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Abstract

Generative Adversarial Networks (GANs) have demonstrated great success in im-
age generation in recent years. This thesis proposes a novel application of GANs:
the generation of mathematical formulae. In this context, a formula is described as a
sequence of discrete symbols that represent a mathematical relation between quan-
tities. These can include integers, operands and constants. Due to the well known
"non-differentiability" issue of GANs in discrete data generation [9], the standard
GAN architecture cannot be used. To that end, the architectures from two language
generation models are modified and evaluated: the Gumbel-Softmax GAN [23] and
the Sequence GAN [41]. Experimental and mathematical results demonstrate the
unviability of using the Gumbel-Softmax GAN for the generation of mathematical
formulae using the proposed approaches, by cause of the difference between its in-
tended application and the one studied in this thesis. Finally, the experiments done
on the Sequence GAN show highly promising results, which make this particular
architecture the more suitable amongst the analysed ones.
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1. Introduction

"The most interesting idea in the last ten years in machine learning"

- Yann LeCun, prominent deep learning researcher, director of AI research at Face-
book, professor at NYU and co-recipient of the 2018 Turing award, on GANs [24].

Since its introduction by Goodfellow et al. in 2014 [10], GANs have gained
widespread research attention and introduced the field of Machine Learning (ML)
to new and exciting possibilities, such as image generation, image reconstruction
and Natural Language Processing (NLP). This thesis introduces and analyses a
novel application for GANs: the generation of mathematical formulae. From math-
ematics through quantum physics to computer science, formulae are at the core of
our understanding of the world: the calculation of the area of a sphere, the knowl-
edge that the ultimate answer is indeed 42, the description of the state of a particle
in a quantum-mechanical system and even the simplest, but fundamental notion
that 1 plus 1 equals 2 are all concepts precisely and unambiguously described by
mathematical formulae. The existence of an algorithmic model capable of generat-
ing novel and complex mathematical formulae, given a collection of known ones as
training data, could have unforeseeable advantageous effects on the most disparate
research fields and its applications could be varied and manifold.

Figure 1.1.: Schrödinger equation: wave-function in an infinite two-dimensional quantum
well of unit length for energy levels nx = 3 and ny = 3.
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1. Introduction

Consider the abundance of undiscovered formulae in all fields of research: among
those is the computation of prime numbers, which always garners much attention
among mathematics researchers. Although there exists a plethora of formulae for
calculating upper and lower bounds of prime numbers and for producing candidates,
an efficiently computable and precise mathematical formula for calculating all the
prime numbers remains undiscovered. A model, like the one described above, could
theoretically help with such search. Further examples include the unification of the
concepts of time in quantum physics and its relativistic counterpart. In quantum
physics, time is regarded as a fixed and absolute quantity, whereas in relativistic
terms, time is dependent on quantities such as gravity and velocity. A formula that
can unify these pradigms is yet to be discovered. Although such a model is undoubt-
edly far fetched and may be implausible or even impossible, such considerations
provided nevertheless the motivations that lie behind this thesis. Indeed, this latter
sets to lay the first stone of the foundation upon which such model could be built.

Because this thesis sets to analyse the viability of using GANs to generate math-
ematical formulae and aims to function as a proof-of-concept, the objective of the
models is reduced to its simplest possible terms, while still being true to the aim of
the thesis. Conceptually, the objective of the systems is to generate novel equations
of the following form:

a+ b = c ; a, b, c ∈ Z

Within the scope of this thesis, the mathematical operators + and = will be kept out
of the objective of the generative algorithm, so that the formulae can be represented
by vectors of length three:

x =
[
x1, x2, x3

]
, where x3 = x2 + x1

In practice, training data of such form would still require the definition of a large
set of possible symbols, i.e. a large vocabulary, as every integer would have to
be assigned to an unique characterization. Consequently, to minimize the set of
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available symbols, the data is restructured as a vector of length 8:

n =
[
n1 n2 n3 n3 n4 n5 n6 n7 n8

]
,

where ni ∈ {0, 1} ;
4∑
i=1

ni =
8∑
i=5

ni

The core concept of the objective remains unvaried, yet the vocabulary is thusly
restricted to two symbols: one and zero. The reasoning behind the choice of this
specific objective is twofold. Firstly, it represents the simplest form of mathematical
formula; this reduces the number of variables to a minimum and allows a more clear
analysis of the working principle of the models and of the problems that may arise.
Secondly, a successful completion of this objective would nevertheless demonstrate
the capability of the model to work with more complicated formulae. To that end,
the choice to limit the objective to integer values only is fundamental. Namely, such
limitation requires the development of a model that operates over a discrete domain,
rather than over a continuous one. The discrete domain is what allows this thesis’
work to be used as a first step towards the generation of mathematical formulae.
Naturally, the generation of the above described vector x would not be outside the
means of a continuous model. However, if one extends the objective to include
mathematical operands:

x′ =
[
x1, +, x2, =, x3

]
One would have no way to define the tokens "+" and "=" over a continuous domain
and would fail in the construction of the algorithm. However, defining such tokens
over a discrete domain is straight forward: operators would be defined as e.g. a
position in an one-hot vector [14]; not unlike integers. The notion that operands
can be defined in the same way as integers is also why we can omit them from the
scope of this thesis: just the integers suffice as proof-of-concept. In conclusion, this
objective fulfills two crucial conditions: it is as simple as possible, while insuring that
the results of this work are as significant as possible.
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2. Framework

2.1. Generative Adversarial Networks

Developed by Ian Goodfellow et al. in 2014 [10], GANs are a game-theorical ap-
proach to the conception of deep generative models. The basic structure of a GAN
consists of two deep neural networks: a generator and a discriminator. The gen-
erator maps a latent noise input to to the distribution of the training data. The dis-
criminator is a binary classifier, whose inputs is both the output of the generator and
samples from the training data. Its output is a scalar that represents the network’s
decision on weather the samples are real or come from the generator.

Generator

Discriminator

Training Data

0: Fake

1: Real

Noise
z G(z)

Backpropagation II (fixed D)

Decision

Backpropagation I (fixed G)

pg(z)

D(x)
x

pdata

Figure 2.1.: Basic structure of a GAN.

Intuitively, this system can be understood as an adversarial game played by the
two models, hence the game-theorical approach: the discriminator tries to catch
the generator while the generator tries to fool the discriminator. The system con-
verges when the players reach Nash-equilibrium [28]: the point where both players’
strategies cannot be changed to increase their respective payoffs in relation to the
game. Effectively, the generator is producing real-looking samples, the discriminator
cannot recognize them anymore and both models have no incentive to change their
strategies. Mathematically, the objective of the entire system can be expressed as
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2. Framework

the min-max optimization problem:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

where x is the real data, pdata(x) is its distribution, z is the noise input of the
generator and pz(z) is the distribution of the latent noise. Algorithm 1 illustrates
the functionality of the GAN: during training, one must alternate between updating
the generator and updating the discriminator. To that end, the error is firstly back-
propagated through the discriminator, updating only this latter. Subsequently, the
error is back-propagated through both the discriminator and the generator: in this
case, only the generator is updated.

