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Abstract—Today’s neuronal networks for action recognition
often use a pixel-based representation of videos as input for
classification. The disadvantage for this type of representation is
the high redundancy between frames and therefore the resulting
complexity of networks. A possible approach for reducing the
complexity of the networks is to perform classification in the
compressed video domain as video encoders reduce redundancies
in videos to optimize them for storage and transmission. Mo-
tivated by this, in this paper I intend to find an appropriate
approach to use components of compressed videos for action
recognition, while reducing the overall complexity of the network,
and investigate the possibility to describe temporal relations with
motion vectors. Experimental results show, that the developed
network is not performing as well as expected since the part of
the network using motion vectors as input is not able to learn
successful temporal features.

Keywords—Deep Learning, Neuronal Networks, Compressed
Videos, MPEG, Action Recognition.

I. INTRODUCTION

The amount of videos in the internet traffic increased enor-
mously in the last few years1 [1]. With the growing influence of
videos to our daily life, the relevance of computer vision tasks
is also growing. Thereby, many state-of-the-art deep learning
approaches use an intrinsic way to feed the neuronal networks
with the videos as sequence of RGB frames [2]. However,
this type of representation of videos is mostly inefficient, as
it is memory and computationally intensive. The reason for
this is the structure of videos as there are heaps of redundant
information. This means that it may happen that within several
frames only few new information occur. To extract thereby
the relevant information, it is necessary to apply complex
neuronal networks, that have high computational and storage
requirements [1][3]. As today’s encoders try to minimize the
redundant information to reduce the storage size of videos,
one could profit from this aspect. That would imply that,
theoretically, neuronal networks fed with encoded videos can
achieve the same results as fed with decoded videos, but
with fewer parameters, because the networks can learn on the
relevant information rather than on the repetition of almost
similar signals [3][4]. To get one step closer to this long-
term goal, this work investigates the approach to feed neuronal
networks with partly decoded videos to reduce redundancies
and such as the number of parameters. Therefore the following
research questions are examined:

1https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

• Is it possible to reduce the complexity of neuronal
networks with parts of compressed videos as input
compared to neuronal networks using a pixel-based
representation of videos as input?

• Are motion vectors capable to describe temporal rela-
tions?

• Is it possible to replace the commonly used optical flow
with the motion vectors?

The main focus for video classification is on action recogni-
tion as it is one of the most important tasks in the field of video
understanding [5]. First, existing projects with compressed
and uncompressed videos are presented, that are relevant in
the context of this work. Second, a possible deep learning
architecture is investigated in the context of experiments to
observe, if it produces a significant reduction of parameters,
with comparable performance, compared to approaches that
use a pixel-based representation of videos. In addition it will
be inspected, if the optical flow, which is regularly used for
action recognition, can be replaced by a component of the
encoded video, the motion vectors. The paper concludes with
a discussion of the results.

II. STATE-OF-THE-ART

A. Action Recognition

Action recognition in videos is the task of classification
actions from a sequence of observations. The attention for
action recognition started in the 1980s as it is useful for a wide
diversity of applications. Since then, a large variety of promis-
ing approaches were developed. The achieved performances
have a broad range and will be presented and compared with
the in this work achieved accuracy. The modeling of long range
temporal information and high computational costs showed to
be problems for the development of action recognition systems
[5][6].

1) Pixel-based Networks for Action Recognition: Pixel-
based approaches, where the RGB frames are used as inputs,
are the most natural way to interpret and classify videos.
As Convolutional Neuronal Networks (CNN) provide good
performance on images, these are mostly used to extract spa-
tiotemporal features from videos. Karpathy et al. [7] proposed
an architecture with two spatial streams. Hereby one stream
is fed with low resolution frames and the other one with
high resolution frames. Both streams use the same network
architecture, are concatenated and fed in two fully connected
layers. This network is originally trained on the Sports-1M
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dataset, but with fine tuning of the top three layers it is
transferred to perform on UCF101 [7].
Another pixel-based approach is proposed by Tran et al. [8],
who introduced a 3D CNN with 8 convolutional layers. As
last layer a support vector machine (SVM) is used instead of
a Softmax layer. They determined that a kernel size of 3×3×3
shows the best performance for the convolutional layers. As
input 16 video frames are stacked [8].
Carreira et al. [9] took advantage of the good performance of
2D CNNs on images and tried to convert the on ImageNet
trained weights of the convolutional layers to 3D kernels
by repeating the 2D kernel N times such that a N × N
kernel becomes a N × N × N kernel. The network contains
4 convolutional layers combined with 9 so called Inception
modules [9].

