m(t)dt = T2 · [m(TEi+2)−m(TEi)] ≡ T2δi, (3.2)

where δi = [m(TEi+2) − m(TEi)], i = 1, ..., N − 2, and N is the number of
echoes.
Assuming echo-intervals of the same length of ∆TE, the integral can be approxi-
mated numerically to the 4th order of accuracy with Simpson’s rule [1]:

si ∼=
∆TE

3
· [m(TEi) + 4m(TEi+1) +m(TEi+2)]. (3.3)

T2 can then be found as the maximum-likelihood estimate by minimizing the fol-
lowing cost function C(T2):

min(C(T2)) = min
T2

N−2∑
i=1

(
m(TEi+2) +

4∆TE
3

T2 + ∆TE
3

·m(TEi+1)−
T2 − ∆TE

3

T2 + ∆TE
3

·m(TEi)

)2

,

(3.4)
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which simplifies to

T2 = arg min
T2

1(
T2 + ∆TE

3

)2

N−2∑
i=1

(si − T2 · δi)2, (3.5)

with the definitions of si and δi from above. This minimizer can be analytically
solved, such that T2 can be explicitally expressed as

T2 =

∑N−2
i=1 (s2

i ) + ∆TE
3 ·

∑N−2
i=1 (siδi)

∆TE
3 ·

∑N−2
i=1 (s2

i ) +
∑N−2

i=1 (siδi)
. (3.6)

For a detailed derivation of the above minimizer, please refer to [28].

3.3 Validation

There are essentially three parts, which have been validated in this work. First of all,
the pipeline needs to generate the same quantitative maps as the usage of the GUI
with a manual map generation. For validation, five datasets of healthy subjects were
used, which previously have been manually evaluated by an experienced user, us-
ing the graphic user interface (GUI) of the hMRI-toolbox, on a Linux (Ubuntu 16.04
LTS and with Matlab version 2017b).
The first part of the validation tackled the question, whether the same dataset ex-
ported directly from the MR scanner or retrospectly from the clinical Picture Archiv-
ing and Communication System (PACS) yields the same quantitative maps.
After initial tests, it was also noticed that different parts of the pipeline and parame-
ters, such as the subversions of the SPM framework or a different scaling parameter
used in the DICOM to NIfTI conversion have significant, partially strong, impact on
the final quantitative maps.
Thus, the second part of the validation process consisted of systematical testing,
which configuration of parameters led to the minimal relative difference per voxel
between pipe-generated and manually generated qMaps. The parameters taken
into consideration were the operation system (macOS versus Linux), the subver-
sions of the SPM framework (version 6225 versus version 7487), the influence of
two different scaling factors in the DICOM header used for the conversion to NIfTIs
("RescaleSlope" vs "MRScaleSlope" ), and finally, the inclusion of additonal data in
the processing process (inclusion of data from a magnetic transfer (MT) sequence
versus no additional data). The scaling is needed to adjust the intensities from data
acquired with different echo times and different flip angels, which is important for
quantitative evaluation. The macOS version used for comparison was macOS Mo-
jave 10.14.3.
For qualitative comparison, a map of relative differences per voxel was generated,
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which was inspected visually. Additionally, the mean and standard deviation of these
differences were calculated for quantitative evaluation. The configuration of param-
eters, which generated qMaps closest to the reference maps, was used in the third
part of the validation and in the analysis of data from glioma patients, which is de-
scribed in the following.
The third part of the validation consisted of the comparison of absolute measured
parameter values of gray and white matter in the generated quantitative maps with
literature values. The probability maps of gray and white matter were used with a
binary threshold of 0.75 to create a mask of only white or gray matter tissue, respec-
tively and to calculate the mean and standard deviation of the quantitative values of
each qMap. The mean of these quantitative parameter values were then compared
with literature values.