Algorithm 1 : GAN [10]
Generator G , Discriminator D;
while not converged do

for n = 1 to ND do
Sample batch of m noise samples: {z1, ..., zm};
Generate samples with G : {G(z1), ..., G(zm)};
Sample batch of m real samples from pdata(x): {x1, ..., xm};
Update D via gradient descent:

−∇θD
1

m

m∑
i=1

[logD(xi) + log(1−D(G(zi)))] (2.2)

end
for n = 1 to NG do

Sample batch of m noise samples: {z1, ..., zm};
Update G via gradient descent:

−∇θG
1

m

m∑
i=1

[log(D(G(zi)))] (2.3)

end
end

14



2.2. Convergence

2.2. Convergence

Goodfellow et al., in their original paper [10], show that there exists a mathemati-
cal description of the Nash Equilibrium in the proposed GAN; i.e. a convergence
point. Namely, when the distribution generated by the generator pg is equal to the
distribution of the training data pdata:

Lemma 1. The GAN is optimal when pg = pdata

Proof. [10]
Consider first the objective of the discriminator as per equation 2.1, i.e. to maxi-

mize the value function V (D,G). Further, consider freezing the generator, so that
equation 2.1 becomes:

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(g(z)))]

=

∫
x
pdata(x) log(D(x))dx+ Ez∼pz(z)[log(1−D(g(z)))]

(2.4)

Because with a frozen generator the quantity g(z) is a fix input to the discriminator,
it can be substituted for x:

max
D

V (D,G) =

∫
x
pdata(x) log(D(x))dx+ Ez∼pz(z)[log(1−D(x))] (2.5)

Recall the Law of the unconscious statistician:

Theorem 1 (Law of the Unconscious Statistician [6]). Let g(X) be a function on the
continuous random variable X . If the distribution of g(X) is not known, then the
expectation E[g(X)] can be computed as:

E[g(X)] =

∫
x
g(x)fX(x)dx (2.6)

where fX(x) is the probability density function of X .
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2. Framework

Applying the "Law of the Unconscious Statistician" to equation 2.5 yields:

max
D

V (D,G) =

∫
x
pdata(x) log(D(x))dx+ pg(x) log(1−D(x))dx (2.7)

Note that the function f(x) = a log(x) + b log(1 − x) reaches its maximum at
x∗ = a

a+b ; so that the optimal discriminator is defined as:

D∗ =
pdata(x)

pdata(x) + pg(x)
(2.8)

Secondly, consider the objective of the generator as per equation 2.1 with a frozen,
optimal Discriminator:

min
G
V (D∗, G) = Ex∼pdata(x)[logD

∗(x)] + Ez∼pz(z)[log(1−D
∗(G(z)]

=

∫
x
pdata(x) log

pdata(x)

pdata(x) + pg(x)
+ pg(x) log

pgx
pdata(x) + pg(x)

dx

(2.9)

Further, consider the Jensen-Shannon divergence between pdata and pg:

DJS(pdata‖pg) =
1

2
DKL

(
pdata

∥∥∥∥pdata + pg
2

)
+

1

2
DKL

(
pg

∥∥∥∥pdata + pg
2

)

=
1

2

(
log 4 +

∫
x
pdata(x) log

pdata(x)

pdata(x) + pg(x)

sgg + pg(x) log
pg(x)

pdata(x) + pg(x)
dx

)

=
1

2

(
log 4 + min

G
(D∗, G)

)
(2.10)
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2.2. Convergence

which leads to:

min
G
V (D∗, G) = 2DJS(pdata‖pg)− log 4 (2.11)

Since, by definition, the Jensen-Shannon divergence can only be equal or greater
than 0; and since it is only equal to zero if the distributions are equal to each other,
the generator has its optimum at pg = pdata. Plugging this equality into equation 2.7
yields: D∗ = 1

2 . Intuitively, the discriminator cannot distinguish between real and
generated samples anymore and outputs only 1

2 . The players have reached Nash
equilibrium and the GAN has reached its optimum.

Although the Adversarial Network has a mathematical optimum, in practice, GAN
training is not as straight-forward as the mathematical model may suggest: there
exist several ways, in which the network fails to converge, most prominently mode
collapse and vanishing gradients.

2.2.1. Mode Collapse

Mode collapse is widely regarded as one of the more prominent and challenging
mode failures of GAN training. It results in a model which generates samples from
an extremely limited subset of the original distribution pdata. If, for example, the net-
work’s objective is to generate faces, mode collapse would result in the generator
only generating one single face or a collection of faces with e.g. the same skin tone.
Specifically, the generator has learned to map the entire latent space to a limited
number of points in the input space. Various causes have been linked to Mode Col-
lapse in GANs; such as sharp discriminator’s gradients [37] and, more commonly,
excessive training of the generator. If the generator is updated too frequently, it may
tend towards generating a single sample that fools the discriminator: its loss func-
tion assumes near-zero values and even a subsequent training of the discriminator
does not solve the problem [8]. This tendency is also caused by the architecture of
the model: because the discriminator processes samples independently from each
other, it has no way of assessing the entropy of the generated samples [32]. Several
solutions have been proposed to alleviate the problem of mode collapse; notable
amongst them are: the Wasserstein GAN architecture [3] and minibatch discrimina-
tion [32]. Nevertheless, these solutions are not always applicable and the problem
of mode collapse remains an open one.
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2. Framework

2.2.2. Vanishing Gradients

Vanishing Gradients are generally caused by the discriminator converging too
quickly. An optimal discriminator D∗ outputs zeros and ones for the generated and
the real samples, respectively:

D∗(G(x)) = 0; D∗(x) = 1 (2.12)

In this state, the gradients of the discriminator are zero almost everywhere. Conse-
quently, as the discriminator converges towards its optimality for a given generator,
its gradients tend towards zero and therefore may vanish when passed to the gen-
erator. Arjovsky and Bottou lay an analytical proof for the above statement in [2]:

lim
‖D−D∗‖→0

∇θEz∼p(z)[log(1−D(Gθ(z)))] = 0 (2.13)

where

‖D‖ = sup
x∈X
|D(x)|+ ‖∇xD(x)‖2 (2.14)

and log(1 − D(G(x))) is the objective function as per equation 2.1. They fur-
ther show, that this problem can be alleviated by setting the generator’s objective
to − log(D(G(z))), which is reflected in algorithm 1.
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3. Related Work

3.1. Continuous Generative Adversarial Networks

The original and most prominent use of GANs is image processing and image gen-
eration; the results of such implementations have advanced remarkably in recent
years and can be strikingly indistinguishable from real photographs.

Figure 3.1.: Selection of pictures generated by a Large Scale GAN [4].

Figure 3.1 shows results from the implementation by Andrew Brock et. al. in [4],
where the authors scaled up state-of-the-art GANs by drastically increasing batch
size and number of parameters of the model.

Figure 3.2 shows a selection of pictures generated by the second iteration of
Style-GAN [18] [19]. Herein, the authors propose a generator with an alternative
structure: instead of feeding a latent noise vector to the input layer of the generator,
the latent vector is a learned constant which is mapped by a Multilayer Perceptron
(MLP) to a latent space. This is in turn passed to each layer of the generator through
adaptive instance normalization (AdaIN). In addition, gaussian noise is added to
each layer. The alternative generator’s advantages comprise greater variation within
the generated pictures and separation of high-level attributes such as hairs and
freckles.

Other important developments in GAN research include the work published by
Zakharov et al. in 2019 [42], wherein the authors’ model is capable of generating
video of a person giving a speech, by feeding the network with only a small number
of head shots of the protagonist.

Furthermore, at NVIDIA, Kim et al. introduced Game-GAN in early 2020 [20]. The
model is able to recreate the game of Pac-Man starting from just the recording of a
match.
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3. Related Work

Figure 3.2.: Selection of pictures generated by Style-GAN II [18] [19].

3.2. Discrete Generative Adversarial Networks

Notwithstanding the progress that GAN based models have made on continuous
domains such as images and videos, the state of the research in GANs on dis-
crete domains is more scattered and has fewer impressive results. This stems
partly from the fact that to generate discrete symbols, the generator must contain a
hard-decision layer, which does not allow for standard back-propagation through the
model. This issue is at the core of discrete GAN research: it is discussed in more
detail in chapter 5 and will be referred as "non-differentiability issue" hereafter. Due
to the structure of the objective of this thesis, as described in chapter 1, a model
which generates sequences of discrete, highly correlated symbols is required. As
far as the author of this thesis knows, there is no research on the generation of
mathematical formulae. However, the research field which is most related to it is
NLP, specifically using GANs to generate strings of original text. To this end, there
exist a plethora of different variations on the basic GAN architecture, which try to
overcome the non-differentiability issue discussed in chapter 5. However, as of the
writing of this thesis, there does not seem to be a clearly dominant method. Nev-
ertheless, these methods can be categorized into two types: the methods that use
Reinforcement Learning and the ones that use a direct approach.

