
1

Human Activity Recognition Using A Smartphone’s
Inertial Measurement Unit

Katharina Rieke
Chair for Data Processing, Technical University of Munich

katharina.rieke@tum.de

Abstract—In this paper the feasibility of distinguishing different
activities - namely walking and doing Monty Python’s Silly
Walks - using data collected with a smartphone is evaluated.
Acceleration data of users performing both tasks is collected. The
data is then processed and used to train i) a k-nearest neighbor
classifier and ii) a long short-term memory neural network.
We explain the framework we use for data collection and give
an overview of both approaches regarding the implementation.
Finally, we compare the performance of both approaches and
state benefits and drawbacks of each method respectively.

Keywords—Research Intership, TUM, ITK Engineering, Human
Activity Recognition, Machine Learning, Nearest Neighbor Classi-
fication, Long Short-Term Memory Neural Networks.

I. INTRODUCTION

Human-centered computing is a developing research field
that aims at bridging the gap between users and computer
systems. This is achieved by recognizing a user’s intention
and integrating him and his social context with the system.
A discipline which lies in this research field and which has
received increased attention over the past few years is Human
Activity Recognition (HAR) [1]. Gestures or human activities
are recognized via computer systems by using a set of obser-
vations of the user himself and the surrounding environment.
These observations can be obtained from different kinds of
sources such as environmental [2] or body-worn sensors [3].

The rapid development of technology and the progress in
information communication technologies and sensor miniatur-
ization have paved the way for the application of small com-
puting devices such as smartphones [1] or other wearables [4]
in the domain of HAR. The latest devices come equipped with
Inertial Measurement Units (IMUs) containing accelerometers,
gyroscopes and magnetometers as well as built-in sensors such
as cameras and microphones. These devices can easily be used
as sensing tools for HAR by wirelessly sending the sensor
data to computing devices. This allows for real-time human
movement classification [3] and simplifies data collection by a
great deal because the mass-marketed devices present a flexible
and unobtrusive way to monitor the user’s activities.

A research area that evolved over the past few years because
of this easy availability of sensor data is the field of detect-
ing and monitoring Activities of Daily Living (ADL). The
following list provides a brief overview of the activities that
have been studied in previous work: standing, sitting, laying
down, walking, walking upstairs, walking downstairs, running,
vacuuming, scrubbing, brushing teeth, working at a computer

and sit-ups [1], [3]–[7]. This is the domain our paper’s work
belongs to. We try to distinguish two activities, namely walking
normally and doing Monty Python’s Silly Walks.

The comedy group Monty Python, mainly active in the
seventies and early eighties of the last century, created a sketch
comedy television show and is famous for the films they made.
The sketch on the ”Ministry of Silly Walks” (1970) is one of
their most famous ones. It introduces the viewer to the Ministry
of Silly Walks which funds the development of paces looking
as silly as possible. The short video is publicly available on
YouTube1. Additionally, Figure 1 gives an impression of some
of the movements appearing in the sketch.

Fig. 1. John Cleese, a member of the comedy group Monty Python,
performing a Silly Walk. https://www.europosters.de/tassen/monty-pyth
on-silly-walks-bravado-v42462

In this paper we develop two models for determining
whether a user walked normally or performed a Silly Walk.
Firstly, a k-nearest neighbor (kNN) classifier is introduced and
secondly, we train a long short-term memory (LSTM) neural
network to distinguish between the two activities.

The remainder of this paper is organized as follows: Sec-
tion II presents a brief overview of the state of the art in
the HAR area. Section III formulates the problem statement
we address in this paper and states four questions that are
addressed in this work. In Section IV we explain the method-
ology that was used for generating the data and training the
machine learning algorithms. Section V contains the results
of our experiments and is followed by a discussion thereof in
Section VI. We conclude this paper with Section VII.

II. STATE OF THE ART

Using data obtained from different sensors to determine the
activity a user is carrying out has been an active topic in the

1https://www.youtube.com/watch?v=F3UGk9QhoIw



2

HAR research community for quite some time. The approach
of exploiting information retrieved from body-worn sensors
dominates the field when compared to the deployment of
environmental sensors. Research regarding the question where
best to place the sensor/s has been conducted. Experiments
where several motion sensors were mounted to different parts
of the body, for example the waist, wrist, chest and thighs,
achieved good classification performance [4], [7]. However, a
crucial concern is the usability of these kinds of systems in
everyday life. The sensors are uncomfortable to wear and, as
noted by [8], the exact sensor re-positioning after e.g. dressing
is difficult. These are the reasons why researchers have shifted
their attention towards exploiting the technical possibilities of
smartphones.

