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Abstract

Machine learning and especially reinforcement learning (RL) technologies have not
yet been developed to such an extent that they can replace control technologies in
large sections of industrial and technological areas. Missing robustness in RL algo-
rithms is one of the issues that hinder the real-world application so far. There are many
disturbances, such as noise or manufacturing tolerances in the real world that cause
significant problems. In order to become applicable, the robustness of RL algorithms
against different disturbances has to increase. Moreover, objective measures have to
be developed that allow the robustness evaluation of an algorithm.

This thesis focuses on the field of robustness in RL algorithms. In the first part, a
new robust approach of deep RL is introduced and evaluated. Therefore, the state of
the art algorithm Proximal Policy Optimization is applied to a problem defined within
a robust Markov decision process. To model these processes, the system is defined
with uncertainties in the system parameters. In this case, a worst-case assumption
of the possible behavior under the uncertainty of the system parameters is taken into
account. Additionally, the influence of the distribution type and spread of the uncer-
tainties is tested. In the second part, the research deals with the question about the
robustness evaluation of RL algorithms. Therefore, a robustness benchmark of the
standard PPO and the new approach, where PPO and RMDP are combined, is per-
formed. To address the different aspects of robustness in this work, several ways to
evaluate robustness against different disturbances are considered. The influence of
noise, changing environment parameters and transfer learning are metrics to perform
the robustness evaluation.

The robustness evaluation of this thesis leads to the result that the state of the art
algorithm based on domain randomization still achieves the most robust performance.
Comparing all evaluation metrics and environments the robustness performance is
very dependent on the different environments. Furthermore, the types of distributions,
introduced in the learning process, do not have an impact on the performance. This
research shows that the important parameter to achieve more robust algorithms is
the spread of the underlying distribution. Additionally, it uncovers that this parameter
varies from every environment and algorithm. In the last part, an outlook for future
work concerning robustness based on these results is provided.
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1 Introduction

Reinforcement learning (RL) is a fast-growing technology and gains more and more
attention and importance. The success of reinforcement learning algorithms is shown
in several research fields such as robotics [Kober et al., 2013] and [Kormushev et al.,
2013] or playing games such as Atari [Bellemare et al., 2017] or Go [Silver et al.,
2016]. Especially the handling of complex problems with these algorithms was previ-
ously never expected to be done within this decade. All in all, the number of papers
investigating the topic of reinforcement learning have increased strongly [Henderson
et al., 2018].

The aim is to establish reinforcement learning algorithms not only in academic sur-
roundings but also to use these approaches in real-world applications. Since in re-
searches of lots experts such as Henderson et al. [2018], Irpan [2018] or Dulac-Arnold
et al. [2019] outlined that RL still has many issues, several studies have already been
conducted to solve these problems. In order to me more likely to handle real world
scenarios, several research studies focused on the topic robustness of algorithms.

To increase the robustness of algorithms different approaches have been used in
different researches. One big topic concerning robustness is to handle adversar-
ial attacks with the algorithm as in the researches of [Vinitsky et al., 2020] or [Pinto
et al., 2017]. Other important research aspects are the use of RL algorithms in real-
world approaches, where several sim-to-real approaches as in [Peng et al., 2018] or
[Andrychowicz et al., 2020] have been conducted. Furthermore, several more ap-
proaches can be found focusing on the improvement of robustness, some are also
described in this thesis. As of today, robustness remains a very important research
topic.

1.1 Problem Description

Noisy sensor data or small parameter deviations in the running system in comparison
to the learning system are reasons why the agent cannot work properly. Even small
differences between real-world scenarios and simulation problems can cause big is-
sues for the agent and can lead to a misbehaviour [Henderson et al., 2018]. This
misbehaviour in the industrial context can have big impacts when for example a prod-
uct line has to stop or an autonomous driving car makes wrong decisions. To avoid
this scenario the aim of this project is, to improve and benchmark robustness of RL. In
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1 Introduction

the future, RL should be applied in large areas to handle real-world problems instead
of being mainly used for simulation problems.

Trying to address these problems the idea is to change the definition of the process,
where the reinforcement learning agent has to act. Several possibilities to make these
changes are described by Feinberg and Shwartz [2012]. In this thesis, the focus is on
Markov decision processes with uncertain transitions, that are first introduced by Satia
and Lave Jr [1973]. This topic gained more attention in research when, for example
Iyengar [2005] and Nilim and El Ghaoui [2004], took it up. The combination of this
approach with deep RL, which itself achieves very promising results, might result in a
more robust behaviour. Combining these approaches has only been investigated so
far in the course of a master thesis, that considers drone control, by Bjarre [2019]. To
the best of my knowledge, a benchmark on robustness has never been performed on
this approach.

This leads to the next problem addressed in this thesis: the question of how robust-
ness can be measured and what a more robust algorithm in general means. While it is
easier to distinguish robustness in cases of classification, for example, it is more com-
plex in other machine learning problems. Therefore several researches, as for example
[Baker et al., 2008], [Fernandez et al., 2005] and [Schain and Schain, 2015] have tack-
led this problem. Since it is difficult to define a single robustness benchmark in terms
of RL, in further researches different approaches have been taken into account. To
handle the problems in the real world the most important measures of robustness for
reinforcement learning are noise handling ([Wang et al., 2019]), the handling different
system variations ([Mankowitz et al., 2018]) as well as the quality of a transfer ([Peng
et al., 2018]).

1.2 Thesis Outline

The contribution of this thesis is twofold. At first, the state of the art algorithm Proxi-
mal Policy Optimization (PPO) is applied to a problem defined within a robust Markov
decision process. Therefore, different attempts have been made to identify the best
variation for this setup. In the second part, a robustness benchmark is provided, taking
the state of the art approach, the new approach and the standard PPO into account.
The robustness evaluation is based on different metrics.

The structure of the thesis is structured according to the following outline: The Chap-
ter 2 introduces the foundations of reinforcement learning, including function approxi-
mations. policy gradients and Markov decision processes. Afterwards, in Chapter 3, a
detailed view of the current state of the art works in cases of robustness is investigated.
The methods used for the experiments and the evaluation are described in Chapter 4.
A detailed view on the experiments and the corresponding results then is provided in
Chapter 5 and Chapter 6. Finally, the thesis ends with a conclusion of the results in
Chapter 7.
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2 Background

The field of machine learning is distinguished into supervised, unsupervised learning
and RL. While in supervised learning the machine always needs labeled input-output
data pairs, in unsupervised learning the machine learns without labeled data. This
chapter sets the theoretical groundings for RL.

The principle of RL is an agent interacting with its environment, which gets feedback
based on actions that lead to the best behavior. Therefore reinforcement learning is
a very powerful approach to learn behavior in a not fully known or previously defined
state-space or environment. Since RL is a very fast-growing and frequently asked
research topic, there are several research studies to given a good overview over the
whole topic like as example [Li, 2017], [Arulkumaran et al., 2017] or [Kaelbling et al.,
1996].

The first section investigates the background of RL in detail. Starting with introduc-
ing the Markov decision processes (MDP) as a framework for reinforcement learning
algorithms, more complex parts such as value functions in order to evaluate the agent’s
performance are followed. Second, several approaches of RL such as tabular meth-
ods, function approximation, policy gradient and actor-critic methods are described. In
the last section, a special case of the Markov decision process is introduced that is
assumed to achieve more robustness for reinforcement learning algorithms.

2.1 Reinforcement learning

In reinforcement learning an agent is learning different behaviors with the best possible
performance within a given environment through taking actions in the environment.
Based on these actions the agent receives feedback, that is necessary in order to
achieve the best possible performance in the environment. By taking an action the
agent gets a reward based on the action and the follow-up state. This reward indicates
how good the action was. The learning process of the agents is based on the earned
rewards and leads the agent to perform the actions in the best possible way to earn
the best possible reward over a long sequence of actions.

Reinforcement learning problems can be described in so called MDPs. The MDP
is a mathematical formalized tuple (S,A, P, R, γ). The single parts of the tuples are
described in Szepesvári [2010]:
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2 Background

• countable set of states s ∈ S

• countable set of actions a ∈ A

• a state-transition Rule P : S ×A ×S → [0, 1] representing the dynamic of the
environment,

• the reward function R : S × A → R that gives the agent feedback over every
state-action pair

• a discount factor γ ∈ [0, 1] that limits the relevance of the future rewards in the
trajectory τ

The agent starts in an initial state s0 at the beginning. Then by taking an action at at
time step t the agent gets the observation with its follow up state st+1. The follow-up
state is given in the state transition rule P(st+1 |st, at ) and added with a reward rt . The
whole procedure is defined as a sequential decision process. The main goal of the
agent is to maximize the earned rewards in the environment over the long run. The
decision, which action to take in a particular state, is called the policy π : s → a
of an agent. In RL there are also stochastic policies described by the parameter π.
Therefore in each time step the agent is in state s and takes action a according to its
policy π, observes a new state st+1 at the next time step and gets the defined reward
R. All in all the aim is to find the best policy in order to maximize the reward over all
time steps within a trajectory.

A very important assumption for this process is the so calledMarkov property. It says
the current state s contains all important information for the agent and also includes
all necessary information about the history. Considering this property, the next state is
just dependent on the current state and does not need any more information about the
history. In this case, the decision process is called a fully observable process. If the
Markov property does not hold, meaning that the state s does not contain all true state
information, we speak about a partially observable Markov decision process. In most
basic reinforcement learning approaches a fully observable Markov decision process
underlies the whole algorithm.
The MDPs have an infinite horizon behaviour. Therefore, the agent interacts with

its environment in a infinite behaviour, or unless it has reached a terminal state. The
basic structure of an agent in a MDP is shown in Figure 2.1. Each finite sequence of
state action pairs can be described in the path τ = (s1a1, s2a2, . . . ). The probability
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2.1 Reinforcement learning

Agent

Environment

action at
follow up state st+1
reward r

Figure 2.1: The agent interacts with the environment. Every time step t the agent takes an
action at . This actions causes a change in the environment, which makes the agent receive
an reward r and brings it to the next state st+1

to make this trajectory again can be described with the Markov chain.