3.2.1. Reinforcement Learning based methods

This family of models incorporates concepts of Reinforcement Learning (RL) into
a GAN. Specifically, the generator becomes a RL-Agent, which moves through the
state-action space defined by the previously generated words and the selection of
the next word, respectively. The reward is provided by the discriminator and the
model is updated through a policy gradient algorithm such as REINFORCE [40].

The Sequence Generative Adversarial Network (Seq-GAN), developed by Yang
et al. in 2017 [41] is one of the more prominent members of this family. Herein,
the model is updated by performing a Monte-Carlo search on each word, with the
reward given by the discriminator at each step. This method will be discussed in
more detail in chapter 7.
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3.2. Discrete Generative Adversarial Networks

In 2017 Guo et al. introduced Leak-GAN [13]: the proposed model addresses
the scarcity of information provided by the discriminator, especially with longer sen-
tences. Because the discriminator is a binary classifier, the score it provides is both
sparse and lacks intermediate information: a sub-optimal condition for a RL model.
To that end, the discriminator is structured to leak its internal state to the genera-
tor model, which follows a hierarchical RL [39] architecture to interpret such leaked
state. This provides the generator with more meaningful and frequent information.

Model Generated Sentences
Leak-GAN A couple of people are riding bikes down an asphalt road.

An old photo of a man riding on a motorcycle with some
people.
A person in a helmet standing next to a red street.

Seq-GAN A red and white photo of a train station.
The bathroom is clean and ready for us to use .
A man is walking with his dog on the boardwalk by the
beach.

Table 3.1.: Examples of sentences generated by Leak-GAN and Seq-GAN, trained from the
COCO dataset, as shown in [13].

A solution to a similar problem was proposed by Lin et al. in 2017 with Rank-
GAN [25]: The discriminator is substituted by a Ranker, which is provided a single
generated sentence and a collection of human-written ones. The Ranker ranks them
according to believability and consequently provides a more rich reward compared
to a simple binary classifier.

Hjelm et al. use a slightly different approach and propose a Boundary Seeking-
GAN [15], wherein the model performs policy gradient based on the KL-divergence
and derived from the objective function of f-GANs [30].

3.2.2. Direct methods

Contrary to section 3.2.1, these models do not use RL based methods to overcome
the non-differentiability issue of discrete GANs, instead relying on modifications to
the original architecture to allow for the back-propagation through the discriminator-
generator ensemble to happen.

Among the several improvements to the Wasserstein Generative Adversarial Net-
work (WGAN) proposed by Gulrajani et al.[11], a discrete WGAN is outlined. The
original WGAN proposed by Arjovski et al. [3] sets to alleviate some of the problems
connected to GAN training. It uses a critic instead of a discriminator, which provides
a score on the generated samples rather than a binary classification. Furthermore,
it uses the novel Wasserstein distance as objective to the model, instead on relying
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on the more common Jensen-Shannon divergence, which is what the original GAN
[10] is based on. WGAN garnered much attention and is widely regarded as a suc-
cessful improvement upon the original GAN. Gulrajani et al.’s discrete WGAN makes
use of the same structure and applies it to discrete data. The generator’s softmax
output is fed directly to the generator, overcoming the non-differentiability issue.

In 2016 Kusner et al. proposed the Gumbel-Softmax-GAN [23], based on the
Gumbel-Max trick [12] and its softmax relaxation [26][17], which allows for differen-
tial sampling of a categorical distribution. This approach will be discussed in more
detail in chapter 6.

The Relational GAN, proposed by Nie et al. [29], uses the same Gumbel-Softmax
trick, expands however on the GAN architecture by substituting the more common
LSTM [16] modules for relational-memory modules [33].

3.2.3. Difference between Mathematical Formulae and Natural
Language

Although many similarities can be drawn between the research field of NLP and
the objective of this thesis, inasmuch that both problems can be condensed to the
generation of a sequence of discrete symbols, there exist one major difference,
which can be summarized as follows:

Lemma 2. Given a previously generated set of symbols in a sequence S1:t−1 =
{s1, . . . , st−1}, a symbol st to be generated and a set of available symbols φ =
{φ1, . . . , φN}, the true distribution pdata(φ|S1:t−1) of a formulae generation problem
is either very spiky or one-hot [14], whereas the true distribution of a NLP problem
is considerably smoother.

This concept is best illustrated by means of practical examples: firstly, consider
a generative model G for language processing. Assume that , based on the previ-
ously generated symbols in that sentence S1:t−1, such model generates a probabil-
ity distribution pG(φ|S1:t−1). The generated word can be subsequently computed
as st = argmax(pG(φ|S1:t−1)).

Secondly, consider the sentence:

Sentence 1. The sea is blue

Further consider the generation process of the fourth word "blue". In this in-
stance we can define S1:t−1 = {"the", "sea", "is"}, the learned distribution of G
pg(φ|S1:t−1) and the true distribution pdata(φ|S1:t−1). For visualization purposes,
the left diagram of figure 3.3 illustrates what the distribution pdata may look like.
Note that the example distribution is relatively smooth: intuitively, although the word
"calm" is indeed the most probable, it is not the only correct one, as sentences 2
and 3 are still plausible and correct
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3.2. Discrete Generative Adversarial Networks

Sentence 2. The sea is green.

Sentence 3. The sea is calm.

here green mask calm blue funny roar

Vocabulary 

Pr
ob

ab
ilit

y 
p(

)

+ = 1 2 3 4 5

Vocabulary 

Pr
ob

ab
ilit

y 
p(

)

Figure 3.3.: Example true probability distributions of a symbol to be generated st given the
previously generated symbols S1:t−1 and the set of available symbols (vocabulary) φ. NLP
(left, S1:t−1 = {the, sea, is}) and formulae generation (right, S1:t−1 = {1, +, 2, =}).

Consider now the same scenario applied to the problem of mathematical formulae
generation and substitute sentence 1 for formula 1 and consider the generation of
the last symbol "3"

Formula 1. 1 + 2 = 3

In this instance, we can also define S1:t−1 = {"1", "+", "2", "="}, pG(φ|S1:t−1) and
pdata(φ|S1:t−1). Herein, the right diagram of figure 3.3 illustrates what the distri-
bution pdata may look like. Note that this distribution is very spiky. Intuitively, the
symbol "3" is the only one that the distribution allows: the only correct one, as the
example formulas 2 and 3 demonstrate.

Formula 2. 1 + 2 = +

Formula 3. 1 + 2 = 6

This means that the distribution of the training data of a formulae generation prob-
lem is majorly different than the distribution of the training data of a language gen-
eration problem. Although it is possible to apply models designed for and tested on
NLP problems to the generation of mathematical formulae, this subtle but fundamen-
tal difference could have major consequences and should be carefully considered.
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4. Vanilla GAN

4.1. Model

The term "Vanilla GAN" indicates the simplest form of GAN; without major modifica-
tions to the original architecture proposed by Goodfellow et al. [10] and described in
chapter 2. As outlined in chapter 5, Vanilla GANs operate over a continuous domain
and are not applicable to discrete sequences as is. The aim of the experiments
performed in this section is to analyse the extent of the applicability of continuous
GANs to the objective of this thesis. Consequently, the training data for this par-
ticular model must deviate from the representation as vectors of length 8 ∈ {0, 1}
discussed in chapter 1. Accordingly, the data is structured as a collection of integer
vectors of length 3, to represent the formula a+ b = c:

Xi =


x11 x12 x13
x21 x22 x23
...

...
...

xN1 xN2 xN3

 =


2 3 5
6 6 12
...

...
...

1 1 2



where xi1, x
i
2 ∈ [0, 10], xi3 ∈ [0, 20] and xi3 = xi2 + xi1.