3.4 Analysis of Glioma Patients

Finally, after the different steps of the validation process ensured that the pipeline
produced reliable qMaps, the last part of this work consisted of analysing the qMaps
of glioma patients. There were two main questions of interest: First, the quantitative
values of PD, R1, R∗2, and T2 in the oedema surrounding the space of resection of
the glioma. Second, the question whether quantitative values of these parameters
were affected globally in the non-pathological gray and white matter in the glioma
patients.
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4.1 Technical Procedure

The pipeline implemented in this works fully automatic on both, datasets exported
directly from the scanner and datasets exported from the PACS, which vary slightly
in their DICOM header. On average, the processing of each dataset from the origi-
nal DICOM files to the quantitative maps took around 18 minutes, while the glioma
segmentation on a 2,2 GHz Intel Core i7 CPU took approximately 45 minutes. If DI-
COM files of additional sequences were included in the dataset, the processing time
increased. Further statistical analysis, including the reslicing of NIfTIs for masking,
took no longer than a few minutes.
For the separate analysis of both hemispheres in glioma patients, the border be-
tween both hemispheres was chosen manually after visually inspecting the brain
volume in MRIcron.
An illustration of the pipeline with input and output images after each step can be
found in Figure 4.1. The cross section of a healthy subject and a glioma patient, as
well as an exemplary segmentation of the brain into VOIs can be found in Figures
4.2 and 4.3, respectively.

4.2 Quality of Quantitative Evaluation

4.2.1 Data from Scanner vs. Data from PACS

Since a dataset can be either exported directly from the MR scanner after an ex-
amination or retrospectively from the PACS, this evaluation examined, whether the
quantitative maps of the same dataset deviated from each other depending on the
method of data export. Reassuringly, the results were identical. However, an adjust-
ment in the processing pipeline was necessary to achieve the same result: Since
the DICOM headers are changed in the archiving process of PACS, the scaling pa-
rameter necessary for appropriate scaling of the image intensities was stored under
a different structure field compared to DICOM files exported directly from the scan-
ner. Thus, it was necessary to figure out which scaling parameter to use for proper
scaling, since otherwise it would result in considerable deviations in the resulting
qMaps.
Parameter selection was implemented case-dependent in the script for DICOM to
NIfTI conversion to circumvent this issue.
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Figure 4.1: Illustration of the workflow within the pipeline with input and output images af-
ter each step. The top row illustrates the weighted input images for quantitative mapping.
The middle and bottom rows show calculated parameter maps before and after skull strip-
ping. Note, that multiple image volumes of the weighted sequences are used for quantitative
mapping. Note also, that VOI stands for volume of interest.
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(a)

(b)

Figure 4.2: (a) Exemplary slices of a T1w data set from a healthy volunteer in different
orientations.(b) Segmented gray and white matter overlayed on the same slices of the T1w
data. Gray matter is depicted in red and white matter depicted in purple.
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(a)

(b)

Figure 4.3: (a) Exemplary FLAIR images of a glioma patient in different orientations. (b)
Segmented oedema (yellow) and gray and white matter of each hemisphere overlayed on
FLAIR images of a glioma patient. In the unaffected hemisphere, gray matter is depicted
in red and white matter is depicted in dark-blue. In the affected hemisphere gray matter is
depicted in pink and white matter is depicted in light-blue.
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4.2.2 Quantitative Evaluation with Different Parameter Configurations