2) Two-Stream Networks: Beneath concepts like Temporal
Segment Networks (TSN), 3D Convolutional Networks and
Recurrent Neuronal Networks there is the concept of Two-
stream networks for action recognition [2]. Initially Simonyan
et al. [6] took advantage of the fact, that single frame models
already display strong performances, but with the addition of
motion information the whole performance can be lifted to
a new level. The reason for this is the information in the
pattern of movement over multiple frames, that can not be
extracted from single frames. Therefore the most effective way
to describe the motion in videos is the so called optical flow.
The only downside is the expensive calculation of the optical
flow and therefore the infeasibility for real-time applications.
As mentioned the originally proposed Two-stream network by
Simonyan et al. [6] consists of two different branches. One
branch extracts the spatial information of a single video frame.
The other branch extracts the temporal information of stacked
optical flow frames along the third dimension. Both streams
use 2D convolutional layers to extract the features. There are
several methods for merging both streams like averaging or
SVM. Nevertheless, the classical approach of the two-stream
model has some disadvantages. Firstly, it is not able to gather
long term motion with the optical flow. Secondly, the spatial
stream has the drawback to depend on randomly selected
single video frames and thus is prone to clutter and viewpoint
variations [2]. Based on the originally idea more variations of
two-stream networks with improved performance established
[5] [10].

Fig. 1. Two-stream network redrawn from [6].

B. Video Compression
In the 1990s first approaches started to develop codecs

to store and transmit videos efficiently. Therefore, they took
advantage of the property of videos, that consecutive frames
can be partly very similar. Nowadays, most of the codecs
work relatively comparable. They group a defined number
of frames together, called group of pictures (GOP). A GOP
consists of three different types of frames. At the beginning
of every GOP there is an intra-coded frame (I-frame), which
is a regularly compressed image. The remaining frames are
either predictive frames (P-frames) or bi-directional frames (B-
frames). In Fig. 2 a possible structure of a GOP is shown. P-
frames are predicatively coded images. Therefore the codec in-
cludes the previous I- or P-frame. For this the codec estimates
and saves so called motion-vectors from the previous frame
to the current one. The residuals compensate possible errors
between the predicted and original frames after the motion
estimation. They belong to P-frames as well. The proceeding
for B-frames is related to the proceeding of P-frames, but
hereby the codec includes a future I-frame. Thereby most of
the present codecs nowadays work block-based. This means
that coded frames are composed of sequences of macro-blocks.
Through the prediction of image data the codec can reduce
the needed bit rates for transmissions. B-frames show the best
compression ratios, but they are the biggest expense to estimate
[3][4][11][12].

Fig. 2. Example of a GOP and a possible order of the different types of
frames [11].

C. Compressed Video Action Recognition
For video classification tasks already some work was put

in human action classification and mostly the classification is
only performed with the motion vectors [4]. Chadha et al. [1]
proposed a 3D CNN with a sequence of motion vectors as
input to classify human actions on the HMDB51 and UCF101
database. The network achieved an overall accuracy similar to
single stream networks using only optical flow as input, while
reducing the complexity of the neuronal network compared to
these networks.
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Shou et al. [13] introduced a generator network to estimate
an optical flow similar tensor with the help of motion vectors
to classify the human action with it afterwards. Wu et al. [3]
used thereby three different components of the compressed
videos: I-frames, motion vectors and residuals. Each compo-
nent is classified with its own CNN and the predictions are
fused afterwards for one frame. This process is repeated with
several frames and the results are averaged along the chosen
frames [3][13]. The described methods can so far register a
reduced complexity of their models, but accuracies on the same
level as state-of-the-art networks for video classification can
only be achieved with components of non-compressed videos
[1][3][13]. Besides action recognition, compressed videos have
been used in other topics, such as segmentation and object
tracking. Some approaches can already keep up with state-of-
the-art methods. Mostly the motion vectors are used as input
of the neuronal networks [4] [12].

III. ACTION RECOGNITION

A. Approach

The way videos are structured, when they are compressed,
offers to feed them into neural networks in a similar way as
it is done in the Two-stream network [1]. This means, that
the already available I-frames and motion vectors provide a
simple and fast way to feed the components into a Two-
stream network without the need for a lot of pre-processing,
as for example needed for the computation of the optical
flow. So the approach is to take the original idea of the in
subsubsection II-A2 mentioned Two-stream network for action
recognition and replace the inputs of both streams with the
components of the bitstream. For the spatial stream a sequence
of I-frames is used to extract the information. The reason
for replacing a single frame with a sequence is the idea to
improve the spatial estimation as one randomly picked frame
can potentially contain wrong information about the shown
action due to noise, camera movement and so on [2]. With
the use of multiple frames the influence of disruptive elements
to the prediction could be minimized. Pre-trained networks
from image classification showed to achieve the best results
for the spatial streams [9]. Accordingly, it also makes sense to
apply them to the extracted I-frames. For the temporal stream
stacked motion vectors will be used, as they need no expensive
calculation compared to the optical flow. In addition they
should roughly describe the same pattern as the optical flow.
Because of the sparse shape an increased number of motion
vectors is needed, compared to the optical flow [1]. This fact
could be helpful to gather long term motion. Therefore, the
3D CNN proposed by Chadha et al. [1] suits the best for the
temporal stream as it achieved satisfying results with reduced
complexity. Thus the two components are a sequence of I-
frames and the stacked motion vectors as both, spatial and
temporal information, are represented. The residual could be
added as well, but Wu et. al [3] showed, that the influence of
this component is small compared to the two other ones.