P(τ |π) = P(s0)
T∏
t=0

P(st+1 |st, at )π(at |st ) (2.1)

The probability of all state action pairs, including the initial state are taken into account.
Also the overall reward of the trajectory τ according to the policy π can be calculated
with

R(τ) =
T∑
t=0

rt . (2.2)

Where rt denotes the reward of every state from the trajectory.
The last symbol in the definition of MDPs is the discount factor γ. The discount factor

is a value between 0 and 1 and weights the impact of the future expected rewards. As
a consequence of the discount factor, every sequence can be bound to a finite horizon.
It determines how likely it is to choose a state based on a higher future reward. The
discounted return from one point in the sequence can be computed as

Rt (τ) =

T∑
k=t

γk−trk, (2.3)

where t represents the current time step.
Based on these future rewards it is possible to perform an optimization of the policy

until the end of each trajectory. In contrast to the dynamic programming approach,
not all states and trajectories are known in RL but the optimization has to take place
based on the current seen trajectories. The performance of the current agent can be
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2 Background

evaluated with value functions. A value function calculates the expected reward at one
state with a stationary policy:

Vπ(s) $ Eπ[Rt |st = s]

= Eπ[
∞∑
t=0

γtrt |s0 = s]
(2.4)

In other words, the value function describes the future discounted reward while acting
according to a policy. As a next step, the action-value function Qπ(s, a) : S ×A → R
describes the expected return. When starting in state s and taking action a, then follow
the stationary policy π is followed afterwards. Therefore a similarity between value-
and action-value-function exists and is described as follows:

Qπ(s, a) $ Eπ[Rt |s0 = s, a0 = a]

= Eπ[
∞∑
t=0

γtrt |s0 = s, a0 = a]
(2.5)

All of the value functions obey special self-consistency equations called Bellman equa-
tions. The basic idea behind the Bellman equations is that the value of your starting
point is the expected reward from this state plus the expected value-function of the
following state s′:

Vπ(s) = R(s, a) + γVπ(s′) (2.6)

By maximizing the value-function parts over the actions these equations lead to the
optimal value function V∗:

V∗(s) = maxa(R(s, a) + γV∗(s′)) (2.7)

Value functions as well as action-value functions are often estimated by function ap-
proximations. A main goal of RL is to learn the optimal value function and therefore
to decide in the best possible way within the environment. In order to approximate the
value functions, linear and nonlinear function approximators are taken into account.
Especially for handling more complex problems or higher dimensional data sets, the
calculation of value functions gets more and more complex. The introduction of neu-
ral networks as function approximators for complex problems, was the first step of so
called deep-reinforcement learning, introduced by Mnih et al. [2013].
In order to optimize the RL problem, there are two different approaches to be consid-

ered: on-policy optimization and off-policy-optimization. On-policy methods attempt to
evaluate or improve the policy that is used to make decisions. In contrast, off-policy
methods usually use generated data and compare the behaviour to the current policy.
In the following section, some standard reinforcement learning algorithms are intro-
duced.
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2.2 Approaches

2.2 Approaches

After the first introduction to the terminology of RL and its notation, the following differ-
ent approaches of RL algorithms are described. The first and most important distinc-
tion of RL algorithms is whether the agent has access to a model or whether it learns
a model of the environment. The main advantage of model-based algorithms is that
the agent can plan by thinking ahead. Therefore the upcoming behavior can be taken
into account for learning the new policy. Since often there is no environment model
available and learning an accurate model is very difficult, this approach is not always
applicable. Therefore the agent often has to build up the environment model based on
experiences. The quality of the model depends on the algorithm used and therefore
might be sub-optimal. Model learning in general is difficult and computationally ex-
pensive. Also concerning model-based RL, there are several approaches to improve
robustness and to handle these uncertainties as for example described by Zhou et al.
[2019]. Anyways, out of these reasons the following approaches focus on the other
option of RL algorithms, the model-free learning.

As the name suggests model-free RL algorithms ignore the models, instead they
learn based on actions and rewards. The aim of these algorithms is not to create a
model, but to find the best policy for an agent that interacts with its environment without
having any knowledge over the whole model. To achieve the goal of an ideal policy, the
optimization can be performed through different ways such as temporal differences be-
tween the steps, policy gradients for optimization, or approximate learning approaches
in more complex problems.

2.2.1 Tabular Methods

The simplest approaches to realize model-free reinforcement learning are tabular
methods. In order to maximize the Bellman equation through learning the best pol-
icy by using tabular methods, an iterative behavior is used. Mainly two different ap-
proaches are very common for this kind of algorithms, the Monte Carlo (MC) algorithm
and the temporal difference method.

In the case of the MC algorithm, the agent moves through a whole episode. At every
state, the agent has a high probability to take the best action based on the experience
learned so far. In the beginning, the agent is more likely to take random actions to
explore more of the environment than later on. In this manner, the algorithm calculates
the value function of each state based on the result of the whole episode. With this
behaviour, the agent tries to explore all states and therefore it chooses the policy based
on the best overall value.

Vπ(s) = 1/τ
τ∑

s=0

T∑
t=0

R(s, a) (2.8)

With this behaviour in MC algorithms, the agent can learn the best behavior directly
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through the interaction with its environment. Taking also the reward factor into account,
this approach can also be used for infinite horizon problems. To get another solution for
infinite or large state space problems the temporal difference (TD) algorithm is used.
This algorithm works similarly to the MC method. The difference is that this algorithm
does not has to wait until the end of an episode in order to know the return. It computes
the value of the current state based on estimates of other states. In general, the TD
algorithm just looks ahead one step and computes the next value. This optimal value
for each state-action entry can be calculated according to the update rule

Qt+1(s, a) = (1 − α)Qt (s, a) + α(r + γmaxa′Qt (s′, a′)). (2.9)

In other implementations, there is also a TD-λ approach that takes λ steps into account
in order to make a link between MC and TD methods. These methods are well suitable
for smaller action and state spaces. In larger sets, these methods increase compu-
tational cost exponentially. Because of these reasons for larger and more complex
problems other methods are taken into account to optimize the Bellman equation.

2.2.2 Function Approximation

For larger and more complex state and action spaces the estimation of value or action-
value functions is performed with function approximation. When

V̂w(s) ≈ Vπ(s)

Q̂w(s) ≈ Wπ(s)
(2.10)

holds, function approximation is suitable for the problem. In this casew describes such
a parameter vector. Function approximation can be realized by different methods as
linear combinations, support vector machines, regression methods or neural networks
([Bertsekas et al., 1995] [Bishop, 2006]).
In this thesis the main focus is on function approximation through neural networks.

A multilayered feed forward network is used to estimate value functions and to give a
policy. The neural network is built up with non-linear function transformations. Each
consists of a linear combination of the inputs (W x + b) with a non-linear activation
function h(·). Therefore the output can be described as:

y(x,W, b) = σ(Wnh(Wn−1h...(W1x + b1)... + bn−1) + bn) (2.11)

where σ describes the output activation function.
Function approximators estimate the current value function but do not compute it

exactly. To measure the closeness or accuracy of the approximator with the real values
the square error between real and predicted value is calculated:

Jv(θ) = Eπ[
1

2
(V̂w(s) − Vπ(s))2] (2.12)
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To minimize this error J(θ) has to be fully differentiable with respect to θ. Minimization
is performed with a descend of J(θ) in direction of the gradient ∇J(θ). Due to the fact
that in practice the correct value functions are not available the gradient descend is
performed on the estimated value functions:

∇θ Jv(θ) = ∇θEπ[
1

2
(V̂w(s) − Vπ(s))2] (2.13)

After that gradient descend step the parameters are iterative updated according the
iteration loop and the learning rate defined for the system.

θk+1 ← θk + α∇θ with ∇θ = ∇θ Jv(θ) |θk (2.14)

Function approximation is widely used in practice to calculate values of states and
actions when similar circumstances occur. For more complex problems function ap-
proximators and especially neural networks are a lot more computational efficient than
tabular methods ([Gronauer, 2019]).

2.2.3 Policy Gradient

Besides tabular learning methods, policy-based learning methods are often used in
RL. Instead of computing the value functions of each state concerning future steps,
the optimization is performed by directly changing the policy. The main idea behind
policy-based learning algorithms is, to determine which action a at a state s to take in
order to maximize the reward. To achieve this objective a vector of parameters called
θ parametrizes the policy π to achieve the best action a. By definition, that policies
are usually not fully deterministic the policy gives a probability of taking an action in a
particular state which leads to this notations:

π(a | s, θ) = Pr (at = a | st = s) (2.15)

Policy-based algorithms are used because they directly optimize the policy instead
of the value iterating algorithms. They are very effective to use in high dimensional
or continuous action spaces as they need less memory and computation resources.
However, the big disadvantage of these methods is the behaviour that it usually con-
verges to a local rather than a global optimum.

The optimization of the policy is fulfilled when the expected rewards are maximized.
The maximization is performed by defining an objective J(θ) with respect to the ex-
pected rewards R(s, a) that we get in every time step from zero to the end of the
episode T while following the policy π(θ). To get the total reward over one episode
we formulate a trajectory τ that starts from zero to time step T and sums up all the
expected rewards.

J(θ) = Eπθ [
T∑
t=0

R(st, at )] =
∑
τ

P(τ | θ)R(τ) (2.16)

9



2 Background

After defining the objective function the next step to achieve an optimization is to max-
imize this function. The maximization is performed as mentioned in the function ap-
proximation part with a gradient descend approach. In this case the policy πθ with
respect to the parameters θ is optimized by performing a step in the direction of the
gradient. Taking the gradient of the function with respect to θ leads to:

∇θ J(θ) = ∇θ
∑
τ

P(τ; θ)R(τ)

=
∑
τ

∇θP(τ; θ)R(τ)

=
∑
τ

P(τ; θ)

P(τ; θ)
∇θP(τ; θ)R(τ)

=
∑
τ

P(τ; θ)
∇θP(τ; θ)

P(τ; θ)
R(τ)

(2.17)

Notice when ∇p(x) = p(x) ∇p(x)p(x) = p(x)∇logp(x) holds, the equation can be written
as follows:

∇θ J(θ) =
∑
τ

P(τ; θ)∇θ logP(τ; θ)R(τ) (2.18)

The approximation with the empirical estimate for m sample paths under the policy πθ
leads to:

ĝ = ∇θ J(θ) ≈
1

m

m∑
i=1

∇θ logP(τ(i); θ)R(τ(i)) (2.19)

Now this expression is also valid when R is discontinuous or even unknown and also if
the sample space is a discrete set. Starting at this point the the gradient is calculated
over the whole trajectory, which leads to:

∇θ logP(τ; θ) = ∇θ log

[
H∏
t=0

P(st+1 | st, ut )︸            ︷︷            ︸
dynamics model

πθ(ut | st )︸      ︷︷      ︸
policy

]

= ∇θ

[ H∑
t=0

logP(st+1 | st, ut ) +
H∑
t=0

logπθ(ut | st )
]

= ∇θ

H∑
t=0

logπθ(ut | st )

=

H∑
t=0

∇θ logπθ(ut | st )︸               ︷︷               ︸
no dynamics model required!