Smartphones are opening up new research opportunities for
human-centered computing. The built-in sensors provide a rich
source of information and constitute an alternative solution for
HAR. Especially in the field of detecting and monitoring ADL
they present a straightforward way of collecting data. One of
the first approaches to utilizing a smartphone’s built-in triaxial
accelerometer to gain insights into the physical activity of the
user was [9]. Additional results were presented in [10], [11].
Moreover, a first publicly available dataset consisting of six
ADL built out of data that was collected with a smartphone’s
accelerometer and gyroscope was presented in [1]. All these
papers analyze their data with means of one or more machine
learning algorithms. A brief overview of the utilized methods
is presented in the following.

A. Machine Learning Approaches
The number of machine learning approaches that has been

used to classify ADL in the past is immense. The list of utilized
methods includes all of the following: decision trees [7], [10],
[11], decision tables [7], logistic regression [10], naive Bayes
[4], [7], [11], kNN [4], [7], [11] and support vector machines
[1], [7]. Feature extraction is an essential pre-processing step
for these classification algorithms. The sensor data comes in
form of time sequences. To condense the information contained
in the sequences to single feature values the afore mentioned
papers all make use of a sliding window technique. This
approach defines a certain window length and extracts the
features from the data sequences within this window. The result
of this method is a list of features which can be classified by
the algorithms. A summary of the most commonly extracted
features is given below.

• Mean value
• Standard deviation
• Sum of magnitude

• Correlation coefficient
• FFT magnitude
• Engergy

B. Deep Learning Approaches
A second approach to learning ADL is by making use of

deep learning algorithms such as convolutional neural net-
works (CNNs) or long short-term memory networks [5], [12].
The great advantage LSTM networks have over traditional
machine learning methods is that they can process whole

time sequences without the need to previously extract any
features. They learn from the raw data itself [12]. In contrast,
training a neural classifier on features extracted beforehand
was demonstrated to be possible by [5]. The utilized features
are similar to the ones stated in the previous section: mean,
correlation, energy and standard deviation.

III. PROBLEM STATEMENT

As noted in the previous section, there exists a number
of different approaches to the problem of correctly labeling
activities performed by an individual. We choose two activities
between which we want to distinguish: walking normally and
doing a Silly Walk. To correctly determine which activity
is carried out by the user we will make use of sensor data
collected with a smartphone’s IMU. This measures up to the
research most recently conducted in the field of HAR. We
will start out by using acceleration data because previous
work suggests that acceleration data alone contains sufficient
information for classification purposes. Since our literature
research revealed that a simple kNN classifier outperformed
other machine learning approaches and yielded the best clas-
sification results we decide to employ this simple machine
learning approach for our purposes. Moreover, we want to
contrast this machine learning approach with a deep learning
one. Therefore, we will develop an LSTM model explicitly
tailored to our problem. To investigate the feasibility of this
project we have to start out by generating data. In our case
we cannot fall back on existing datasets but have to create
the ground truth and test data ourselves. Our goal is to come
up with a classification algorithm that is able to label an
individual’s activity sufficiently well. Taking into consideration
the results of previous work we define the term sufficiently well
as an accuracy ranging above values of 80%.

In this work we will analyze the viability of creating
classifiers that meet the specifications we stated above. In the
following, we formulate explicit research questions we will
work on and solve in this paper.
• What are suitable parameters for the kNN classifier and

LSTM network? For this, we have to decide which
features to choose and how to pre-process the time
sequences to achieve the best classification performance.

• Can we implement a kNN classifier and an LSTM
network such that the outcome meets the specifications
we defined? For this, we have to determine sufficiently
good training parameters for both methods.

• Is the data collected with the accelerometer enough to
obtain sufficiently good classification results?

• Which approach is the more preferable one in terms of
overall performance and complexity?