Sixteen different configurations were evaluated to examine which configuration led
to qMaps closest to the reference qMaps, which were taken as "ground-truth". The
results of these evaluations can be found in Figure 4.4a. The configuration settings
of each configuration number can be found in Table 4.4b. The reference qMaps
were generated by an experienced user using the GUI of the hMRI toolbox.
For each subject and each qMap, the relative deviation was calculated as the rel-
ative difference per voxel between the calculated qMap and the reference qMap,
averaged over the number of voxels inside the skull-stripped volume. These rela-
tive deviations were then averaged over all subjects to get more robust results. It
can be seen that the relative deviations of the R1 maps are below 1% and remain
nearly unaffected from the configration settings. Also, it can be noticed, that in every
configuration without inclusion of an additional MT sequence for qMap estimation
(i.e. every even numbered configuration), the relative deviation of the R∗2 is con-
stantly very high at just below 12%, while in every configration with an additional
MT sequece for qMap estimation (i.e. every odd numbered configuration), the rela-
tive deviation is close to zero. The relative deviation of the PD map varies between
just below 1% and around 12%, among which configurations including MT files had
relative deviations between 1% and 5%, while configurations without MT files had
larger relative deviations ranging from 8% to 12%. The change of the operation
system accounted for up to 2% relative deviation.
The configuration with the lowest deviations was configuration number 11 with mean
relative deviations per voxel of 0.73%, 0.15%, and 0.18% in the PD, the R1,
and R∗2 map, respectively. The relative deviations in configuration 3 were 0.97%,
0.046%, and 0.080% in the PD, the R1, and R∗2 map, respectively. Configuration
3 was used for further analysis, since its deviations were only marginally larger for
the PD map and even smaller for the R1 and R∗2 map and the macOS was much
better accessible.

4.2.3 Validation of Values in Quantitative Maps

The quantitative maps of the five healthy subjects were also validated with regard
to their quantitative values in comparison with values found in literature. In Figure
4.5, the minimum and maximum of the quantitative values found in literature are
compared with the values estimated in this study. Additionally, the range of literature
values is also highlighted in the Figures 4.6, 4.7, 4.8, and 4.9 of section 4.3.
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(a)
Configuration OS SPM version Rescale factor MT files
1 macOS spm12 v6225 MRScaleSlope Yes
2 macOS spm12 v6225 MRScaleSlope No
3 macOS spm12 v6225 RescaleSlope Yes
4 macOS spm12 v6225 RescaleSlope No
5 macOS spm12 v7487 MRScaleSlope Yes
6 macOS spm12 v7487 MRScaleSlope No
7 macOS spm12 v7487 RescaleSlope Yes
8 macOS spm12 v7487 RescaleSlope No
9 Linux spm12 v6225 MRScaleSlope Yes
10 Linux spm12 v6225 MRScaleSlope No
11 Linux spm12 v6225 RescaleSlope Yes
12 Linux spm12 v6225 RescaleSlope No
13 Linux spm12 v7487 MRScaleSlope Yes
14 Linux spm12 v7487 MRScaleSlope No
15 Linux spm12 v7487 RescaleSlope Yes
16 Linux spm12 v7487 RescaleSlope No

(b)

Figure 4.4: (a) Mean relative deviations of qMaps for different configurations from reference
qMaps derived by manual evaluation by an experienced user. The mean deviation was cal-
culated as VOI average across voxel-wise relative deviations between the calculated qMaps
and the respective "ground-truth" reference qMaps and averaged over five healthy subjects.
Please refer to the table in (b), to see the description of each configuration. (b) Configura-
tions examined in the quantitative evaluation. The macOS version used was macOS Mojave
10.14.3, the Linux version used was Ubuntu 18.04.3 LTS, the reference qMaps were evalu-
ated on a Linux with Ubuntu 16.04 LTS. The SPM version refers to the subversion of SPM,
which was used in the pipeline. The rescale factor is a field in the DICOM header used for
the DICOM to NIfTI conversion. The column "MT files" refers to whether an additional MT
sequence was included in the qMap estimation.
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Volume of interest PD [%] R1 [s−1] R∗2 [s−1] T2 [ms]
GM healthy 77.63± 0.64 0.666± 0.015 20.93± 0.70 -
GM literature values [78, 84] [0.625, 0.724] [15.2, 18.5] [64.8, 120]
WM healthy 68.65± 0.29 0.991± 0.014 24.52± 0.70 -
WM literature values [68, 71] [0.923, 1.204] [19.5, 21.0 ] [55.8, 76.2]

.