(2.20)

This equation shows, that the policy gradient can be computed without having ac-
cess to the environment dynamics. In the following the gradient-log probability of the
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trajectory can be put in the policy gradient term and leads to:

∇θ J(θ) = Eτ∼πθ

[ T∑
t=0

∇θ logπθ(at | st )R(τ)
]

(2.21)

The mean objective can be computed by summing up the gradient over different tra-
jectories. Therefore the expectation of the policy gradient can be estimated as follows:

ĝ =
1

|D|

∑
τ∈D

T∑
t=0

∇θ logπθ(at | st )R(τ), (2.22)

where |D| = |{τ1, ..., τN }| shows the number of sampled trajectories. This equation is
known as the Vanilla policy gradient, which reduces the probability of bad trajectories
and makes good trajectories more likely. The advantage of this gradient is that the
term R(τ) has no bias, but on the other hand, the result ĝ has a high variance. There
are several ways to reduce variances, which are described in in the following section.

2.2.4 Actor Critic Methods

The Equation 2.22 helps to find out how the policy varies following θ. The return is
used to amplify those variations. A high return indicates to the neural network that the
progress is heading into the right direction and thus boosts R(τ). Problems may occur
in this policy gradient if the sum of the returns are in total 0. In this case, the gradient
equals also 0 and the neural network therefore won’t learn from this situation. To solve
this problem discounted rewards are taken into account for each step, starting from
the current state of the trajectory. This leads to the following gradient:

∇θ J(πθ) =
1

|D|

∑
τ∈D

T∑
t=0

∇θ logπθ(at | st )Rt with Rt =

T∑
t′=t

γt
′

rt′ (2.23)

Problems may then occur if it is not clear what value for Rt is considered as a good
value. To solve this problem a baseline is taken into account as

∇θ J(πθ) =
1

|D|

∑
τ∈D

T∑
t=0

∇θ logπθ(at | st )Rt − bt, (2.24)

where bt represents the average of all actions. This approach is similar to the action
value function Q(s, a) and the value function V(s) because each of them considers the
average of all rewards that are gained through taking actions at particular states. In
this case the equation can be rewritten as:

∇θ J(πθ) =
1

|D|

∑
τ∈D

T∑
t=0

∇θ logπθ(at | st )(Q(st, at ) − Vφ(st )) (2.25)
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2 Background

Taking a closer look at this equation it can be seen that it consists of two parts. π(a|s)
is responsible for taking the action, while the second term described by action-value
and value functions shows how good the chosen action was. The two parts are called
the actor and the critic in each step.

∇θ J(πθ) =
1

|D|

∑
τ∈D

T∑
t=0

∇θ logπθ(at | st )︸           ︷︷           ︸
Actor

(Q(st, at ) − Vφ(st ))︸                  ︷︷                  ︸
Critic

(2.26)

As already mentioned in the sections before the critic can be computed in different
ways such as tabular methods or for example function approximation including neural
networks.

2.3 Robust Markov Decision Process

Markov decision processes as described in Section 2.1 are a common approach to
model dynamic optimization problems in many different areas. MDPs are often used
because of their good traceability. Since the whole action and state space is defined
in the MDP, all transitions are traceable. Taking a look at real world applications of RL
problems, these properties are often not applicable and a more robust approach for
MDPs is taken into account. More different approaches of MDPs, like a partial observ-
able MDP or non stationary MDPs like in Lecarpentier and Rachelson [2019], therefore
are discussed in literature. This thesis mainly focuses on the so called Robust Markov
decision process (RMDP) also considers uncertainties in transition probabilities first
considered by Bagnell et al. [2001]. In comparison to the usual MDP with fixed reward
and transition function r and p, uncertainties are defined. In detail the framework is
modeled like :Us,a ⊆ Rs,a × Ps,a where P defines a set of possible next transition dis-
tributions and R defines a set of upcoming expected rewards. A transition (Pt ) ∈ Uπ

is randomly chosen out of the sets and results therefore in a reward rt at each time
step and each policy. With focus on infinite horizon decision processes, in contrast to
the approach of robust dynamic programming, the calculation of the values is made
with respect to a discount factor γ. Therefore, in robust MDPs the value functions for
a policy π can be defined as follows:

Ṽπ := min
(rt,Pt )∈Uπ

∞∑
t=0

(γPt )
trt (2.27)

By adding the uncertainties of the Markov model there are in contrast to the usual
MDP more possibilities for the next step. Considering this problem and handle all
possible transitions within the value function calculation, an additional minimization
step is performed to be aware of the possible worst case scenario. Minimizing the value
function calculation Ṽπ by using a stationary and deterministic policy the assumption:

(rt, Pt ) = (r∗π, P
∗
π) (2.28)
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holds for all time steps t. To achieve the same approach as in normal Markov decision
processes a robust Bellman operator is defined as:

T̃ ṽ := max
π∈A|S |

min
(r,P)∈Uπ

r + γPṽ (2.29)

With respect to the robust Bellman operator T̃ it can be seen, that the optimal robust
values satisfy

ṽ∗ = T̃ ṽ∗ (2.30)

Therefore, the optimal robust policy π̃∗ with respect to ṽ∗can be described as follows:

π̃∗ := arg∗ max
π∈A|S |

min
(r,P)∈Uπ

r + γPṽ (2.31)

In the new formulation of the robust Markov decision process the optimization problem
turned into a minmax problem. In contrast to usual MDPs, where just a single maxi-
mization is needed. Because of this reason the robust MDPs are often leading to very
conservative results. However it can lead to better results according robustness and
works with changing environment parameters.
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3 State of the Art

The whole field of reinforcement learning underlies rapid development. Especially
robustness is one of the most important and fastest-growing fields in reinforcement
learning. It is often considered by transferring the learned policy to slightly different
problem settings in the same environment. Another rising topic is the transfer from the
simulation into real-world problems, also called transfer learning. Research in this field
can be divided mainly into two different parts. The first block focuses on the learning
of adversarial behaviour, whereas the second one focuses on the handling and the
modelling of uncertainties as well as noisy sensor data to make the agents behaviour
more robust. This chapter mainly focuses on these uncertainties and varying system
dynamics to improve robustness. Another milestone was the breakthrough of deep
learning methods, such as neural networks and function approximators mentioned in
Chapter 2.2.2 and in [Mnih et al., 2013], [Bellemare et al., 2017] and [Bellemare et al.,
2019]. Deep RL made a big impact and also pushed the development of robustness.
Now the research mainly focuses on deep reinforcement learning algorithms as they
have delivered very promising results so far.

This chapter contains actual approaches and state of the art techniques concerning
RL with RMDPs. Afterwards, other methods to learn robustness of an agent towards
changing system dynamics and also several state of the art approaches concerning
transfer learning where the sim-to-real approaches have an important role, are de-
scribed in this chapter.

3.1 Robust Markov Decision Process

The concept of robust MDPs came up already in the early 2000s where the approach
has been considered to get more robust reinforcement learning approaches. The ro-
bust MDP has the potential to lead to better results than other approaches due to the
handling of uncertainties in the transition matrix, as it has been described in Chapter
2.3.

In the beginning, robust dynamic programming was considered based on RMDPs.
The first approaches concerning the robustness of reinforcement learning in robust
Markov decision processes led to conservative performances as described in [Xu and
Mannor, 2007], [Nilim and El Ghaoui, 2004] and [Iyengar, 2005].

Nilim and El Ghaoui [2004] and Iyengar [2005] considered RMDPs in which they
model the uncertainties in transition probabilities. Therefore uncertainty sets, where
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each action state pair can be selected from the set Ps,a ⊆ R
|s |
+ unrelated to other action

state pairs, are defined as follows:

P = ×s∈SPs,a, where Ps,a ⊆ R
|S |
+ (3.1)

These uncertainty sets are so called rectangular uncertainty sets. The rectangularity
therefore is a geometric concept, defined by possible conditional projections of the
uncertainty set ([Mannor et al., 2016]). Here, states as well as actions are considered,
which leads to the name of a (s, a)-rectangularity. Through robust value iteration the
optimal robust policy for this kind of uncertainty sets can be computed.
The next very important generalization according the rectangularity is mentioned by

Epstein and Schneider [2003] and further analyzed by Wiesemann et al. [2013]. In this
case a row-wise or s-rectangular uncertainty set is mentioned. In this generalization
just one dimension of the rectangularity is taken into account. Therefore, the transition
probabilities are unrelated to the uncertainty sets and therefore just corresponding to
different states leading to:

P = ×s∈SPs where Ps ⊆ R
|S |× |A|
+ (3.2)

Wiesemann et al. [2013] shows in their work that with this assumption an optimal robust
policy can be computed. In this case the policy has not to be deterministic in contrast
to the previous defined rectangular uncertainty sets.
Concerning the performance using RMDPs, these approaches lead to very con-

servative behaviours of the agent. Xu and Mannor [2007] had a deeper look into
the trade-off between performance and robustness using different MDPs. As a re-
sult of this work, the research on RMDPs is ongoing and different approaches took
place. Described by Mannor et al. [2016] the extension to k−rectangularity, a two-
dimensional rectangularity, which gives a way to solve RMDPs more efficiently. Also,
Delage andMannor [2010] created a less conservative approach through the extension
of the worst-case expected objective. Performing a percentile optimization according
to this objective, with regard to the uncertainties in transition kernel and rewards is
the method described in the research. Since the transition probabilities are not inde-
pendent of different states, the cross-correlation enables this approach. Performing
state of the art reinforcement learning algorithms has also been investigated in several
other researches with RMDPs like [Goyal and Grand-Clément, 2018], [Tamar et al.,
2013], [Lim and Autef, 2019], [Petrik and Russel, 2019],[Behzadian et al., 2019] and
[Lim et al., 2013].
During the first researches usually just smaller action and state spaces can be

handled, when modeling a problem with RMDPs. Therefore, Tamar et al. [2013] con-
sidered taking linear function approximation in the reinforcement learning algorithms
into account. In this research it is assumed that Q̃π(s, a) = φ(s, a)Tw, where w is a
parameter vector and φ(s, a) stands for the state action feature. With this expression
a greedy policy π(s) at state s and a vector w can be computed with respect to the
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approximation by

π∗w(s) = arg max
r

φ(s, a)Tw (3.3)

In this equation let Φ∗w denote a matrix with φ∗w(s) in its rows with φ∗w(s) = φ(s, π∗w(s))
with respect to a d-weighted Euclidean norm. Note, that the additional assumption
d ∈ R is positive has to hold.
Through the usage of the policy optimization step, this approach is the first approach

to handle large scale RMDPs with an RL algorithm. The following examples of trading
issues show the usefulness of the approach and demonstrates results that handles
risk-awareness as well as mitigation of model miss specification under uncertainties.
Also, the first approach to scale up RMDPs with linear function approximation is given
through this research.