IV. METHODOLOGY

The framework we use for data collection and to carry
out the experiments is MATLAB R2019b. The MATLAB
Mobile application provides an easy way to access, log and
process a smartphone’s sensor data. Data from five sensors
can be collected: acceleration, angular velocity, magnetic field,
orientation and position. Additionally, the phone’s camera can



3

be accessed and pictures can be taken. All sensors except
for the position sensor log the data with respect to a triaxial
coordinate system which is visualized in Figure 2.

Fig. 2. The X, Y and Z axes for data logging in relation to the device.
https://www.mathworks.com/help/matlabmobile android/ug/sensor-data-coll
ection-with-matlab-mobile.html

A. Data Collection
Data collection is performed on a HUAWEI P8 lite 2017

smartphone with the MATLAB Mobile app for Andoid. Only
the acceleration data is logged and processed further. We carry
out a total number of 60 runs of different kinds of walks
to obtain the data for our experiments. For each run the
smartphone is placed in the right back pocket of the individual
with the Y axis turned towards the ground. Every round the
individual starts the logging of the data manually, places the
phone in the pocket and remaines still for approximately two
seconds before performing the walk for at least 15 seconds.
After completing the data generation the user again stands still
for two seconds and finally turns off the logging. The phase of
immobility is important in order to be able to exactly determine
when the data generation started and ended.

We collect 30 runs of a user walking normally and 30 runs
of the user performing Silly Walks. Since the variety of Silly
Walks is immense we have to pick a certain number of walks
from Monty Python’s sketch to represent the whole class. We
decide to choose three Silly Walks. A brief description of the
movements is given in the following.

• First Silly Walk: This Silly Walk can be seen in the
beginning of the sketch. John Cleese extends his left leg
in front of him in every second step while his right leg
is trailing behind (0:18min - 1:06min in the video).

• Second Silly Walk: A man is hunched forward while he
hops on his left leg and pulls his right leg to his chest.
This is the second Silly Walk we chose (left man in the
video, 1:05min - 1:07min).

• Third Silly Walk: A movement which looks like a
combination of hopping forward with the left leg and
leaving the right leg trailing behind is the last Silly Walk
we picked. Again, it is performed by the left man in the
video (1:07min - 1:11min).

For every Silly Walk we perform ten runs of data collection
which yields the desired total number of 30 runs for the

class of Silly Walks. A visualization of the resulting triaxial
acceleration data for each walk including a normal walk is
given in Figure 3. The periodic patterns of each activity can
easily be read from the diagrams.

Fig. 3. Exemplary sensor data collected for a normal walk and for each of
the three Silly Walks.

B. Data Processing
During data collection, the sampling rate of the accelerom-

eter is set to 100Hz. However, the data is not uniformly



4

sampled due to inaccuracies of the sensor. For this reason,
we resample the recorded data with a sampling rate of 50Hz.
The uniformly sampled triaxial acceleration signals are then
divided into fixed-width sliding windows of 3.4sec and 50%
overlap between them. We choose this window length because
we want to capture at least one full cycle of every performed
activity. For the normal walk, this means we have to consider
two steps which constitute a full walking cycle. Knowing that
an average person walks with a step frequency, also known as
cadence, of [90, 130] steps/min [13] we calculate the minimum
and maximum cadence. For the three Silly Walks, we conduct
experiments to determine the respective values for minimum
and maximum cadence. Table I visualizes the results for each
of the four different walks in our setup. From this we can
see that the critical value is the first Silly Walk’s maximum
cadence. To capture a full cycle of every activity we have to
define a window size which is bigger than 3.16sec. In order to
strictly comply with this limit we add a buffer which results
in an overall window length of 3.4sec. Sampling the data in
sliding windows of length 3.4sec results in time sequences
with 170 values:

3.4s× 50Hz = 170.

Since the triaxial signals are considered seperately we obtain
three sequences of length 170 from each window.

Minimum Cadence Maximum Cadence

Normal Walk 1.34sec 0.92sec
Silly Walk 1 2.58sec 3.16sec
Silly Walk 2 0.12sec 0.23sec
Silly Walk 3 0.56sec 1.47sec

TABLE I. THE MINIMUM AND MAXIMUM CADENCE OF EACH
PERFORMED ACTIVITY.