The model developed for this chapter is similar to the architecture described in
chapter 2: both the discriminator and the generator are feed-forward MLPs, with two
layers of 200 neurons each. the generator has an output layer of 3 neurons with a
linear activation function. The learning rate is set at η = 5e − 4 and both models
are optimized through the Adam optimizer. Note that, although the training data is
comprised of integers only, the model still operates over a continuous domain.
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4. Vanilla GAN

4.2. Results

Figure 4.1 shows the evolution of the distribution of generated samples against the
distribution of the training data, which indicates that the model correctly learned the
probability distribution of the training data.
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Figure 4.1.: Evolution of generator’s output distribution (scatter plot), against the true distri-
bution (wire plot) for epochs 1, 500 and 15000.

Table 4.2 shows a selection of generated vectors after completed training,where
the values are truncated after three decimal places to improve readability. The mean
square error of the generated samples is 3.94e − 4, calculated by subtracting the
first two entries of the vectors from the last one.

The implication of these results is twofold. Firstly, GANs are fundamentally capa-
ble of reproducing the strong correlation between outputs needed for the subsequent
work in this thesis. Secondly, although the training data is effectively discrete, the
network’s outputs don’t show any sign of tending towards integer values. Indeed,
experiments conducted with real valued data suggest that restricting the training
data to integers does not affect the generated samples after training. This further
indicates that a model architecture capable of operating over discrete domains is
needed.
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4.2. Results

7.947 -0.006 7.961
3.083 9.556 12.628
3.192 1.251 4.433
2.675 7.723 10.379
5.746 6.493 12.213
5.747 2.320 8.053
6.167 7.776 13.945
6.210 1.827 8.012
6.941 3.026 9.986
0.561 4.820 5.389
3.824 0.504 4.367
2.046 3.820 5.879
5.828 2.555 8.393
4.294 -0.001 4.316
1.833 9.135 10.964
5.405 4.648 10.064
5.531 5.617 11.132
0.020 6.165 6.182
6.570 1.485 8.071
5.684 4.474 10.160
0.566 7.501 8.067

Table 4.1.: Selection of generated vectors after training.
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5. Non-differentiability Issue

5.1. Outline

Unlike deep learning models for classification tasks, GANs do not translate easily
to a discrete output space. To outline such difference, consider firstly a multinomial
classification problem, where the aim of the classifier is to map each input point xi
to one of N labels yn. The classifier is easily constructed as a deep neural network
with input xi and a dense layer with N neurons as output. The output vector is
subsequently passed through the softmax function, which maps it to a probability
distribution.

softmax(xi) =
expxi∑N
j=1 expxj

, i = 1, . . . , N ; x = (x1, . . . , xN ) ∈ R (5.1)

The error between the softmax and the one-hot vector of the ground truth is con-
sequently back-propagated during training. In testing, labels can be extracted by
sampling the softmax output, hence calculating their argmax. Although such model
effectively produces discrete data, in training, gradients exists everywhere and the
error can be propagated.

On the other hand, consider the objective of the GAN: equation 2.1. Specifically,
if one analyses the objective of the generator and its implementation (see algorithm
1):

−∇θG
1

m

m∑
i=1

[log(D(G(zi)))]

one clearly sees, that the error is back-propagated through both the discrimina-
tor and the generator. This means, that the generator-discriminator ensemble
must be differentiable everywhere. Consequently, contrariwise to the classifier de-
scribed above, the generator cannot generate discrete data by means of sampling
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5. Non-differentiability Issue

an outputted softmax probability distribution, because that would introduce a non-
differentiable argmax layer between the generator and the discriminator. Gradients
cannot propagate through a non-differentiable function as is, and the model would
fail.

5.2. Straight-Forward Softmax GAN

One straightforward solution to the problem described hitherto, would be to skip the
sampling step completely and pass the softmax output directly to the discriminator.
Indeed, the generator-discriminator ensemble would be differentiable everywhere,
allowing the error to fully back-propagate. Henceforth, the reasons behind the unvi-
ability of such solution will be discussed.

As outlined by equation 2.7 of chapter 2, the objective of the generator, assuming
a fixed discriminator, is to minimize the Jensen-Shannon Divergence between the
real data and the generated data DJS(pdata‖pg):

min
G
V (D∗, G) = 2DJS(pdata‖pg)− log 4

The objective is minimized when pdata = pg and DJS = 0. If one were to skip the
sampling step, then pg would be the softmax output of the generator: a continuous
distribution over the simplex. On the other hand, pdata would be the discrete distri-
bution described by the one-hot vectors of the real data. Consequently, the Jensen-
Shannon divergence between a discrete and a continuous distribution would have
to be calculated. With such distributions, the Kullback-Leibler divergence would be
infinite and the Jensen-Shannon divergence would saturate at 1, making the mini-
mization problem impossible [11].

Intuitively, the discriminator learns to promptly reject all generated samples, with-
out leaving time for the generator to properly learn. Nevertheless, in practice the
GAN does not explicitly compute the Jensen-Shannon divergence between the true
and the generated distributions. Therefore a set of experiments were conducted to
assert the behaviour of such model. To that end, a GAN was constructed, where the
generator outputs is firstly passed through a softmax layer and subsequently directly
fed as input to the discriminator, named Straight-Forward Softmax GAN.
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5.2. Straight-Forward Softmax GAN

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 5.1.: Selection of subsequently generated sequences of a Straight-Forward Softmax
GAN.

Table 5.2 shows generated samples of a Straight-Forward Softmax GAN; it is
clear that the generator collapsed into one mode. Figure 5.1 shows the error from
the discriminator on generated samples and the percentage of unique sequences
throughout training. As expected, the discriminator learns quickly to recognize the
generator’s samples, whereas the generator immediately falls into mode collapse
(refer to the Appendix for more examples). In this form, simply skipping the sampling
step between the generator and the discriminator is not a viable solution and more
complex approaches that address the non-differentiability issue are needed.
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5. Non-differentiability Issue
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Figure 5.1.: Discriminator Error (top) and percentage of unique sequences (bottom)
throughout training.
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6. Gumbel-Softmax GAN

6.1. Model

Proposed by Kusner et al. in 2016 [23], the Gumbel-Softmax GAN overcomes the
problem outlined in chapter 5 by use of the Gumbel-Softmax distribution. Discovered
concurrently by Jang et al. [17] as the Gumbel-Softmax distribution and by Maddison
et al. [26] as the Concrete distribution; it is a continuous distribution that lives on the
simplex and approximates samples from a categorical distribution. By substituting
the hard-decision between the generator and the discriminator with the Gumbel-
Softmax distribution, Kusner et al.’s model has gradients everywhere, so that the
discriminator error can back-propagate correctly. The Gumbel-Softmax distribution
is a continuous relaxation of the Gumbel-Max Trick [27] [12].

6.1.1. Gumbel-Max-Trick

The Gumbel-Max-trick is a type of reparametrization trick, which allows sampling
from a categorical distribution. Specifically, sampling is performed by adding i.i.d.
samples from Gumbel(0,1) to unnormalized log-probabilities and selecting the high-
est value among these noisy logits (Lemma 3).

The Gumbel distribution Gumbel(µ, β), or Generalized Extreme Value distribu-
tion Type-I, is defined by:

PDF: f(z;µ;β) =
1

β
exp{−(z − µ)− exp{−(z − µ)}}

CDF: F (z;µ;β) = exp{− exp{−z − µ
β
}}

(6.1)

with mode µ and scale β. The standard Gumbel distribution Gumbel(0, 1) can be
sampled by means of − log(− log(Uniform(0, 1))).