Lim et al. [2013] made an approach applying reinforcement learning in finite hori-
zon problems and using total rewards as performance measures. In the paper Lim
and Autef [2019] considered the so-called course of dimensionality and also scaled
up the RL on RMDPs. Due to the fact that in usual function approximation models
mismatch and parameter uncertainties can be amplified, the researches focused on
kernel-based function approximation for RMDPs. Kernel averages are used for two
different purposes: First to approximate the reward function shown as r̂(s, a) or the
transition function is shown asp̂(s, a) and secondly, to approximate a value function.
The aim is to use RL in continuous action spaces and to handle with this objective also
all uncertainties of the RMDP.

The starting point for the algorithms based on the kernel averager theory is therefore
a modified robust Bellman operator for all abstract states j ∈ {1...m}:

(T̃w)( j) := max
π∈A|S |

min
i∈M̂(j)

r̂(i, π(i)) + γ(p̂(i, π(i)),Φw) (3.4)

In this equation the value v is approximated by Φw and this corresponds to a feature
vector.

To proof, the performance in the experiments a Gaussian kernel is used in this pa-
per. Described are three different approaches, all with modelled uncertainties in form
of varying systems and for example, additional noise to model the environments in
RMDPs: The first one is called Puddle World. In this approach, the agent has to find a
trajectory to get to the target. The second one is called Acrobot environment, which is
a two-link robot. The agent has to learn to swing its tip above a given high in order to
earn rewards. And the last one is called double pole balancing where a two-link robot
is initialized and has to stay upwards like an inverted pendulum. The result of the re-
search is that the robust approach on kernel-based reinforcement learning outperforms
the non-robust approach in the described cases.

Since not only learning algorithms are important to handle RMDPs, also defining the
ambiguity sets of the systems is an important part of the research, where Behzadian
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et al. [2019] described a new method. In this paper, high-confidence sampling bounds
for different ambiguity sets are given. It is also described how to compute weights
from rough value functions. The whole research focuses on finite horizon RMDPs. In
contrast to the s, a−rectangularity described earlier, this research wants to consider
an ambiguity set to maximize the guaranteed return for a confidence level of 1 − δ.
Therefore, the uncertainty is bounded to a smaller amount of states. With further op-
timization of the norm weights, the performance improvement is achieved.
In different experiments like River Swim and CartPole the concept is tested with dif-

ferent RMDPs. The result in all of the environments is that, if the ambiguity set is within
the confidence interval, with optimized weights outperforms the common approach of
uniform ambiguity sets significantly.
In literature solving RMDPs with deep reinforcement learning has only been investi-

gated so far in the course of a master thesis of Bjarre [2019] which is explained in Sec-
tion 3.3. In further researches with respect to robustness in simulation environments,
to the best of my knowledge, no one used deep learning algorithms in combination
with RMDPs to improve robustness of reinforcement learning problems.

3.2 Robustness in Deep Reinforcement Learning

Besides RMDPs, robustness in deep reinforcement learning is a very frequent re-
search topic. As one of the first researches Morimoto and Doya [2005] addressed
this topic in a more general way. Afterwards a lot of different approaches have been
investigated in the research, starting from changing system parameters during train-
ing ([Mankowitz et al., 2018] or [Hiraoka et al., 2019]) over adding noise to the given
system ([Wang et al., 2019]) up to hierarchical reinforcement learning approaches to
gain more robustness ([Kulkarni et al., 2016] and [McGovern and Barto, 2001]). Also
new distributional deep reinforcement learning algorithms to handle more different and
more complex cases ([Bellemare et al., 2017], [Smirnova et al., 2019] and [Bellemare
et al., 2019]) took place in the research. Furthermore other papers like [Derman et al.,
2018], [Castro et al., 2012], [Hausknecht and Stone, 2015], [Venkataraman and Seiler,
2019], [Sharma and Kitani, 2018], [Tessler et al., 2019] and [Kober et al., 2012] handle
this topic. A few of these concepts are described in the following chapter.

Varying Systems

A very common approach to improve the robustness of reinforcement learning ap-
proaches concerning varying system dynamics is to change these dynamics during
the learning process. They try to scale up approximate value iterations by options is
already done by Mann and Mannor [2014]. By adding some changing components
during the learning process, better performances over different system settings are
achieved. So far several different approaches have been investigated in this direc-
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tion. There are several possible methods when changing system dynamics during
training. One possibility is to define particular skills, which means behaviours that can
be learned by the agent, as in [Mankowitz et al., 2016], [Konidaris and Barto, 2009],
[Takacs et al., 2002], [Stulp et al., 2013] and [Da Silva et al., 2012]. Another possibility
is to introduce options, which means to introduce different predefined system param-
eters in the learning process and afterwards test the performance according to these
options against the standard environment [Mankowitz et al., 2018] or [Hiraoka et al.,
2019].

In the research of Mankowitz et al. [2018] an algorithm which takes the nominal
transition behaviour in this case P̂µ as well as a behaviour with uncertainties Pµ into
account, was provided. By creating trajectories with P̂µ and the option policy πθ the
critic of the action-critic method, implemented as described by Tamar et al. [2013] is
used in this case. The actor works like a usual deep Q-network (DQN) as described
in the paper of Mnih et al. [2013].

To proof this concept it has been tested in two different environments: Acrobot and
CartPole. In the CartPole environment the options are linear interpolated values in the
range from 0.5 m to 5 m. In the Acrobot environment the weights of the arm-links, that
have to swing up, is modelled in different options from 1 kg to 5.5 kg. To prove the
performance an agent is trained with a common DQN and another agent is trained
with this robust DQN approach.
After having trained both of the agents, the evaluation takes place with the agent
handling all prior specified different system dynamics. The agent trained with the so-
called robust option DQN outperforms the usual DQN already after the smallest tested
change in system dynamics in both environments. The results clearly show that this
approach is more robust than a usual approach, however, the research does not ad-
dress how the performance is developing when taking the agent into an environment
outside the options it has learned. Evaluating the agent and therefore the policy over
different system dynamics after training is a common approach to discuss robustness.

Noisy Systems

In the real world, the goal for an RL agent is to interact with its environment based
on the information it gets from the environment. In this part, another very common
use case in RL in order to improve robustness is described. The data recording of the
surroundings in real-world scenarios is usually made with sensor data. In contrast to
the simulation data, his data is usually somehow noisy. To learn from this data, or to
act on this data is a lot more challenging than just working in simulation with perfect
data. Therefore, the noise has an important role in the domain of machine learning,
where many studies take care of it during the whole training process as described by
[Wang et al., 2020] and [Zheng et al., 2014]. Noise can also be used as a metric for
robustness in order to benchmark the robustness by adding noise while testing the
agent as described in Wang et al. [2019].
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While studies like Scott [2015] made experiences in handling noise data in the learn-
ing process another option made by Wang et al. [2020] is to process the noisy data in
a different way. Often in RL problems, the reward and the observations that the agent
gets from its environment in real-time applications is noisy. Therefore, in this research,
the main goal was to learn with perturbed rewards and gain more robustness in this
way. The idea is to get a noisy reward r̃(s, a) for every state-action pair from the en-
vironment. By calculating a confusion matrix C based on this noise reward and the
mean reward r a corrected reward R̂ is calculated as follows:

R̂ = (1 − η) · R + η · C−1R, (3.5)

where R is the matrix of noisy rewards from the environment. The linear combination
in the term with η ∈ [0, 1] has a role for the trade-off between bias and variance tuning.
By handling this reward noise with this approach the robustness improved indepen-

dently from the used deep learning algorithm. Different environments like Pendulum,
CartPole or Atari were tested, in each of them, discrete as well as continuous action
spaces, could be proven.

As already mentioned noise can also be taken to benchmark the robustness of an
agent in an environment as described by Wang et al. [2019]. In this case a lot of
classic control environments such as Acrobot, CartPole and Hopper are used and
modified as benchmark environments for algorithms. Noise is added on observations
(σo ∈ [0.01, 0.1]) as well as on actions (σa ∈ [0.1, 0.3]). The noise was modeled as
white noise, i.e. η ∼ N(0, σ).

By adding this noise with a small standard deviation almost all of the tested standard
algorithms lost significant performance in the benchmark environments. Therefore,
adding noise to benchmark the robustness of algorithms is a good way to also make
a link to real-world applications where noisy data always takes place.

Hierarchical Reinforcement Learning

While the system dynamics of a learning system are changing in the real world, the
agent often loses a lot of its performance. To producemore robustness oftenmore than
just one MDP is used during the learning process. A very promising approach by using
an ensemble of source domains for training is described by Rajeswaran et al. [2017].
The training in different source domains is a kind of adversarial learning to gain more
robustness. Optimization, in this case, is performed by a batch policy optimization.
This optimization according to the conditional value at risk is described by Tamar et al.
[2015]. This approach is tested with the Hopper as described in Chapter 4 and Half
Cheetah according to Wawrzyński [2009]. These results compared to the standard
algorithm TRPO had significant higher robustness against changing system dynamics.
Another way to handle changing systems is with a hierarchical behaviour is de-

scribed in [Kulkarni et al., 2016] and [McGovern and Barto, 2001]. In these cases
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often more different learning algorithms are trained. The aim is to perform with the
best performance in every system independently. It is building a universal policy to
handle all different environments. Therefore, the agents have to consider the system
and which agent can bring the best performance in the underlying environment. The
online system identification φ is also investigated by Yu et al. [2017]. In this research,
the training process of the model can be formulated as a supervised learning problem
with the history roll out H and the model parameter µ as output, which leads to:

θ∗ = min
θ

∑
(Hi,µi )⊆B

‖ φθ(Hi) − µi, ‖
2 (3.6)

where θ describes the parameter of the neural net in this case. This approach can be
used to predict a system and therefore optimizes the reward generated by an agent.
These researches have led to more robust and especially more flexible solutions, con-
cerning changing tasks or environments.