In our LSTM approach these resulting sequences are the
input for the network and we don’t have to process the signals
further. For the kNN approach we have to extract appropriate
features from the time sequences. We choose a total number
of six features which follow common approaches to feature
mapping in HAR literature:

• Mean value of magnitude
• Sum of magnitude under 25 percentile
• Sum of magnitude under 75 percentile
• Maximum frequency in spectrum
• Sum of frequency components below 5Hz
• Number of peaks in spectrum below 5Hz

V. EXPERIMENTS

For the experiments we conduct on our dataset we use
MATLAB’s Statistics and Machine Learning Toolbox and
Deep Learning Toolbox. In both approaches we randomly
partition our dataset into two parts: a training set and a set
held back for testing purposes. We do this by using 21 of the
30 runs of each class for the training phase and by reserving
the remaining seven runs of each class for the test phase. It
is important to note here that the same split is used for both
approaches to ensure scientifically sound comparability of the
final results of each method.

A. k-Nearest Neighbor Classification
We fit a k-nearest neighbor classifier on the six feature

vectors that we extracted from the data as presented in the
previous section. The distance metric we use in our setup is
the euclidean distance. To determine a suitable value for the
number of nearest neighbors used for classifying each point
when predicting we evaluate the classification performance for
values of the number of neighbors ranging between one and
100. A visualization of the resulting values for the accuracy
is given in Figure 4. It can easily be seen that the accuracy
reaches the optimal value of 100% for a number of nearest
neighbors of 65 and above. The dashed red line in Figure 4
visualizes this threshold of 65 neighbors above which optimal
performance is achieved.

Fig. 4. Accuracy of the kNN model with respect to the number of nearest
neighbors used for classification purposes.

B. Long Short-Term Memory Neural Network Classification
For our second approach we build a neural network con-

sisting of the following seven layers: i) an input layer that
can process sequences; ii) an LSTM layer that learns long-
term dependencies between time steps in time sequences; iii)
a dropout layer with a dropout probability of 50% to reduce
overfitting; iv) a rectified linear unit layer acting as a threshold;
v) a fully connected layer to interpret the learnt features;
vi) and vii) a softmax layer and a classification layer that
determine which output is the most probable one and return
it as the networks prediction. To determine sufficiently good
values for the network’s parameters we conduct experiments in
which we vary the values for the number of the LSTM layer’s
hidden units as well as the size of the mini batch on which
we train in each iteration. Table II visualizes the results.

Number of Hidden Units Size of Mini Batch Accuracy

30 170 99.8%
85 99.5%

20 170 98.8%
85 100%

10 170 90.4%
85 99.7%

5 170 74.3%
85 88.9%

TABLE II. CLASSIFICATION PERFORMANCE OF THE NETWORK

We can see that too small networks are not capable of
learning dependencies in the time sequences properly while



5

too big networks run into the problem of overfitting. Therefore,
the best classification performance is achieved with a network
containing an LSTM layer with 20 hidden units and which is
trained on 85 samples of the data in each iteration.

VI. DISCUSSION

Our results show that it is possible to implement a kNN
classifier as well as an LSTM network such that the outcome
meets the specifications we defined in Section III. Both our
approaches are suitable for solving this HAR task. We were
able to successfully determine training parameters for both
methods such that we fulfill and even exceed the requirements.

Based on our literature review on commonly used features
for HAR applications we decided to use three features lying
in the time domain and three features lying in the frequency
domain. These six features proved to be perfectly sufficient
for solving the task at hand. A different feature mapping
than ours could be evaluated in future work. Here, it simply
was not necessary because we achieved perfect classification
performance with our setup. The pre-processing we applied to
the time sequences also proved to be expedient. The LSTM
network which works on the raw data of the time sequences
was able to classify the data with perfect accuracy.

In the beginning, we asked the question whether a phone’s
acceleration data alone would be enough to obtain good
classification results. As we presented in the previous section,
the acceleration data we collected in our setup was perfectly
fit for this task on our data set. There exist papers that
suggest the usage of acceleration data and angular velocity
data combinedly for HAR tasks to improve the classification
performance. However, in our work acceleration data alone
was sufficient to fulfill the task.