Lemma 3. argmax(xk+gk) ∼ exp(xk)∑K
k′ exp(xk′ )

, where xk ∈ R and gk ∼ Gumbel(0, 1)
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6. Gumbel-Softmax GAN

Proof. [1] Consider the probability that (xk + gk) = zk ∼ Gumbel(xk, 1) is larger
than any other zk′ 6=k:

Pzk>zk′ =
∏
k′ 6=k

F (zk, xk′)

=
∏
k′ 6=k

exp{− exp{−(zk − xk′)}}
(6.2)

The marginal distribution over zk is known, therefore the overall probability can be
computed by means of p(x) =

∫
y f(x|y)f(y):

Pk>k′ =

∫ ∞
∞

f(zk, xk)× Pzk>zk′dzk

=

∫ ∞
∞

exp{−(zk − xk)− exp{−(zk − xk)}}

×
∏
k′ 6=k

exp{− exp{−(zk − xk′)}}dzk

=

∫ ∞
∞

exp{−zk + xk − exp{−zk}
K∑
k′=1

exp{xk}}dzk

(6.3)

This integral has a closed form:

Pk>k′ =
exp{xk}∑K

k′=1 exp{xk′}
(6.4)

which corresponds to the softmax probability.

Indeed, the gumbel distribution is the only one which satisfies lemma 3 [27].

34



6.1. Model

6.1.2. Continuous Relaxation

Although the Gumbel-Max Trick allows for sampling from a categorical distribution,
it still requires a hard decision on the noisy probabilities. The Gumbel-Softmax
distribution addresses such issue by relaxing the hard decision and substituting the
argmax function with a softmax function with temperature:

yk = softmax

(
1

τ
(xk + gk)

)
(6.5)

The temperature parameter τ dictates the accuracy of the approximation. Figure
6.1 shows the impact of the temperature parameter on the closeness of the approx-
imation. For high values of τ , e.g. τ = 10, the expectation of the Gumbel-Softmax
distribution resembles a Uniform distribution and the equation 6.5 badly approxi-
mates a sample, as the bottom-right diagram of figure 6.1 shows. For low values
of τ , e.g. τ = 0.1, the expectation of the Gumbel-Softmax distribution resembles
the Categorical distribution parametrized by xk and equation 6.5’s approximation of
a sample is nearly identical to the categorical one-hot sample, as shown in the two
bottom-left diagrams of figure 6.1. Formally,

lim
τ→0

E
[
softmax

(
1

τ
(xk + gk)

)]
= E [Uniform(0, 1)] (6.6)

lim
τ→∞

E
[
softmax

(
1

τ
(xk + gk)

)]
= E [Categorical(xk)] (6.7)

By gradually annealing the temperature parameter during training, the Gumbel-
Softmax GAN is able to learn the Categorical distribution with minimal error.

6.1.3. Structure

Figure 6.3 illustrates the structure of the unrolled Recurrent Neural Network (RNN)
that functions as generator. The input at time-step t = 0 is the latent noise vec-
tor z; at each time-step the RNN generates a probability distribution over the set of
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6. Gumbel-Softmax GAN

0 1 2 3 4

Expectation:

Categorical

0 1 2 3 4
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0 1 2 3 4
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0 1 2 3 4

 = 1

0 1 2 3 4

0 1 2 3 4

 = 10

0 1 2 3 4

Figure 6.1.: Expectation (top) and samples (bottom) from the Gumbel-Softmax distribution
with different temperatures.

possible symbols (in this thesis’ case φ = {0, 1}). This probability, parametrized by
the log-unnormalized probabilities xk (called logits hereafter) is sampled by means
of equation 6.5, i.e. xk is added to independent Gumbel noise and passed through
a softmax layer. The sample is subsequently fed back into the RNN as input at
time-step t + 1. The module that performs the sampling operation, i.e. that applies
equation 6.5 to the output of the generator xk, will be referred as "Gumbel-Softmax
sampler" hereafter. The generated sequence is composed by the sample produced
by the Gumbel-Softmax sampler at each timestep. In the adversarial training, the
generator firstly produces a full sequence, which is subsequently fed to a dense
MLP, that acts as discriminator. The discriminator is a feed-forward MLP with two
layers of 400 neurons each. The model is trained for 1000 epochs; both the genera-
tor and the discriminator are optimized with the Adam optimizer [21] and a learning
rate of 5e − 5. The temperature parameter τ in equation 6.5 is annealed from ∼ 3
to ∼ 0.1. Two slight variations of the above described model are analysed: one with
constrained and one with unconstrained logits.

6.1.4. Training Data

As discussed in chapter 1, the training data is structured as a collection vectors of
length 8:
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Figure 6.2.: Gumbel-Softmax GAN structure : tn represents the current timestep, xn is the
output of the RNN at tn and yn is the sample of the Gumbel-Softmax distribution. The
term "Gumbel-Softmax sampler" indicates the collection of operations performed between
the RNN units at different time-steps.

Xi =


0 1 1 0 0 0 1 1
1 1 1 0 1 0 1 1
...

...
...

...
...

...
...

...
1 0 0 0 0 1 0 0



Each vector is further embedded in a one-hot vector of size 8x2 and it is fed into the
model in this form.

6.2. Results

6.2.1. Constrained logits

The logits are constrained between −1 and 1 with the hyperbolic tangent activation
function. Table 6.2.1 shows a selection of generated sequences after training: the
correct ones, where the sum of the first four digits is equal to the sum of the last four
digits, are highlighted.

Figure 6.4 shows the evolution of the amount of correct sequences generated by
the generator throughout the training epochs. Note that the x-axis is placed slightly
below 27%, which is the expected percentage of correct sequences when sampling
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6. Gumbel-Softmax GAN

1 0 0 1 0 1 0 1
1 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 0
1 0 0 1 0 1 0 1
1 1 0 1 0 0 1 0
0 1 0 1 0 1 1 0
0 1 0 1 0 0 1 1
1 0 1 1 0 1 0 1
0 1 0 1 0 1 0 0
0 0 1 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0
1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1
1 1 0 1 0 0 1 1
1 0 1 1 0 1 1 1
0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 1 0 1 1 1
0 1 0 0 0 1 0 1
1 0 1 0 1 0 1 0
1 0 0 1 0 1 0 1
0 1 0 0 1 0 1 0
0 1 0 1 0 1 1 1
0 1 0 1 0 1 0 0

Table 6.1.: Random selection of subsequently generated sequences: correct sequences
are highlighted.

from the uniform distribution. Although the model does indeed generate consid-
erably more correct sequences than a random generator, it converges to generat-
ing approximately 60% of correct sequences. The reason behind the sub-optimal
convergence can be identified in the fact, that the Gumbel-Softmax sampler has a
non-zero probability Ps of changing the argmax of its input. Formally:

Lemma 4. Equation 6.5 maps zero-probabilities in the discrete distribution to non-
zero probabilities in the Gumbel-Softmax distribution.

Proof. Consider:

yk = softmax

(
1

τ
(xk + gk)

)

Let entry n of vector xk be a zero-probability: xk=n = 0.

yk=n = softmax
(gk
τ

)
(6.8)
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Figure 6.3.: Percentage of correct sequences throughout training (10000 samples per
epoch).

Since the probability that a sample from a continuous distribution is exactly equal to
a specific value is zero [7], it can be assumed that gk 6= 0 and it follows that:

yk=n 6= 0 (6.9)

Consequently, there is a non-zero probability Ps that a sample from the Gumbel-
Softmax distribution corresponds to a category ci with probability pCAT (ci) = 0 in
the categorical distribution. The following illustration shows a practical example of
the output of the sampler having a different argmax than the logits:

1.0
0.0

GS−−→ 1.179e-08
9.999e-01

The probability Ps can indeed be quantified; recall equation 6.4 of proof , which can
be reformulated as:

P (argmax(xk + gk) 6= argmax(xk)) = softmax(xk>k′ 6=k) (6.10)
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6. Gumbel-Softmax GAN

This remains valid after the softmax relaxation:

P
(
argmax

(
softmax

(
τ−1(xk + gk)

))
6= argmax(xk)

)
= softmax(xk>k′ 6=k)

(6.11)

Note that, although the temperature parameter controls the degree of approximation
of the softmax relaxation, it has no effect on the validity of equation 6.10. Therefore,
the probability Ps that the Gumbel-Softmax sampler changes the position of the
highest value of the logits xk can be computed as:

Ps = 1− softmax(xk>k′ 6=k) (6.12)