Distributional Reinforcement Learning

Another way to improve robustness, often used in games, to cover many games within
one algorithm is the so-called distributional reinforcement learning considered by [Lyle
et al., 2019], [Bellemare et al., 2017] and [Bellemare et al., 2019]. The idea behind
distributional RL is to model not just a single value function, but a distribution of values
at every state. The optimal Bellman equation in this case is:

TQ(s, a) := E
[
R(s, a)

]
+ γEP

[
max
a′∈A

Q(s′, a′)
]
. (3.7)

Based on this equation a distributional policy optimization can be performed. The
original idea with a Wasserstein metric did not work for the optimization, therefore this
part is performed with a usual KL-Divergence. The main part of the algorithm works
based on tabular methods and gets the best performance by working with a distribution
of over 51 bins (called: C51).
The algorithm on distributional approximate learning outperforms other algorithms

like DQN tested on several games. The performance of this approach is very good
in many different environments, which differs from other approaches where big dif-
ferences occur. Also having one algorithm in many environments can be a scale of
robustness where these algorithms perform very good.

In the original implementation, the C51 algorithm is mainly based on tabular meth-
ods. Therefore, further research like Bellemare et al. [2019] extend this approach
with linear function approximations (called: S51). The results of this approach are not
always better than the original approach but has similar performances over several
different environments.
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3.3 Transfer Learning

One of the biggest challenges in machine learning is to perform a transfer learning
where Taylor and Stone [2009] made important researches. Transfer learning means
to learn solving a problem and applying it to a different but related problem. Or to start
training in a domain and transfer it for further training into another domain, such that
the agent already has prior knowledge. This can result in a better overall performance.
Defining this problem means an agent has to learn in its source domain DS , where
D = {S, P(S)} and the source learning task Ts with a state-space Y and a predictive
function f (·) formulated as T = {Y, f (·)}. Defining the transfer learning problem
means either the domain or the learning tasks have to differ from source to target as
Lin and Jung [2017] described:

DS , DT or TS , TT . (3.8)

The approach of transfer learning is also shown in Figure 3.1. Themain goal of transfer

Figure 3.1: Schematic illustration of Transfer learning is shown in this figure according to Bjarre
[2019]. The left side describes the training behaviour and the rising performance of the agent,
while the right side indicates the deployment of the learned behaviour with almost constant
performance.

learning is to perform the learning process in simulation and then fulfil the task in a real-
world environment described in the next section.
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3.3.1 Sim-to-Real

To achieve a good performance in the real world, while training just on simulated data,
is a big challenge because usually in the simulation the whole system is perfectly de-
fined without any uncertainties or noise. Transferring the policy of an agent from sim-
ulation to real world is called a sim-to-real transfer. These disturbances on the system
can have a big impact on the performance and many research studies try to solve
these problems as seen in the previous sections. In real-world approaches the system
can slightly be different based on manufacturing tolerances or some forces that are
not considered in the simulation. The problem of differences between simulation and
the real world is called the reality gap in literature as described by Jakobi et al. [1995].
If joints have slightly more resistance in the real world than in the simulation, this can
already can have a big impact on the performance of the agent. Another problem of
the real-world application is noisy data. The sensors provide a state of the agent in
the real world, but according to the training, the agent is not aware of noisy data after
the training in simulation in perfect simulated conditions. Besides very various ap-
proaches to improve robustness of reinforcement learning some researchers as [Peng
et al., 2018], [Sadeghi and Levine, 2017], [Andrychowicz et al., 2020], [Tan et al., 2018]
and [Bjarre, 2019] deal with the problem. If the reality gap can be closed and an agent
can be trained accurate just through simulation training, the development of robotics
can be accelerated. Another motivation to perform an accurate sim-to-real transfer is,
that the research gets a lot cheaper while just training in simulation. A lot of hardware
dependencies and extra effort to build up the hardware for every training setup is not
necessary anymore.

Domain Randomization

A very common approach performing transfer learning into the real world is called
domain randomization, which is introduced by Tobin et al. [2017]. The purpose of
domain randomization is to bring enough variability into the simulation data to cover
the uncertainties that appear in the real world. Therefore very different aspects are
randomized in the simulated data. As example domain randomization can be used in
the object detection. Here various characteristics like varying number and shape of
objects, position, texture, on the objects as well as random noise in the pictures and
more sensor specific uncertainties can be randomized and then used for the training
process. Randomization in general is very specific to the problem that is covered with
the approach. It also can be performed by randomizing the system dynamics of a
robot in the simulation. By changing the weights, lengths and other important system
parameters for the robot during training, the domain randomization often is fulfilled as
seen in [Peng et al., 2018]. Another variation of different randomization methods is the
times when randomization takes place. In case of an object detector in every image,
that is created for training, the object differs. In robot applications, the randomization
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can take place in every step the robot has to perform as described by Andrychowicz
et al. [2020] as well as after every episode that the agent has performed.

Looking at this approach, training a robot in a simulation and transfer the learned
behaviour into a real world problem, a big issue is to simulate an accurate environment.
Expecting the real world transition function as p∗(st+1 |st, at ) this should be close to the
simulation transition function.

‖ p̂(st+1 |st, at ) − p∗(st+1 |st, at )‖ ≤ E (3.9)

For the randomization additionally a set of dynamics parameters µ is introduced that
parametrize the dynamics of the simulation. The training process is performed with
changing these parameters and in the same time maximize the expected return across
several dynamic models ρµ leads to:

Eµ∼ρµ

[
Eτ∼p(τ |π,µ)

[T−1∑
t=0

r(st, at )
] ]

(3.10)

The policy adapts to the variability in the dynamics and therefore the resulting policy
should perform better, because it is generalizing the real world dynamics. To achieve
this in practice often physic engines and simulators like PyBullet or MuJoCo are used.
Andrychowicz et al. [2020] as well as Peng et al. [2018] also used the MuJoCo set

up to perform the simulation. They did not only randomize the system parameters
of the robot but also added noise to the observations to get the simulation closer to
the real-world setup. Both research papers observe the situation with cameras and
therefore the robot can fulfil the task through this observation. In both cases, the result
of the research was a working robot with good performance in the real world that just
has been trained in simulations.

Closed loop control

Usually, reinforcement learning agents realize an open-loop control on the robot, which
means that there is no feedback and it is typically realized with torque control. Since
this approach is very sensitive against noise, in the research of Peng et al. [2018] a
closed-loop control is used for the sim-to-real transfer. By using a PID-controller that
controls the robot, instead of direct control, the agent more robustness against noise
can be achieved. In the closed-loop control, the agent does not output torques to
control the robot but instead gives the target position to the controller. Therefore the
inverse kinematics of the system has to be calculated. The whole controlling process,
therefore, gets more complicated and computationally expensive. Nevertheless, this
approach as used in Peng et al. [2018] lead to the benchmark performance in sim-to-
real approaches.
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Robust Markov Decision Processes

In the research Robust Reinforcement Learning for Quadcopter Control Bjarre [2019]
fulfills a transfer learning based on modelling an RMDP like described in Chapter 2.3.
This approach of using a PPO algorithm and apply it on a RMDP is very similar to
the approach used in this master thesis described in Chapter 4. To the best of my
knowledge, this is the first attempt applying deep reinforcement learning on RMDPs in
case of manipulation and locomotion tasks in literature.

The aim of this research is to train a quadcopter based on computer simulation and
then transfer the policy to the real world. By making some assumptions to simplify the
system it makes it possible to model it within an RMDP. The aim of this research, to
model the problem as RMDP, is to make the system a deterministic system in con-
tinuous action space. The learning process is performed with a variation of the PPO
algorithm. The uncertainties are modelled with varying system parameters that are im-
plemented with a linear interpolation within a value range of the parameters. By using
this approach a transfer to the real world is successful and also concerning robustness
testing with different agents in their environments this approach achieved acceptable
results as described in Bjarre [2019].

Other Approaches

Another approach to model an environment close to the real world is described by
Sadeghi and Levine [2017], where a CAD-model of the real world is taken for the
training. Building a whole hallway as a model made it possible to fly through this
hallway without training it in the real world. In this case for collision avoidance, a deep
reinforcement learning algorithm is used. Although this approach is working without a
collision this approach is very complex and computational costly to do with different or
larger environments. In addition to that the agent, in this case, a quadcopter, is just
able to move very slowly through the hallway because the camera data it gets in the
real world had noise, which was not considered in the training process.

Also, the described method of learning an environment as described in Chapter
3.2 is used to perform a sim-to-real approach by Golemo et al. [2018]. In this case,
a recurrent neural net is trained on the different trajectories in a simulated and in a
real-world application. Afterwards, this neural net is used to augment the simulator to
perform a training close to the real-world scenario. Also, this approach led to good
performances, but in contrast to the other approaches knowledge about the real world
is necessary.

3.3.2 Other Transfer Learning

Not just bringing an agent’s performance from simulation to real-world as described in
the previous section, but also performingmore tasks or transfer between different tasks
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as described in the overview of Taylor and Stone [2009] is part of transfer learning.
Therefore, already a different reward function of the same task in the same environment
can be a form of transfer learning. This approaches of transfer learning are done
already a lot earlier than the sim-to-real tasks. Selfridge et al. [1985] for example
already changed the systems to perform a form of transfer learning.