Since both approaches achieved equally good classification
results, the last question to ask is which method is better in
terms of overall complexity. The LSTM network is easy to
handle since it works on sequences of raw data. Thus, the pre-
processing necessary for this approach is minimal. However,
the training of the network takes much longer than the training
of the kNN model. The kNN model, on the other side, cannot
process time sequences. Feature extraction is an essential step
in this approach. In conclusion, the choice of classification
approach strongly depends on the context of the application.

VII. CONCLUSION

In this work we presented two approaches to solving an
HAR task. We proved that both a kNN classifier as well as
an LSTM neural network are able to successfully learn the
differences between walking normally and performing a Silly
Walk and to classify new samples correctly. The data collected
with a smartphone’s IMU could be classified with perfect
accuracy in both methods. However, it should be kept in mind
that the data set we built and used in our setup was quite small.
Nevertheless, our approaches outperform the recognition rate
presented in previous work. Moreover, we used a commonly
available smartphone for data acquisition whereas other papers
make use of special purpose sensors for applications of HAR.
Our contribution in this research domain is the strengthening
of the applicability of smartphones for HAR purposes.

REFERENCES

[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A
public domain dataset for human activity recognition using smart-
phones.” in 21th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2013.

[2] R. Poppe, “Vision-based human motion analysis: An overview,” Com-
puter vision and image understanding, vol. 108, no. 1-2, pp. 4–18,
2007.

[3] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G.
Celler, “Implementation of a real-time human movement classifier using
a triaxial accelerometer for ambulatory monitoring,” IEEE Transactions
on Information Technology in Biomedicine, vol. 10, no. 1, pp. 156–167,
2006.

[4] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity
recognition and monitoring using multiple sensors on different body
positions,” in International Workshop on Wearable and Implantable
Body Sensor Networks (BSN’06). IEEE, 2006, pp. 4–pp.

[5] J.-Y. Yang, J.-S. Wang, and Y.-P. Chen, “Using acceleration measure-
ments for activity recognition: An effective learning algorithm for
constructing neural classifiers,” Pattern recognition letters, vol. 29,
no. 16, pp. 2213–2220, 2008.

[6] M. Mathie, N. H. Lovell, A. Coster, and B. Celler, “Determining activity
using a triaxial accelerometer,” in Proceedings of the Second Joint 24th
Annual Conference and the Annual Fall Meeting of the Biomedical
Engineering Society, vol. 3. IEEE, 2002, pp. 2481–2482.

[7] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity recog-
nition from accelerometer data,” in Association for the Advancement of
Artificial Intelligence (AAAI), vol. 5, no. 2005, 2005, pp. 1541–1546.

[8] L. Bao and S. S. Intille, “Activity recognition from user-annotated
acceleration data,” in International conference on pervasive computing.
Springer, 2004, pp. 1–17.

[9] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition
from accelerometer data on a mobile phone,” in International Work-
Conference on Artificial Neural Networks. Springer, 2009, pp. 796–
799.

[10] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recogni-
tion using cell phone accelerometers,” ACM Special Interest Group
on Knowledge Discovery and Data Mining (SigKDD) Explorations
Newsletter, vol. 12, no. 2, pp. 74–82, 2011.

[11] W. Wu, S. Dasgupta, E. E. Ramirez, C. Peterson, and G. J. Norman,
“Classification accuracies of physical activities using smartphone mo-
tion sensors,” Journal of medical Internet research, vol. 14, no. 5, p.
e130, 2012.

[12] J. Brownlee, “How to develop rnn models for human activity recognition
time series classification,” Online, 2018, http://www.heise.de/tp/deutsc
h/inhalt/te/2860/1.html; last accessed: 18. 03. 2020.

[13] C. BenAbdelkader, R. Cutler, and L. Davis, “Stride and cadence as
a biometric in automatic person identification and verification,” in
Proceedings of Fifth IEEE International Conference on Automatic Face
Gesture Recognition. IEEE, 2002, pp. 372–377.

Katharina Rieke received her Bachelor’s degree
in Electrical and Computer Engineering from the
Technical University of Munich (TUM), Munich,
Germany, in November 2017. She is currently pursu-
ing her Master’s degree in Electrical and Computer
Engineering with a specialization in automation and
robotics at TUM.