Figure 4.5: Quantitative parameter values (mean± standard deviation (µ±σ)) in gray mat-
ter (GM) and white matter (WM) over five healthy subjects compared with literature values
found in [11], [14], [18], [31], [32], and [47]. For literature values, the range between minimal
and maximal reported values is provided. The literature values are also highlighted in the
Figures 4.6, 4.7, 4.8, and 4.9 of section 4.3. Note, that no T2 data of healthy subjects was
available.

4.3 Results of Quantitative Analysis

Finally, the pipeline was used to analyse the quantitative parameter values inside
the brain of glioma patients. For this purpose, the PD, R1, R∗2, and T2 values in five
volumes of interest (VOI) were examined. The VOIs comprised the gray and white
matter, each of the affected and the non-affected hemisphere as well as the seg-
mented oedema. For each patient, the values were calculated by taking the mean
over all voxels inside the VOI.
The results of this analysis (Figures 4.6, 4.7, 4.8, and 4.9) are shown together with
the quantitative parameter values within grey matter and white matter of healthy sub-
jects. In order to compare potential differences between both hemispheres, values
belonging to the same patient in the same type of tissue were connected with a line
in each plot. The mean and standard deviation over all glioma patients can be found
in Table 4.5.
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4 Results

Figure 4.6: Comparing quantitative PD values in healthy subjects (# subjects: 5) and
glioma patients (# patients: 8). Comparing 7 VOIs in three groups: Gray matter, white
matter and oedema. Values belonging to the same patient and the same tissue type are
connected with a line. "Healthy" refers to the VOI average over both hemispheres of a
healthy subject and "non-affected hemisphere" refers to the hemisphere of a patient not af-
fected by the glioma, while "affected hemisphere" refers to the hemisphere affected by the
glioma. "Oedema" refers to the VOI inside the segmented oedema. Please refer to Table
4.10 for mean and standard deviation of the data. Literature values of gray and white matter
are highlighted in a red and light-blue shade, respectively and are taken from [11] and [47].
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4.3 Results of Quantitative Analysis

Figure 4.7: Comparing quantitativeR1 values in healthy subjects (# subjects: 5) and glioma
patients (# patients: 8). Comparing 7 VOIs in three groups: Gray matter, white matter and
oedema. Values belonging to the same patient are connected with a line. "Healthy" refers to
the VOI average over both hemispheres of a healthy subject and "non-affected hemisphere"
refers to the hemisphere of a patient not affected by the glioma, while "affected hemisphere"
refers to the hemisphere affected by the glioma. "Oedema" refers to the VOI inside the
segmented oedema. Please refer to Table 4.10 for mean and standard deviation of the data.
Literature values of gray and white matter are highlighted in a red and light-blue shade,
respectively and are taken from [31] and [32].
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4 Results

Figure 4.8: Comparing quantitativeR∗
2 values in healthy subjects (# subjects: 5) and glioma

patients (# patients: 8). Comparing 7 VOIs in three groups: Gray matter, white matter and
oedema. Values belonging to the same patient are connected with a line. "Healthy" refers to
the VOI average over both hemispheres of a healthy subject and "non-affected hemisphere"
refers to the hemisphere of a patient not affected by the glioma, while "affected hemisphere"
refers to the hemisphere affected by the glioma. "Oedema" refers to the VOI inside the
segmented oedema. Please refer to Table 4.10 for mean and standard deviation of the data.
Literature values of gray and white matter are highlighted in a red and light-blue shade,
respectively and are taken from [14] and [47].
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4.3 Results of Quantitative Analysis