If a constraining interval [a, b] on the logits xk is introduced, the lower bound of
Ps(xk|[a, b]) can be calculated: because the maximum value of the softmax function
of a vector of length 2 is proportional to the difference between the entries of the
vector, in the specific instance of [a, b] = [−1, 1], the lower bound of the probability
Ps can be computed by evaluating equation 6.12 at the edges of the interval:

max(softmax([a, b])) ∝ a− b

=⇒ inf(Ps) = Ps|x=[−1,1],xk>k′ 6=k=1 = 0.1192
(6.13)

To analyse the consequences of this behaviour of the Gumbel-Softmax sampler
on the percentages of correct sequences a generator might generate, a perfect,
deterministic generator was constructed:

Though only applicable to this specific instance, the perfect generator provides a
tool to understand the effect that the probability Ps has on the percentage of correct
samples among the generated ones. Indeed, by plugging the value of equation 6.13
in algorithm 2, it generates approximately 75% correct sequences. Which can be in-
terpreted as the upper bound a Gumbel-Softmax GAN can achieve, when the logits
are constrained between −1 and 1. This empirical upper bound also explains the

40



6.2. Results

Algorithm 2 : Perfect Generator
Switch probability Ps;
for n= 1 to batch size do

Initiate sequence with zeros;
Fill first half of sequence with random numbers ∈ {0, 1}
for symbols in second half of the sequence do

if Sum of second half < sum of first half then
symbol = 1 with probability 1− Ps,
symbol = 0 with probability Ps

end
if Sum of second half > sum of first half then

symbol = 0 with probability 1− Ps;
symbol = 1 with probability Ps;

end
end

end

sub-optimal convergence shown in figure 6.4 and table 6.2.1. A visual interpretation
of why the probability Ps effects the percentage of correct sample is offered in the
following illustration:

1 0 1 0 1 1 1 1

↓
1 0 1 0 1 1 1 1

Namely, if the argmax change (highlighted in the picture) happens under certain
conditions, the generator cannot correct itself anymore and produces an incorrect
sequence.

This property of the Gumbel-Softmax sampler has a further consequence on the
generated sequences. Figure 6.4 shows the probability distribution of unique se-
quences of the training data pdata and of the generated samples pg. The generator
doesn’t generate every unique sequence with the same probability; in fact, the two
spikes in the distribution represent the sequences:

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

The alternating pattern of these two specific sequences is advantageous to the gen-
erator, because it allows this latter to mitigate the effects of the change and correct
itself up to the last symbol in the sequence. Therefore, the model has learned to
generate these two sequences with a starkly higher probability than the rest.
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Figure 6.4.: Probability distribution of the training data (right) and of the generated data
(left): each bar in the diagram represents one unique sequence of length 8 (computed on
10000 sample, incorrect sequences are omitted).

6.2.2. Unconstrained logits

A logical solution to the problems outlined in section 6.2.1 is to not constrain the
logits. To that end, an identical model is constructed, whose only difference is the
activation function of the last layer of the generator: herein, a linear one is adopted.
In theory, if the difference between the single logits is high enough, the probability
of the Gumbel-Softmax sampler changing the argmax of the logits, as per equation
6.12, becomes negligible, e.g.:

Ps|x=[−10,10],xk>k′ 6=k=10 ≈ 2.6e− 9 (6.14)

The generator should therefore learn to space the logits sufficiently apart and mit-
igate the issue described hitherto. Nevertheless, the experimental results show,
that the model with unconstrained logits always falls into mode collapse. Table 6.2.2
shows an excerpt from the output of two different training runs of the model, one with
total mode collapse and one with partial mode collapse. Furthermore, to exclude the
possibility that this failure simply stems from sub-optimal hyperparameters, several
experiments with different parameters have been run: the failure could be observed
across all the experiments (refer to the appendix for the other results).

To further analyse the possible reason behind the catastrophic mode collapse
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

Table 6.2.: Mode Collapse: two different training runs, total mode collapse (left) and partial
mode collapse (right).

of the model, a study on the relationship between the value of the logits and the
percentage of unique sequences generated has been conducted. As figure 6.2.2
clearly shows, there exists a strong correlation between the difference of the two
logits and the percentage of unique sequences generated by the model. Based on
this experimental correlation, it can be inferred that:

• The distance between the logits is proportional to the percentage of correct
sequences. (refer to equation 6.12)

• The distance between the logits is inversely proportional to the percentage of
unique sequences.

Henceforth, three possible explanations of the model’s behaviour are discussed.

Hypothesis 1. The high difference between the logits interferes with the differentia-
bility of the softmax relaxation of the Gumbel-Max trick.

Recall equation 6.5:

yk = softmax

(
1

τ
(xk + gk)

)
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6. Gumbel-Softmax GAN

0 200 400 600 800 1000
20

40

60

80

100
Co

rre
ct

 
 se

qu
en

ce
s [

%
]

0 200 400 600 800 1000
0

25

50

75

100

Un
iq

ue
 

 se
qu

en
ce

s [
%

]

0 200 400 600 800 1000

Epochs

0.0

2.5

5.0

7.5

10.0

Lo
gi

ts
 

 d
iff

er
en

ce

Figure 6.5.: Percentage of correct sequences (top), percentage of unique sequences (mid-
dle) and difference between the logits (bottom) against the epochs of one training ses-
sion.(10000 samples per epoch, refer to appendix for more examples.

The softmax relaxation works by starting with a high temperature and gradually an-
nealing it. At first, the approximation is bad but the gradients are high, then the
approximation gets gradually better and the gradients get gradually smaller. The
model learns alongside the annealing until it learns to reproduce the true categori-
cal distribution with minimal error. However, if the generator immediately generates
logits with a high difference, the approximation becomes immediately nearly cate-
gorical and the gradients vanish before the generator has finished learning.

Hypothesis 2. The high difference between the logits causes sampling the Gumbel-
Softmax distribution indistinguishable from taking the softmax of the logits.
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6.2. Results

If the difference between the logits is high enough, the contribution of the gumbel
noise becomes negligible, as outlined in equation 6.15.

lim
xk→∞

softmax

(
1

τ
(xk + gk)

)
= softmax(xk) (6.15)

Hypothesis 2 is corroborated by the fact that the experimental results of this model
show strong similarities to the experimental results of the model discussed in chapter
5, wherein the softmax of the logits is directly passed to the discriminator.

Hypothesis 3. The high difference between the logits causes the softmax function
to saturate and its gradients to vanish.

lim
x→∞

∇ softmax(x) = 0 (6.16)

It is a known issue, that the gradients of the softmax tend to vanish if the values
of the input are too high. Generally, a common solution is to normalize the inputs,
though that is difficult to apply in this instance due to the temperature parameter
control needed by the Gumbel-Softmax distribution and the erratic behaviour of the
difference between the logits.
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7. Sequence GAN

7.1. Reinforcement Learning

The Sequence Generative Adversarial Network (Seq-GAN) [41] combines a GAN
with a RL methodology, to overcome the issue of back-propagating the error through
discrete samples (refer to chapter 5).

Reinforcement Learning indicates a family of ML algorithms, that learn by interact-
ing with an environment. Generally, a RL agent is enclosed in a state-action space;
the agent selects actions based on its current policy and the environment commu-
nicates the new state and a reward based on the state-action tuple. The agent then
updates its policy based on the received reward by performing Policy Gradient , i.e.
by maximizing the expected future reward.

Agent

Environment
Rt+1

St+1

Rt

St

At

Figure 7.1.: Reinforcement Learning: Agent selects action At, Environment returns the Re-
ward Rt+1 and the new State St+1.

7.2. Model

In Seq-GAN, the generator is treated like an RL agent, whose state-action space is
defined by the previously generated symbols in the sequence and the next gener-
ated word, respectively. Formally, we can define a sequence Y1:T = [y1, . . . , yT ],
and specify:

• The state St = Y1:t−1 = [y1, . . . , yt−1]
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7. Sequence GAN

• The action at = yt

• The final reward R(ST−1, at) = D(Y1:T ), where D denotes the discriminator
model.