Not just transferring the agent’s policy to another task but also performing the same
task with the same reward function transferred to a slightly different environment is
called transfer learning. Considering the transfer from just simple theoretical dynamics
implementation to a more complex physics simulation like PyBullet can be a method
of transfer learning. The physic simulation is the next step closer to reality because
parameters like friction can be considered. Also, the dynamics and control are often
fulfilled in another way in a different implementation of the environment. This step
represents the first step to close the reality gap from simple simulation to the real world.
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4 Methods

This chapter is dedicated to the methods, that are applied in this thesis. At first, the
state of the art algorithm proximal policy optimization (PPO) is introduced and trans-
formed to the RMDP approach called PPO-RMDP in this thesis. At the end of this
chapter, the metrics used for evaluation are described and discussed.

4.1 PPO on RMDPs

In this thesis, the PPO algorithm is implemented and applied to RMDPs. The PPO
is working in discrete and continuous action spaces. Modern policy gradient methods
usually make use of local approximations of the policy performance around µ. This
leads to the generalized objective with ΦT being a generalized estimator as described
by Schulman et al. [2015]

J(πθ) = Est∼ρπ,at∼µ[
πθ
µ
ΦT ] (4.1)

assuming that the state distribution ρµ is close to the state distribution ρπθ of the policy
πθ . To hold the assumption it has to be ensured that the policy update is not excessively
large. Therefore in their work, Schulman et al. [2017] clipped the objective function into
a penalized policy beyond the probability ratio λ = πθ

µ , to work in a similar behaviour
than Kurutach et al. [2018]. As a result, the new PPO objective function can be written
as

Jclip(πθ) = Est∼ρπ,at∼µ

[
min

(
λ · Φ̂t, clip(λ, 1 − ε, 1 + ε) × Φ̂t

)]
(4.2)

with ε controlling the interval of the policy updates and the estimated advantage func-
tion Â = ΦT . Clipping in this equation means that the policy updates which differ
from λ = 1 are adjusted by limiting the change of the objective function to the interval
[1 − ε, 1 + ε]. The first term inside the min function is λ × Ât , which describes the
unconstrained objective function of 4.1. The other part inside the minimization is the
clipping term (λ, 1−ε, 1+ε)× Ât which forces the objective function to be in the defined
interval of ε . Through the minimum operator, the update chooses the lower bound of
the two described terms. Therefore, the learning ratio λ is limited to at most λ = 1 + ε
for positive advantages and render the ratio to be at least λ = 1 − ε for negative ad-
vantages. An accurate estimation of the expended gradient just requires many clipped
terms. In Figure 4.1 the clipping is visualized for positive advantages with A > 0 as
well as for negative advantages with A < 0.
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Figure 4.1: In this figure a clipped loss function is plotted over λ according to Schulman et al.
[2017]. The red dots indicate the starting point for the optimization for positive advantages
(left) as well as for negative advantages (right). The dashed line indicates the upper limit of
the policy changes to prevent large changes.

To ensure the performance in order to compute variance-reduced advantage func-
tion estimators, a generalized advantage estimator (GAE) as described by Schulman
et al. [2016] is used. If the estimation of V is accurate to the true value function, at
every time step t the advantage function equals the TD residual term γVt = Ât with the
TD residual: δVt = rt +γV(st+1)−V(st ). Considering the TD residual over n-steps the
advantage can be determined as follows:

Ât = −V(st )rt + γrt+1 + · · · + γT−t+1 + γT−tV(sT )

=

n−1∑
k=0

γkδVt+k
(4.3)

Here the advantage function is taken over a whole trajectory similar to the TD-λmethod
as described by Sutton and Barto [2018]. In this case the single advantage functions
can be exponentially weighted by a factor λ. Further, taking the advantage functions
over all trajectories into account ÂGAE

t , it can be computed as follows in an infinite
horizon according to the Equation 4.3:

ÂGAE
t =

∞∑
k=0

(γλ)kδVt+k (4.4)

Similar to TD-λ methods the parameters γ and λ contribute a trade-off between vari-
ance and bias of the estimation. On the one hand factor γ reduces the variance but on
the other hand at the same time it causes a growing bias, in case the value function is
inaccurate. In practice it is common to normalize the advantage function by:

Ā =
(A − mean(A))

std(A)
. (4.5)

This equation holds over the entire training batch with A = ÂGAE
t in this case.
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The implementation of the PPO algorithm is shown in pseudo-code in Algorithm 1.
As a first step, the policy parameter πθ and an initial state-value estimation V̂w(s) of the
algorithm are initialized. Then, after K cycles of the policy optimization, the optimized
policy πθ is assigned to the behaviour policy µ. In every step i, D trajectories are
rolled out using policy µ for at most T time steps. Here the implementation differs from
the standard PPO. Taking the RMDPs and therefore the uncertainties into account,
the calculation of the values at each step is performed according to the robust Bellman
equation described in Chapter 2.29. To represent the uncertainties of the RMDP, each
step is sampled to cover a distribution over the system dynamics. Because the agent
always acts in deterministic environments, sampling the next step of the environment
and therefore predicting the next value is possible. As a result, a distribution of values
is given for each step in the system. Acting according to the robust Bellman operator
the lowest value is taken for the further approach. For each transition pair (st, at ) a
discounted reward-to-go of the current state is calculated. The next step of generating
new observations is fulfilled with the standard parameters. These parameters are used
because only the values have to be minimized according to the PPO-RMDP. After
having estimated the advantage function according to the method described in this
Chapter, the policy is updated according to the PPO objective with an ADAM optimizer.
Afterwards, the value function is fitted by using a regression on the mean squared error
via a gradient descent algorithm as described in Section 2.22. Based on different
environment and learning behaviours, the number of K differs as well as the steps
performed in each cycle.

PPO-DR

According to several sim-to-real approaches in further researches, a robust version of
the PPO algorithm is also used in this work. The robust variant is based on domain
randomization. The difference to the normal proximal policy optimization algorithm
is, that there the environment is implemented with uncertainties. In contrast to this
approach in the PPO-RMDP in this work, the steps of the environment are performed
in the standard environment. In the case of domain randomization, there is no fixed
environment and thus the steps through the episodes to roll out the trajectories are
performed with varying environments in every step. Therefore the randomization with
up to +/−20 % of all system parameters is done. Through this technique a lot of sim-
to-real approaches like [Peng et al., 2018] and [Andrychowicz et al., 2020] are realized.
This approach is ought to give more robustness against problems appearing in the real
world and is called the PPO-DR within this work.

Position Based PPO

Another option to improve the robustness besides the PPO-DR is to perform the PPO
algorithm in a position based control. In the standard PPO approach, the neural net-
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Algorithmus 1 : The implemented Proximal Policy Optimization algorithm on
RMDPs
initialization of µk with policy parameters θ0 and an initial value function
parameters v̂0

for k = 0, 1, 2, . . . do
sample trajectories |D| = {τi} with policy µk = θk at each step with:

vt,µ := min
(rt,Pt )∈Uπ

(rPt )

Compute rewards-to-go R̂t .
Compute advantage estimates Ât using A = ÂGAE

t based on the current
value function.

Update the policy by maximizing the PPO-Clip objective:

θk+1 = arg max
θ

1

|Dk |T

∑
τ∈Dk

T∑
t=0

min
( πθ(at |st )
µθk (at |st )

Aµθk (st, at ), g(ε, Aµθk (st, at ))
)

with a stochastic gradient ascent with Adam optimizer.
Fit the new value function pramaters with a gradien descent algorithm:

v̂k+1 = arg min
v̂

1

|Dk |T

∑
τ∈Dk

T∑
t=0

(
Vv̂(st ) − R̂t

)2
end
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work decides which action to use at the given state in order to get the best results.
Therefore, the actions can be seen as forces or torques directly acting at the robot. In
contrast to this approach, Peng et al. [2018] made the neural net give the algorithm a
target position instead of an action. After computing the position for the next step, a
controller, like for example a PID controller, controls the step of the robot. Therefore,
additionally, the inverse kinematics of the environment is needed. Performing this step
and therefore control the robot with a controller instead of the torque calculation and
controlling of the robot directly the torque based control is modified to a position based
control. The aim of this approach is to gain more robustness against noise because
the controller is not that sensitive against the fast changes.

This approach can be performed with the standard PPO as well as with the PPO-
RMDP. Therefore, both possibilities and the impact is tested in this research.

4.2 Metrics

Robustness is a very big topic in the whole field of machine learning. Big questions
are in this case what is robustness and how can it be measured in practice. Due to the
fact that there is no common best practice to handle robustness in general, different
aspects of robustness are used for the evaluation of the algorithm in this work. By
taking different metrics, described in this section, more different aspects of robustness
are covered and therefore a more complete view on robustness is provided. In general
different influences, such as changing system parameters, adding noise in the action-
and observation space and changing the whole environment, as shown in Figure 4.2
are possible parameters in an RL environment to test the robustness.

4.2.1 Dynamic System Parameters

One main aspect of robustness is that the agent should also provide good results even
when the system dynamics, like for example the system parameters such as lengths
and weights, are different while performing the same task. This metric is motivated to
compensate for manufacturing tolerances or slightly different real systems based on
inaccuracy or misspecification. Taking the approach of changing system parameters
is also done in [Mankowitz et al., 2018]. As suggested in Mankowitz et al. [2018] re-
search, in this thesis also the system parameters are changed during the tests of the
learned policy. Different variations of lengths and weights, like the so-called options
in the former research, are used for the performance evaluation. In two dimensional
problems, the performance can be visualized with heat maps to show the chosen pa-
rameters and the resulting reward as shown in Figure 4.3
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Figure 4.2: This figure shows the normal model of an RL agent acting with its environment.
Highlighted in red are the influences, such as changing system parameter, noise in action- and
observation space and changing the whole environment, are shown.
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Figure 4.3: In this figure a heat map for the performance evaluation of CartPole trained with a
PPO-RMDP. The system uncertainty, in this case, is a uniform distribuiton with +/−10%. On
the x-axis the different weights, and on the y-axis, the different lengths are shown. The bar on
the right describes the colours that are used to indicate the reward-score.
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Figure 4.4: In this figure a heat map for the performance evaluation of standard PPO in Cart-
Pole is shown. On the x-axis the different noises on the observations, and on the y-axis the
different noises on the actions are shown. The bar on the right describes the colors that are
used to indicate the reward-score.

4.2.2 Noise

The evaluation of how the performance changes when noise is observed in the sys-
tem, is another parameter that helps to evaluate the robustness of the algorithm. This
method is motivated by the use of reinforcement learning agents in real-world environ-
ments. Adding noise to the agent performing its learned policy is as a performance
metric is first done byWang et al. [2019]. With this approach robustness of an algorithm
against noise can be evaluated.