B. Network Input
For the task of action recognition the UCF101 dataset is

used. It consists of 101 natural human actions with videos
collected from YouTube. It represents a great variety of real-
istic videos like surfing, riding and many other. In total there
are over 13k clips with a mean length of 7.21 seconds. The
resolution of the videos is 320 × 240 and they are provided
as AVI format [10] [14]. Before use the videos are converted
to the H264 format. Due to a macroblock size of 8 × 8 the
motion vectors have a dimension of 40 × 30 × 2. The last
dimension describes the movement of the pixels in x- and y-
direction. The temporal dimension is set to T = 160 as this
is the mean number of P-frames in the dataset. Chadha et.al
[1] showed for this number of P-frames, that the best results
can be achieved. Furthermore, the small spatial dimension
can be balanced with the large temporal dimension. For the
spatial branch a sequence of I-frames is chosen. A single
I-frame has the same resolution as a frame of the video:
320 × 240 × 3. The number of I-frames for spatial feature
extraction is set to 4 as this number showed the best results
between performance and input size. Both inputs, the motion
vectors as well the as the I-frames, are cropped in the spatial
dimensions to be independent from the input video size. Thus
the final dimensions are M ∈ R160×24×24×2 for the motion
vectors and I ∈ R4×224×224×3 for the I-frame tensors.

C. Architecture

Fig. 3. Architecture of the spatial stream. FC1 and FC2 denote the 2 fully
connected layers.

In the originally proposed Two-stream network architecture
a single video frame is used to extract spatial features. The
frame is fed into a 2D convolutional neuronal network [6].
In this work a modified approach is used to improve the
performance of the spatial branch. Thus not only one frame
is processed, but n frames are utilized to perform action
recognition in the spatial branch. The Features of n I-frames
are extracted with the VGGNet-16 Network. The VGGNet-
16 architecture takes 224 × 224 RGB images as input and
is originally trained for large-scale image classification. It
consists of 13 convolutional layers with filter sizes of 3 × 3
and 1 × 1. 5 max pooling layers are placed between the
convolutional layers [15]. The last 3 fully-connected layers
of the VGG16 Network are dropped, such that n feature
maps with the dimension of 7 × 7 × 512 are returned. The
weights are pre-trained on ImageNet and only the weights of
the last 3 convolutional layers are trained. Afterwards a pooling
operation is applied to get the average of all n feature maps.
In the following 2 fully connected layers are added. For the
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fully connected layer rectified linear units (Relu) are used as
activation and a dropout of 0.85 is added after the activation to
reduce overfitting. A Softmax layer for classification is placed
at the top of the network. As mentioned before is the 3D
CNN proposed by Chadha et al. [1] used for the temporal
stream. It consists of 5 convolutional layers. The first, the
second and the fifth convolutional layers are followed by max
pooling layers with a pooling size of 2× 2× 2 and strides of
2× 2× 2. After the spatiotemporal feature extraction with the
convolutional layers 2 fully connected layers and a Softmax
layer are added. All convolutional and fully connected layers
use the parametric Relu as activation [1]. The best method for
merging both streams is evaluated in the following sections.

Fig. 4. Architecture of the temporal stream. Implemented after [1].

D. Implementation Details

Both streams are trained separately. Afterwards the streams
are fused and fine-tuned such that the best results are achieved.
Both networks use the stochastic gradient descent method with
momentum 0.9 as optimizer to learn the network parameters.
For the temporal stream the learning rate is set to 0.01 and it is
reduced after 115 epochs to 0.001. The weights of the temporal
stream are initialized with the Glorot normal initializer. A
batch size of 32 is used and the network is trained for 230
epochs [1][16]. The spatial stream is trained with a batch size
of 16 and a learning rate of 0.001. The training is stopped after
12 epochs without improvement on the validation accuracy. For
both inputs data augmentation methods are applied to avoid
overfitting. For the temporal stream the proposed methods from
Chadha et. al [1] are used. At first the motion vectors are
randomly cropped and resized to the expected input size of
24×24×2. Additionally, they are randomly horizontally flipped
and normalized afterwards. The stacked motion vectors start at
a random frame and if there are not enough, they are repeated
until there are 160 motion vectors. For the training process of
the spatial stream all RGB frames of the videos can be picked
to have more training data and such that reduce overfitting,
while for testing only I-frames are used. Thus randomly 4
frames are picked from the video. The I-frames are cropped
and resized to the input size of 224×224×3 for preprocessing.
Additionally the mean RGB value is subtracted [15]. For
training of the fusion layers and fine tuning of both streams the
same optimizer and learning rate as for the spatial stream is
used. The loss function for all models is the categorical cross-
entropy. All models are implemented and trained with Keras
[17].