Figure 4.9: Comparing quantitative T2 values in glioma patients (# patients: 8), since no
T2 data of healthy subjects was available. Comparing 5 VOIs in three groups: Gray matter,
white matter and oedema. Values belonging to the same patient are connected with a line.
"Non-affected hemisphere" refers to the hemisphere of a patient not affected by the glioma,
while "affected hemisphere" refers to the hemisphere affected by the glioma. "Oedema"
refers to the VOI inside the segmented oedema. Please refer to Table 4.10 for mean and
standard deviation of the data. Literature values of gray and white matter are highlighted in
a red and light-blue shade, respectively and are taken from [14] and [18].
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4 Results

Volume of interest PD [%] R1 [s−1] R∗2 [s−1] T2 [ms]
GM healthy 77.63± 0.64 0.666± 0.015 20.93± 0.70 -
GM non affected
hemisphere

78.43± 2.62 0.542± 0.189 21.26± 1.35 78.36± 2.58

GM affected
hemisphere

77.97± 2.17 0.541± 0.192 22.03± 1.62 81.47± 4.90

WM healthy 68.65± 0.29 0.991± 0.014 24.52± 0.70 -
WM non affected
hemisphere

69.46± 0.25 0.783± 0.262 24.28± 0.63 66.27± 1.11

WM affected
hemisphere

69.39± 0.25 0.778± 0.264 24.75± 0.98 67.75± 1.68

Oedema 75.56± 3.92 0.537± 0.196 16.71± 1.62 121.63± 25.16

Figure 4.10: Quantitative parameter values (mean ± standard deviation (µ± σ)) in 7 VOIs
over 5 healthy subjects and 8 glioma patients, respectively. Gray matter is abbreviated as
GM and white matter is abbreviated as WM. Note, that no T2 data of healthy subjects was
available.
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5 Discussion

In this work, an analysis pipeline based on existing toolboxes was implemented in
MATLAB, which automatically calculates skull-stripped quantitative PD,R1,R∗2 and
T2 parameter maps from multiple MR images with different contrast weightings. This
pipeline was used to analyse the PD, R1, R∗2, and T2 values in brain tissue of eight
glioma patients by comparing them with a healthy cohort of five subjects and by
comparing the non-affected with the affected hemisphere of each patient.
The pipeline was programmed in a modular structure, such that it can easily be
adapted for other data processing pipelines in the future. For instance, the sorting
of DICOM files and subsequent conversion into NIfTI format can be included into
any future pipeline, as most post-processing and analysis of MR images is based
on data in the NIfTI format.
The quantitative evaluation with different configuration settings showed that the ab-
sence of MT files had the largest effect on the estimated PD andR∗2 maps, whileR1

maps remained relatively unaffected. This is not surprising, as the MT files are used
to improve the robustness of the fit of the exponential decay, which is used to esti-
mate R∗2 and to extrapolate TE=0 to estimate PD [39]. However, also the choice of
the operation system, the SPM version, and the rescale factor had a non-neglegible
influence on the PD maps. The influence of such system and software dependent
deviations is an important factor in evaluating quantitative MRI, which aims to es-
timate reproducible and system independet values. This evaluation showed, that
even the choice of software tools used in a pipeline to analyse identical volumes
can lead to considerable deviations. Further work should evaluate the influence of
each parameter on the final quantitative maps more systematically.
The validation of quantitative values in five healthy subjects was performed by com-
paring them with values found in literature. Apart from R∗2 values, and proton densi-
ties in gray matter, the values found in this study are well within the range reported in
literature ([14], [18], [31], [32], [35], [42], and [47]), which can be seen in the figures
in Chapter 4.3. The deviation of proton densities in gray matter from reported litera-
ture values was rather small and can be traced back to partial volume effects. Partial
volume effects occur, when the resolution is not high enough, and thus, cause the
signal in a voxel to actually resemble the weighted sum of multiple tissues. How-
ever, the discrepancy between the estimated R∗2 values and reported literature val-
ues is relatively large. Apart from partial volume effects, R∗2 mapping can particu-
larly be confounded by the presence of inomogeneities in the main magnetic field,
also known as macroscopic magnetic background gradients. These macroscopic