The performance can be evaluated by analyzing the averaged reward over the differ-
ent amplitudes of noise. According to the metric based on changing system parame-
ters, the results also can be visualized in form of a heat map where one axis describes
the noise on the observations while the other axis describes the noise on the action
as seen in Figure 4.4. Therefore the noise can be applied to the action as well as on
the state space with this method.

4.2.3 Metrics of Transfer Learning

Another briefly discussed question concerning transfer learning is how to measure the
success of the transfer. Transferring a policy of an agent will usually not lead to the
same reward as in the original environment. All in all, if the agent fulfils the task the
transfer learning counts as successful. To evaluate the quality of the transfer there are
several metrics described by Taylor and Stone [2009] and Da Silva and Costa [2019],
some of them are illustrated in Figure 4.5.

The most common metric is the total reward or the total average reward over varying
system dynamics or with added noise if the transfer should be considered under a ro-
bustness perspective. This implies the total reward the agent gains by acting according
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Figure 4.5: Different metrics are possible to evaluate transfer learning according to [Taylor and
Stone, 2009]. In this figure the Jumpstart, Time to Threshold and Asymptotic Performance are
shown in the example. Also the total reward is shown by the area under the learning curve.

to the learned policy in the environment. The difference between the total rewards of
the agent in different domains is then called the transfer ratio. Since in this work we do
not have a focus on the time until convergence, the transfer ratio is calculated based
on the comparison of performance with, shown as PwT , and without transfer, shown
as PwoT , in the environment.

T =
PwoT
PwT

(4.6)

During training also the maximum asymptotic performance can be used as a metric to
show how good the agent is able to act in the environment.
According to the timing and speed of learning of an agent, there are several more

metrics to use. In the case of transfer learning, it is also possible, that the learning
process of the agent goes on after transferring it to the new environment. The initial
performance in the new environment should be better than the performance of an
agent without prior training or knowledge about the RL problem. This advantage in
the learning behaviour is called Jumpstart and is also shown in Figure 4.5. Another
metric mentioned is the time to cross a predefined performance level. The performance
level often represents a minimal needed performance to solve the task of the agent in
the environment. This is also an important indicator of how good the transfer worked
because in some applications also the time and not just the overall performance is
important to evaluate the performance of the learning process.
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Due to the fact that time is not always relevant to evaluate the learning progress,
but the overall reward is often the most significant indicator, the total average reward
is taken as a metric to evaluate the learning behaviour without performing any further
learning iterations in the target domain in this research.

Transferability

Another metric concerning the robustness of a reinforcement learning algorithm is the
problem described in Section 3.3. Therefore, the training is done in a simpler imple-
mentation of the environment based on dynamics and the derivations in PyTorch, as
described in 5.1. The transfer is then performed to an implementation that is closer
to the real world in PyBullet. Transferring the behaviour of the agent into the physic
simulator environment the task is made more complex due to the more complex envi-
ronment. Because transfer learning is one of the biggest challenges in reinforcement
learning and often leads to problems, this approach is a useful way to evaluate the
robustness of an algorithm. Part of the evaluation of transfer learning is the normal
performance of the agent in the after the transfer as well as the combination with noise
and system parameter changes. Not just the average reward but also the transfer ra-
tio can be taken into account to evaluate and visualize the result. In case of transfer
learning, the PPO-DR is the benchmark according to previously performed researches
as mentioned in Chapter 3.3. The evaluation of the transfer learning is made with the
PPO-DR, the new PPO-RMDP and also the standard PPO.
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In this chapter, the different experiments that are done in order to analyze the robust-
ness of the different robust PPO variations concerning different evaluation metrics are
described. First, the different environments are introduced. Afterward a more detailed
analysis of the experiments is conducted: In this thesis, three different main experi-
ments are performed based on the metrics mentioned in Section 4.2. Then, slightly
different versions of RMDPs are considered and the impact on the robustness is ana-
lyzed. All experiments are performed with the PPO-RMDP, the robust PPO based on
domain randomization (PPO-DR) and the standard PPO.

5.1 Environments

The previously described algorithms are used to train an agent with the aim of solving
a reinforcement learning problem. Therefore, the agent is set in an environment and
learns how to fulfill the task while interacting and getting rewards. Within this thesis,
several different environments are taken into account to make an analysis concerning
the robustness of the algorithms. Also, an important point concerning the environ-
ments is, that the system dynamics are available and therefore the behaviour of the
system is deterministic. For this reason modeling, the problem with an RMDP can be
realized by implementing the uncertainties as distributions over system dynamics. In
this research two types are used to implement the environments.

First, the environments are realized through ordinary differential equations (ODE)
implemented in PyTorch, an open-source machine learning framework that works with
Python. In this case, the environment dynamics are implemented based on the differ-
ential equations of the systems and their derivations.

The second way to implement the environment is by using PyBullet. This is an
open-source physics simulator. Simulation of the RL problems in the physics simula-
tion is the first step to close the reality gap. The preparation of the robot as well as the
consideration of all physical parameters that occur in the system such as friction and
other parameters make it more complex. Furthermore, this implementation method
distinguishes itself from the other one through different control mechanisms of the en-
vironments, although the task, observations, states and actions are defined the same
way in both types. Two different environment implementations are used to perform
transfer learning as metric described later in this Chapter (4.2.3). Additionally, all en-
vironments have a maximum number of steps where the rewards of a whole trajectory
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Figure 5.1: In this figure all different environments used for the robustness evaluation during
this thesis are shown which are: In the upper left corner Hopper, below it CartPole, in the upper
right corner Acrobot and in the bottom right corner Reacher.

are generated. In the following section, the used environments are described based
on the researches in which they were published. Also, screenshots of all environments
are shown in Figure 5.1

CartPole

The so-called CartPole problem was first described by Barto et al. [1983]. It is also
known as an inverted pendulum, a pendulum with a center of gravity above its pivot
point. The goal is to keep the pole in a balanced position, by applying forces to the
pivot point (cart). For each time step, the pole is in a position upright and not falling
down too fast, it gets a reward of +1. The episode ends when the pole gets out of the
range of +/−15 degrees around the center and when the cart moves more than 2.4
units away from the center. Each episode is stopped after 200 time steps, therefore the
maximum reward through one episode is 200. The system holds balance by applying
a force to the cart in a range of -1 to 1. According to this force, the CartPole problem
is distinguished into two versions: the discrete and the continuous action space. The
RMDP realization, in this case, is performed by making distributions over the system
dynamics: pole length, pole mass, cart mass. Since the cart mass, based on the
first experiments, has no impact on the robustness behaviour, the uncertainties are
modelled with the remaining two parameters.
For this environment, there is a derivation as well as a physic simulation implemen-

tation. Both, the discrete and the continuous version are available. Therefore, the
evaluation can be performed on all presented metrics in Chapter 4.2.
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Hopper

The next environment that is used for the experiments is called Hopper and is imple-
mented according to [Erez et al., 2011]. In this environment, the robot looks like a leg
and the goal is to move forward as fast as possible. It is moving in a two-dimensional
world, therefore it just can go forwards and backward. The leg robot is built up of three
main parts: the foot, the lower leg and the upper leg with joints between the parts.
By learning to move forward the robot gains reward in this environment. The robot
is moving while hopping in one direction. This behaviour is realized through different
torques at the joints of the robot leg. The aim is to move the robot’s center of mass with
a horizontal velocity while keeping its vertical position around 1. The farther the robot
gets the more reward it gains. The episode is limited to 1000 time steps. Actions are
modelled in continuous action space. Actions are modeled in the way that they can
act on every joint: the foot joint, the thigh joint and the leg joint. Therefore, the action
is a three-dimensional value. Modelling uncertainties in this deterministic environment
is performed by building uncertainties in the properties of the different parts.

Reacher

The Reacher environment is implemented according to [Li and Todorov, 2004]. It is a
two-segmented robot arm that is fixed on one end. The goal of the robot arm, which
moves in a two-dimensional plane, is to reach a randomly generated target within the
range of the robot. The robot is fixed on a horizontal plane, therefore gravity does
not have an impact on the robot’s behaviour. By reaching the goal with the tip of
the robot arm, the reward increases. Episodes are limited to 150 time steps in this
implementation. The robot is controlled through the forces at the joints and therefore
has an action dimension of 2 in a continuous action space between -1 and 1. The
control takes place as a direct torque control in the torque based approach. To create
uncertainties this environment was modelled as an RMDP, in which the lengths of the
two parts as well as the mass was changing. Transfer learning is also enabled in this
environment as well as the comparison of torque based and postition based control.

Acrobot

The next environment, used for the experiments in this thesis, is the Acrobot envi-
ronment. It was first presented in [Sutton, 1996], but is implemented according to
[Geramifard et al., 2015]. Similar to the Reacher environment the Acrobot also is a
two-segment robot arm with two joints. In contrast to the other environment, the arm is
not fixed on a horizontal plane and therefore initially hangs down at the starting point
due to gravity. The goal is to swing up the end of the lower part to a given height.
Crossing this height the agent earns a positive reward otherwise it gets a negative re-
ward. The perfect behaviour, in this case, is to swing the arm up and balance it above
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the target like an inverted double pendulum. Episodes in this environment are limited
to a maximum of 500 steps per episode. The action space is also continuous in this
deterministic environment. Similar to all the other environments again the uncertainties
of the RMDP are modelled through distributions over system parameters.

5.2 Algorithm Analysis

Before deducting the robustness evaluation of the experiments in the various environ-
ments, different approaches have been tried to achieve the best performance learning
with deep RL in RMDPs. The aim is to follow the most promising approach according
to RMDPs in deep RL. All of these methods are initially tested with the CartPole envi-
ronment, due to the fact that this is the fastest way in terms of computational costs. If
these approaches give promising results, further experiments will be performed on the
algorithms. Some approaches are combining different approaches. The algorithms in
detail and how the performance is evaluated are described in the following section.