E. Results

Both streams are trained separately and fused afterwards.
At first the performance of the single streams is evaluated
and afterwards the overall model performance in combination
with the number of parameters. All models are evaluated
on the first test split provided by the UCF101 dataset [14].
After 234 epochs of training the temporal stream achieved
an accuracy of 40.09%. Compared to the performance of the
proposed implementation by Chadha et al. [1] (77.5%) drops
this one almost by half less of, although no differences are
recognisable. It would be interesting to clarify the cause of
this in the course of further investigations, but this is beyond
the scope of this work. After training the spatial stream for
29 epochs, it achieved an accuracy of 76.4%. This result is
already better than some pixel-based approaches [9].

For the fusion of both streams only late fusion methods are
investigated as this fits the best with the architecture of both
streams. Therefore the streams are connected at different fully
connected layers and an additional layer is added on top. The
complete model is trained again on the first training split of the
UCF101 dataset, while only the added fully connected layer
and the layer before are allowed to train their weights. All
methods, the resulting performances and the overall number
of parameters is listed in III-E.
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Fig. 5. Evolution of the loss of the spatial stream.

Fig. 6. Evolution of the accuracy of the spatial stream.

Method Accuracy (%)
Averaging (No Fine-tuning) 74.70
Softmax layer on top 74.87
+ Fine-tune top layers
Softmax layer after last FC 77.44
layers +
Fine-tune top layers
Softmax layer after first FC layer 76.05
+ Fine-tune top layer

TABLE I. COMPARISON OF THE TEMPORAL STREAM ACCURACY

IV. DISCUSSION

A new method for using components of compressed videos
for action recognition is presented. For comparison to the
presented methods using pixel-based representation for videos
the proposed method shows an acceptable result for the combi-
nation of accuracy and complexity. It has been shown that with
a smaller input size, respectable results still can be achieved.
Thus, only I3D [9] has an advantage in the comparison of
the accuracy and the parameters. Comparing the proposed
approach with other approaches using compressed videos, it
can be seen that they either manage to achieve the same
accuracy with fewer parameters or show a much better perfor-
mance [1][3]. All over it is to say that the proposed model is
not significant less complex than pixel-based approaches. The
main reason for this is the spatial stream as it is really close
to standard pixel-based architectures. However, therefore the

2Reproduced
3Reduced input size compared to RGB frames
4Upsampled to input size of 224× 224× 2

Method #Parameter Input Size Accuracy (%)
3D-ConvNet [8] 79M 16 RGB 82.3

Deep Networks [7] 230M2 50 RGB 65.4
Two-Stream [6] 35M2 1 RGB, 87.0 (split1)

10 flow
I3D [9] 25M 250 RGB 84.5

Coviar [3][18] 83.6 25 Frames 90.8
(I-or P-frame)

MVCNN [1] 29.4M 160 MV3 77.5
DMC-Net [13][19] 83.6 25 MV4 90.9

Proposed 60.2M 4 RGB 77.44 (split1)
160 MV3

TABLE II. COMPARISON OF THE TEMPORAL STREAM ACCURACY

advantage is that only the I-frames need to be decoded and not
the complete video. Furthermore, they are needed to generally
provide information about the scene, the objects and so on. In
addition, the temporal stream influences the performance in a
bad manner as it performs more worse than expected. Actually,
the motion vectors should be capable to achieve much better
results and even more should it be possible to model long
term relations in videos as their size per frame is limited and
so more frames can be stacked without excessive increase of
complexity. Thus they are not able to compete with the optical
flow, although they are ’on the fly’ available.

V. CONCLUSION

In this paper, I have investigated the possibility to de-
ploy components of compressed videos to neuronal networks
to reduce the overall complexity. Therefore an architecture,
originally proposed for decompressed videos, is transferred
to be used with compressed videos and the performance is
evaluated on the action recognition dataset UCF101. The
proposed model does not perform as presumed as the part
for temporal modeling did not achieve expectable results. The
reason for this could not determined.
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