41



5 Discussion

magnetic inhomogenities introduce additional dephasing, leading to a faster signal
decay, i.e. shorter T ∗2 . These effects introduce systematic errors into the resulting
R∗2 maps [13]. As can be seen in Figure 4.8, this assumption coincides with the
observed values, as R∗2 = 1/T ∗2 is systematically larger than the values reported
in the literature. The reason for these systematic errors is that the multi-parametric
mapping protocol introduced by Weiskopf et al. [44] and used in the hMRI toolbox
is not optimal to map R∗2, as it does not correct for these macroscopic magnetic
inhomogenities. Furthermore, the gray matter and white matter VOIs used for ex-
traction of quantitative parameter values, contained brain areas at the bottom of the
brain, where large magnetic field inhomogeneities occur at the borders between tis-
sue, bone and air. The reason for the relatively broad range of ’quantitative values’
in the literature is, that quantification or measurement is always accompanied by
measurement errors. These measurement errors depend on the technique used for
measuring; the more complex the measurement problem, the higher the error and
the more the errors depend on the measurement technique. In addition, when mea-
suring any quantitative values in human subjects, there is always an intersubject
variability. Humans vary in body size, weight, and blood pressure, and most likely
also in T1 values etc. of their brain tissue.
Finally, eight glioma patients were analysed using the implemented pipeline. Since
the images of the glioma patients were acquired postoperatively, the glioma itself
could not be analysed. Instead, the oedema surrounding the glioma was segmented
using BraTS orchestra [16] and the brain was manually split into an affected and a
non-affected hemisphere, to be analysed separately.
The results vary across the investigated quantitative parameters. In general, a
higher variance of values could be observed in both hemispheres of glioma patients
compared to healthy subjects. This can especially be seen for the R1 values in Fig-
ure 4.7. Although the values in both hemispheres of the patients barely differ from
each other, the R1 values of the patient cohort seems to be clustered into two dis-
tinct groups. While the first group hasR1 values comparable to healthy subjects, the
second group has significant lower R1 values, which is visible even in such a small
cohort. This deviation might reflect the infiltration of tumor in surrounding tissue and
indicate a further progress of disease or a different subtype of glioma. Further work
with more patients is required to investigate this finding further and evaluate if R1

can be used as a potential biomarker to detect progression of disease early on.
Other quantitative values do not suggest such a straightforward interpretation. For
three patients, the PD values in gray matter coincide with healthy subjects in the
non-affected hemisphere, while the corresponding PD values in the affected hemi-
sphere deviate from each other. This might indicate potential infiltration of the glioma
into the affected hemisphere, while the non-affected hemisphere still remains unin-
fluenced by the tumor. However, the values still lie within the range of reported litera-
ture values and the patient cohort is too small for further interpretations. Similarly, it
can be observed that in some patients the R∗2 values in gray matter differ noticeable
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between both hemispheres and in white matter the R∗2 values are slightly increased
in the affected hemisphere. Clearly, more data of glioma patients is needed to con-
solidate these trends.
The analysis of T2 was limited to the comparison between both hemispheres in
patients, as no T2 data of healthy subjects was available. No substantial differ-
ences between both hemispheres could be observed. The quantitative values in
the oedema have the highest variance and differ a lot from the quantitative values
both in gray and white matter. This is likely due to the higher fraction of fluid in the
oedema. Only the R1 values in the oedema seem to coincide well with R1 values in
the gray matter.
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6 Conclusion

The results of this work suggest some promising trends in quantitative MRI of glioma
patients which need to be investigated further in subsequent studies. The pipeline
described, implemented, and validated in this work provides an ideal means to pur-
sue patient studies with a larger subject cohort more easily and systematically. Be-
sides further analysis of glioma patients and the search for potential biomarkes to
distinguish between various types of glioma, the introduced pipeline can be utilized
to investigate any type of disease that causes structural tissue changes in the brain.
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