Note that the reward is only defined for the entire sequence, which means that it
is sparse and provides little information about the intermediate actions. To address
this issue the Seq-GAN incorporates a roll-out policy. Assume that the current state
St is represented by the following incomplete sequence Y1:t−1:

0 0 0 0 0 0 0 0

Further assume, that the action selected by the agent is at = 1. To compute the
intermediate reward R(St, at), a N-time Monte-Carlo (MC) search is performed to
fill in the remaining unknown symbols n different times:

0 1 1 0 1 1 1 0

N times
...

0 1 1 0 0 1 1 0

The highlighted squares represent the symbols filled in by the MC search. The re-
ward is computed as the average of the score of the discriminator on the N MC
sequences. With the intermediate reward, the generator is updated through pol-
icy gradient. Finally, the state is updated with the generated symbol and the pro-
cess continues until the sequence is complete. Naturally, for the last symbol no MC
search is needed, as the discriminator is able to provide the reward for the completed
sequence. A visualization of this process is provided in figure 7.2 and in algorithm
3. Since the generator acts as an RL agent and its updated through policy gradient,
there is no back-propagation through the generator-discriminator ensemble: the dis-
criminator is merely the model that provides the reward. Therefore, the Seq-GAN
does not have the same issues as other GANs with discrete target distributions.

7.3. Policy Gradient

The generator’s parameters are updated with the Adam optimizer using the REIN-
FORCE algorithm [40] and following [36].

θ ← θ + η∇θJ(θ) (7.1)
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7.3. Policy Gradient

Rt+1 Rt

0
StSt+1

At

0 1

0 1G

D Monte
Carlo

0 1 1 0

Figure 7.2.: Structure of Seq-GAN, example of generation of binary sequences: herein the
sequence is of length 4 to improve the comprehension of the diagram.

where η denotes the learning rate and:

∇θJ(θ) =
T∑
t=1

Eyt∼Gθ(yt|T1:t−1)[∇θ logGθ(yt|Y1:t−1)Q(Y1:t−1, yt)] (7.2)

where Q(Y1:t−1, yt) indicates the reward at time-step t based on state St = Y1:t−1
and action at = yt:

Q(Y1:t−1, yt) =

{
1
N

∑N
n=1D(Y n

1:T ) Y n
1:T ∈MC(Y1:t, N) for t < T,

D(Y1:t) for t = T
(7.3)

where Y n
1:T ∈ MC(Y1:t, N) is the nth search of a N-time Monte-Carlo search to

complete one sequence Y1:t−1. For a detailed derivation of equations 7.1, 7.2 and
7.3 refer to Yu et al.’s paper [41].
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7. Sequence GAN

Algorithm 3 : Sequence Generative Adversarial Network, adapted from [41]
generator policy Gθ; MC-policy Gβ ; discriminator D; real data S = {X1:T };
Pre-train Gθ with MLE on S;
Pre-train D;
for epochs do

for g-steps do
Initiate sequence Y = {};
for t in 1:T do

Generate a symbol yt ∼ Gθ;
Generate batch of sequences YMCi

t:T ∼ Gβ ;
Compute reward;
Update generator parameters via policy gradient;
Append yt to Y ;

end
end
for d-steps do

Use current Gθ to generate negative examples and draw positive
examples from S;

Train discriminator D for k epochs;
end
β ← θ;

end

7.4. Results

Table 7.4 shows an excerpt of sequences generated by the model after training: it is
able to generate sequences with ∼ 97% accuracy (See figure 7.3). Furthermore,
the probability distribution of the generated sequences shown in figure 7.4 indicates
that the model doesn’t contain any particular bias and reproduces the true probability
distribution to an acceptable degree with the Jensen-Shannon divergence between
it and the uniform distribution of:

JS (p(x) ∼ G(z)‖q(x) ∼ U(0, 1)) ≈ 0.03 (7.4)
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7.4. Results

0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1
0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1
1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0
0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1
0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1
1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1
1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1
1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0
1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1
0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1

Table 7.1.: Random selection of subsequently generated sequences: incorrect sequences
are highlighted.
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Figure 7.3.: Percentage of correct sequences throughout training (10000 samples per
epoch).
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Figure 7.4.: Probability distribution of the generated data, each bar in the diagram repre-
sents one unique sequence of length 8 (computed on 10000 samples, incorrect sequences
were omitted).
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8. Discussion

The results presented in chapter 6 strongly indicate that the Gumbel-Softmax GAN
is not a viable option for the objective of this thesis. It is furthermore important
to note, that the issues found within the scope of this work, escalate with more
complicated formulae. To that end consider firstly the consequences of increasing
the length of the training sequences, from 8 to e.g. 16 and maintaining all other
variables constant, i.e. constraint [a, b] = [1,−1] and set of possible symbols {0, 1}:
by using the model described in algorithm 2, we can determine that this would result
in a decrease of accuracy from ∼ 75% to ∼ 64%. Secondly, consider the effect of
expanding the set of possible symbols from {0, 1} to {0, 1,+,=}. In chapter 6 it
is assumed, that the softmax function on an interval [a, b] has its maximum at the
edges of the interval. This allowed the calculation of a lower bound to the probability
Ps, that the Gumbel-Softmax sampler’s output has a different argmax than its input.
While this property holds undoubtfully true for logit vectors of length n = 2, it is not
as straight-forward for the case n > 2 and requires a formal proof:

Lemma 5. max(softmax(x)), x ∈ [a, b] is maximized by logits of the form:

x = [b, a, . . . , a]

Proof.

min(Ps = 1− softmax(xk>k′ 6=k))

= max(softmax(xk>k′ 6=k))

= max

(
exp(xk>k′ 6=k)

exp(xk>k′ 6=k) +
∑K

j 6=k exp(xj)

) (8.1)

Given a fixed exp(xk>k′ 6=k) equation 8.1 is maximized by minimizing the quan-
tity
∑k

j 6=k exp(xj). Given a fixed
∑k

j 6=k exp(xj) , it is maximized by maximizing
exp(xk>k′ 6=k). This is achieved by setting xk>k′ 6=k = b and xi 6=k = a.
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8. Discussion

Lemma 5 and its proof provide the knowledge, that a softmax function constrained
in the interval [a, b] has indeed its maximum at the edges of the interval for all vectors
of length n ∈ N. This allows the employment of equation 6.10 and algorithm 2 to
compute inf(Ps) for larger vocabularies as well. Therefore, maintaining all other
variables constant, the effect of the expansion of the vocabulary on the accuracy
of the Gumbel-Softmax GAN can be investigated. Expanding the vocabulary from
{0, 1} to {0, 1,+,=}, increases inf(Ps) from ∼ 11% to ∼ 29% and decreases the
maximum possible accuracy from ∼ 75% to ∼ 42%. To summarize:

• Increasing the length of the sequence decreases the maximum possible ac-
curacy of the model.

• Increasing the size of the vocabulary decreases the maximum possible accu-
racy of the model.

This implies that the Gumbel-Softmax GAN, along with not being applicable to the
specific objective of this thesis, it is additionally not applicable to possible expansions
thereof. The reason behind the inapplicability of the Gumbel-Softmax GAN on the
problem of generating mathematical formulae, despite its results on language gen-
eration problems, lies entirely in the difference between the two problems outlined in
chapter 3. The smoother structure of the underlying distribution of the training data
in a language generation problem, considerably mitigates the impact of the argmax
change performed by the Gumbel-Softmax sampler. In this context, a smoother
probability distribution is interpretable as a higher percentage of correct words in
the vocabulary.

Figure 8.1 illustrates the difference between the Gumbel-Softmax sampling op-
eration for a language generation problem and a formulae generation problem. In
both cases the Gumbel-Softmax sampler generates a sample different from the most
probable in the categorical distribution. On the smoother language generation distri-
bution, this merely causes the selection of a less probable, but likely still appropriate
word. However, on the spiky formulae generation distribution, this causes the selec-
tion of a completely incorrect symbol.

Moreover, due to the fact that the logits are not normalized, the sum of the proba-
bilities associated with the correct words in the language generation distribution can
be higher than the upper value of the constraining interval. In this case, the proba-
bility that the Gumbel-Softmax sample selects an incorrect word is lower than with
the formulae generation distribution. Note that the constraining interval need not
be selected by the developer of the model, but can also refer to an interval learned
by the model, if the logits are unconstrained (refer to the Appendix). Furthermore,
it is noteworthy that the metrics used to evaluate NLP models are not exact: for
example, a slightly out of place word, in an otherwise plausible sentence does not
necessarily register as a completely incorrect sentence. Ergo, the effects of the
issues described in this thesis may lie within the error margins of the evaluation
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Figure 8.1.: Comparison of the processes of sampling the Gumbel-Softmax distribution for
language generation (top) and formulae generation (bottom). The positive gumbel noise is
represented in grey, the negative gumbel noise is represented in hatched grey. The right pair
of diagrams represents the output of the generator, i.e. the logits. it can be also interpreted
as the probability distribution over the vocabulary, given a previously generated incomplete
sequence (see chapter 3).

methods used in NLP, whereas they assuredly do not lie within the error margins
of any appropriate evaluation method that may be used for mathematical formulae
generation.

On the other hand, the results presented in chapter 7 show that the Sequence
GAN manages to fulfill the objective of this thesis: the trained model is capable of
generating accurate and correctly distributed sequences. The RL approach provides
an elegant solution to the non-differentiability issue and seems to be particularly apt
for the objective of this thesis. While it was determined, that the issues revealed
by the experimental and mathematical results of the Gumbel-Softmax GAN would
escalate with the expansion of the objective of this thesis, no such assessment could
be made from the results of the Sequence GAN. Both GANs and Deep RL models
have demonstrated particular efficacy on highly complex tasks, such as GANs that
can generate real looking pictures and Deep RL models, like AlphaGo [35], that can
beat the most skillful humans in sophisticated games. This indicates that a future
expansion on the objective of this work would not be outside the realm of abilities of
a model based on the Sequence GAN architecture.
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9. Conclusion

The thesis’ aim was to anlyse the viability of using Generative Adversarial Networks
to produce mathematical formulae, i.e. discrete sequences of highly corrrelated
symbols. Firstly, an attentive investigation into the posssible structures of the training
data was conducted, with the intent to fulfill two conditions:

• The training data should be reduced to its simplest form.

• The results derived from it should be as significant and as generalizable as
possible.

To that end, a sequence of length eight was chosen, such that the sum of the first half
is equal to the sum of the second half. Because the sequence contains only ones
and zeros, it fulfills the first condition and, as discussed in chapter 1, its discrete
form provides the knowledge, that the results of this thesis are applicable on more
complicated formulae, fulfilling the second condition.

Notwithstanding, a first experiment with a continuous GAN was successfully con-
ducted and indicated the capability of the model to generate highly correlated sets
of outputs.

Subsequently, an analysis of the issues that arise from trying to operationalize
GANs over discrete domains was conducted and it was determined that a modified
GAN was needed; it was further asserted, that GANs originally intended for lan-
guage processing were the best candidates to tackle the task at hand, due to the
strong similarities between it and the objective of this thesis. Accordingly, two such
models were modified and tested. Firstly, the Gumbel-Softmax GAN, which uses a
reparametrization trick derived from the Gumbel-Max trick to differentiably sample
a categorical distribution and back-propagate through the model. It was discovered
that, because of the differences between language generation and formulae gen-
eration, the Gumbel-Softmax GAN is not viable for this thesis’ objective, as it could
generate correct sequences with only∼ 60% accuracy. A Mathematical explanation
of its issues was provided and it was shown, that the described problems escalate
with more complicated formulae.

Finally, the Sequence GAN was tested. It borrows from the field of RL to over-
come the issues that GANs have with discrete data. The generator is an RL Agent
with the state-action space described by the previously generated symbols and the
symbol to generate, respectively. Moreover, the discriminator provides a reward for
each state-action tuple through a Monte-Carlo roll-out policy. It was shown that the
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9. Conclusion

Sequence-GAN , contrary to the Gumbel-Softmax GAN, was capable of fulfilling the
objective of this thesis with ∼ 97% correct sequences. Future work would there-
fore be based on the Sequence GAN and entail a gradual expansion of the training
data to include further symbols such as mathematical operands, constants, integrals
and derivatives, like shown by the following illustration: current structure (top) and
possible expansion (bottom).

1 0 1 1 0 1 1 1

↓
1 2 0 2 1 2 1 2 0 3 1 4 1 2 1

Figure 9.1.: Visualization of one possible expansion of the training data: expanding the sets
of possible symbols to include the mathematical operands + (encoded as the value 2), −
(encoded as the value 3) and = (encoded as the value 4). The top sequence describes the
formula "1+0+1+1 = 0+1+1+1", whereas the bottom sequence describes the formula
"1 + 0 + 1 + 1 + 0− 1 = 1 + 1".
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GAN Generative Adversarial Network.
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MC Monte-Carlo.

ML Machine Learning.
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RL Reinforcement Learning.
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Seq-GAN Sequence Generative Adversarial Network.

WGAN Wasserstein Generative Adversarial Network.
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List of Symbols

η Learning rate.

D Discriminator.

G Generator.

Gβ Monte-Carlo Generator. (In this thesis Gβ = Gθ).

Gθ Main Generator of the Sequence GAN. (In this thesis Gβ = Gθ).

R(S, a) Reward given state S and action a.

St State at time-step t.

Y1:t Set of symbols in a sequence up to time-step t.

at Action at time-step t.

gi Sample from Gumbel(0,1).

pg Probability distribution of the generator’s output.

pz Probability distribution of the generator’s input, pz ∼ U(0, 1).

pdata Probability distribution of the training data.

z Generator’s input, z ∼ U(0, 1).

Ps Probability, that the Gumbel-Softmax sampler shifts the argmax of its input.
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A. Straight-Forward Softmax GAN

Figure A.1 shows the error of the discriminator and the percentage of unique se-
quences throughout training. Note that the error of the discriminator converges be-
tween 0.2 and 0.5, which is expected from a GAN. Figures A.2 through A.5 show a
selection of training runs for a GAN where the softmax layer is passed directly to the
discriminator with different hyper-parameters. ηG and ηD denote the learning rates
of the Generator and of the Discriminator, respectively: the error of the discriminator
becomes near-zero, the generator cannot optimize its loss function and the model’s
mode collapses immediately.
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Figure A.1.: GS-GAN ηD,G = 5e− 4
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Figure A.2.: ηD,G = 1e− 2
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Figure A.3.: ηD,G = 1e− 3
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Figure A.4.: ηD,G = 5e− 4

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
sc

rim
in

at
or

 
 E

rro
r

0 100 200 300 400 500

Epochs

0

20

40

60

80

100

Un
iq

ue
 

 se
qu

en
ce

s [
%

]

Figure A.5.: ηG = 1e− 2, ηD = 5e− 4
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B. Gumbel-Softmax GAN with
unconstraint logits

Figure B.1 shows a training phase with constrained logits as baseline; Figures B.2
through B.5 show several training phases with unconstrained logits. Each time, the
correlation between logit difference, accuracy and mode collapse is clearly recog-
nizable. Note figure B.4 ; although the logits are not constrained, the model does
not increase the difference between them: therefore it produces varied sequences,
but does not learn the training distribution. Further note, that although the logits are
not constrained, the model settles on a defined interval, which varies from run to
run.
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Figure B.1.: Baseline :ηD,G = 5e− 4
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Figure B.2.: ηD,G = 1e− 4
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Figure B.3.: ηG = 1e− 4, ηD = 5e− 3
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Figure B.4.: ηD,G = 5e− 4
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Figure B.5.: ηG = 1e− 3, ηD = 5e− 4
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