5.2.1 Worst Case Expectations

The classical idea of RL with RMDPs is to consider the transition uncertainties in the
case to minimize the expected value at each state in each step of the algorithm. There-
fore, the RMDP is acting with respect to the worst-case expected scenario. Afterwards,
the next step within the standard system dynamics of the environment is performed and
the action, as well as the observation, are saved in the replay buffer. In the following
step, the variation of the previously described PPO-RMDP is implemented. Instead
of taking the standard observation and action for the replay buffer, the corresponding
worst-case observation and action are saved in the buffer. Therefore, the algorithm not
just acts with respect to the worst-case but acting on the worst-case scenario. Using
this approach and always acting on the worst possible transition can lead to increased
robustness than the PPO-RMDP achieves. Due to the fact that this approach has
a high probability of acting in a very conservative way. This means the robustness
of the algorithm is good but the overall performance and the peak performances is
much worse compared to the other approaches. The evaluation of this approach is
performed via the system parameter change and is evaluated with respect to the total
average score.

5.2.2 Domain Randomization

The actual state of the art approach for transfer learning in RL is domain randomization
as for example Peng et al. [2018] used for their sim-to-real transfer. The idea is to
combine the approach of learning in RMDPs and also perform domain randomization
in the same algorithm. After minimizing the value over the uncertainty model of the
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system, in the PPO-RMDP the nominal environment is taken to perform the next step
in the environment. In contrast to this behaviour, a randomly chosen system within
previously defined bounds of the uncertainties from the RMDP performs the next step
and therefore performs domain randomization. This combines the idea of the training
on RMPDs and the PPO-DR. Evaluation is done with the changing system parameters
metric in the CartPole environment.

5.2.3 Impact of Distribution Type

The uncertainties of the RMDP can be modelled in different ways. Because of that
point, one leading question, in the beginning, was: how does the type and spread of
distribution influence the result towards robustness. Therefore, different types of dis-
tributions (e.g. linear, Gaussian and logarithmic distributions) have been tested. All of
those with different spreads starting from +/−5 % up to +/−40 % tolerances. All of the
distributions are modelled with a distribution dimension of 100. In this case, the uncer-
tainty of the RMDP is represented in 100 bins for each system parameter. Evaluating
this against the parameter change metric of the environment lead to different average
scores. Taking these scores and also the heat maps for evaluation the influence of
the type and the spread of the distribution concerning robustness and performance is
done.

5.3 Robustness Analysis

In the following section, different methods to evaluate the robustness of the RL agent
are described.

Robustness Against Changing Parameters

As a first experiment, the robustness against changing system dynamics is tested.
Therefore, all masses and link lengths of the robot have to be changed. An array of
different lengths with following values [0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20] is defined.
After training the algorithm according to one of the PPO algorithms the environment
gets no uncertainties but is defined through different parameters to evaluate the perfor-
mance of the agent. Therefore in each environment a different amount of parameters
has to be modified, in CartPole for example there is just one single link, but in Hopper
there are three links to handle. Also for each reinforcement learning problem in this
case the learning curve has to be converged before the evaluation step. This results
in a different amount of training steps for each environment.

In addition to the evaluation parameter, there are multiple plays of the RL problem in
order to make the results more reproducible. For each setup e.g. every constellation
of system parameters, 50 episodes are played and the average is taken. This is done
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because in the initialization the robot is often created randomly within a parameter
area. Through this random part in the initialization and also the random part of the
exploitation of the agent during the learning process, the agent’s learned policy can
differ and as such lead to slightly different results. Therefore the whole training and
evaluation loop is done with 10 (for very computational expensive environments) up to
50 runs per learning problem and setup.

Robustness Against Noise

This experiment is performed very similarly to the experiments described in the previ-
ous section. In this experiment, noise is added on the observations as well as on the
actions for the evaluation process. The noise is modeled as so-called white noise
which means it is a Gaussian distribution with mean µ = 0. To differ the ampli-
tudes of the noise different standard deviations σ of the Gaussian distribution are
taken for the evaluation. The used standard deviations are filled with following values:
σ = [0, 0.001, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.3, 0.5]. The rest of the reproducible
evaluation process is done according to the previously described practice. To evalu-
ate it properly, for each action - observation pair the corresponding noise is performed
to get to the heat map as shown in Figure 4.4.
The noise as well as the changing system dynamics experiments are performed with

all of the described environments. This is done to get an impression of the influence
of algorithms on robustness according to different influences. This wide evaluation is
done to make the results more meaningful according to the robustness of an algorithm.

Transfer Learning

In this experiment, just the CartPole and Reacher environment are tested, due to the
fact that both of them where available in two environment implementations. The re-
inforcement learning problems have been trained in the ODE implementation of the
environment and have been transferred to the physics simulator implementation be-
cause this one is the more complex one for the agent. Also, the learning time in the
first environment is significantly smaller, therefore transfer learning leads also to an im-
provement in training duration. The evaluation of transfer learning is made according
to both previously described experiments. Therefore, for each transfer learning prob-
lem, two different results are generated. The whole evaluation process also includes
50 episodes in every environment setup and also up to 50 runs over the whole learning
process to generate reproducible results.

Position Based RMDP

In addition to the robustness evaluation of the different PPO approaches another
method is evaluated in this master thesis. The idea of the new approach is to com-
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bine the PPO-RMDP described in 1 with the approach of a position based controlling
described in 4.1. Therefore, the values are calculated according to usual RMDP be-
havior but actions are calculated differently than before. In contrast to calculating a
torque based action, the actor-network in the algorithm now has to calculate a target
position. The action then is fulfilled by the position based control via a PID-controller.

Due to the complex implementation of this approach, it is just performed in the
Reacher environment due to the availability of position-based control. In this case,
changing system dynamics as well as adding noise is evaluated for the position-based
RMDP behaviour. To have a benchmark of how good position-based controlling for RL
approaches is in general also experiments with the PPO-DR and a standard PPO are
done and evaluated.
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6 Results

In the following chapter, the results of the experiments are described and analyzed.
First, the PPO-RMDP is analyzed and afterwards, a robustness benchmark of the
PPO-RMPD, PPO-DR and the PPO is provided.

6.1 Algorithm Analysis

In the following section, the results of the experiments to find the best PPO-RMDP
setup are described and evaluated. As a reference for the analysis of the PPO-RMDP
algorithm, the result of the standard PPO in the CartPole environment is shown in
Figure 6.2.

The average score of 102.22 over all system changes and runs is used as bench-
mark for performance and robustness to evaluate the different approaches. Significant
in this case is the bad performance with pole mass 2. This is an effect caused by the
CartPole implementation of OpenAI.

6.1.1 Distributions with the PPO-RMDP

At first the results over different distributions are shown in Figure 6.1.
The x axis in this case distinguishes the different distributions compared and the av-
erage scores over all runs are shown on the y axis. Considered distributions are a uni-
form distribution, a Gaussian distribution and a log-normal distribution always around
the standard parameters of the system with different spread or standard deviations.
Significant is, that there is no big difference between different types of distributions.
The main difference is the width of the distributions. The best performance of 107.87
is based on the smallest uniform spread of +/−5 % and the worst performance is with
the biggest spread from 0.1 to 10. The performance heat map of the best example is
shown in Figure 6.3.

The effect of using a greater spread can be seen very good with the Gaussian dis-
tributions with the mean µ of the nominal value. The performance drops significantly
from 106.23 with a standard deviation σ = 0.1 compared to a σ = 0.3 down to a per-
formance of 101.42. It can be seen that also the log uniform distributions do not gain
more performance because of the even bigger spread and only leads to an average
performance of 98.24.
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Figure 6.1: Average rewards of the trained agent in the CartPole environment due to changing
system parameters is shown. The standard deviations over all runs are shown with the black
errorbars in the figure. On the x axis, the different distributions of the RMDPs are shown. The
y axis represents the average achieved score over all disturbances and runs.

Because of the results based on the CartPole environment for the PPO-RMDP, just
random uniform distributions are taken into account. Due to the fact that the spread
of the distributions has an impact on the results, as seen in the +/−40 % example,
always more different distributions are tested in the following experiments. Based on
the results of further experiments as described in the Chapter 6.2 one can say that
each environment can be optimized with its own distribution bounds. In general smaller
bounds lead to better performances than very large spreads of a distribution does.

6.1.2 Worst Case Expectations

By using the worst expectation according to the minimization problem of the value
used in the PPO-RMDP, a very conservative performance is the result. The average
of 91.04, shown in Figure 6.4, is significantly lower than the performance of the same
distribution with the PPO-RMDP approach achieving an average of 105.05. Both algo-
rithms are tested with a uniform RMDP distribution of +/−10 % to give a comparable
result. Good to see in this heat map is the robust behaviour, in the region over a
pole mass of 2, which is comparable to the best case distribution shown in Figure 6.3.
Therefore the robustness of this approach is good but the overall performance is too
bad to take this approach into account.
This is called a conservative learning behaviour as described in previous researches,

which has been mentioned in Chapter 3.1. The problem of taking always the worst
case as next steps lead to a much worse overall performance than taking just the
worst probability into account of the system as it is done in the other approach. Even
if the robustness increase with this approach is good, the overall performance is too
poor. As a result, this algorithm does not fit for further experiments due to the very
conservative performance.
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Figure 6.2: A heat map for the performance
evaluation of CartPole with a standard PPO is
shown. On the x-axis the different masses,
and on the y-axis the different lengths are
shown. The bar on the right shows the colors
that indicates the reward-score. In the head-
ing of the figure, the overall average is shown.
All values are averaged over 50 runs.
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Figure 6.3: A heat map for the performance
evaluation of CartPole with the PPO-RMDP
and a uniform uncertainty of +/−5 % of the
standard parameter. On the x-axis the differ-
ent masses, and on the y-axis the different
lengths are shown. The bar on the right indi-
cates the reward-score. In the heading of the
figure, the overall average is shown.
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Figure 6.4: Heat map for the performance
evaluation of CartPole with the worst case
expectations and a uniform uncertainty of
+/−10 % of the standard parameter. On the
x-axis the different masses, and on the y-axis
the different lengths are shown. The bar on
the right indicates the color that indicates the
reward-score. In the heading of the figure, the
overall average is shown.

0.01 0.1 0.2 0.5 1 2 5 10 15 20
Mass Pole

0.
01

0.
1

0.
2

0.
5

1
2

5
10

15
20

Le
ng

th
 P

ol
e

Domain Randomization +/-10% uniform, Average: 103.64

25

50

75

100

125

150

175

Figure 6.5: Heat map for the performance
evaluation of CartPole with domain random-
ization in a PPO-RMDP modeled with a uni-
form uncertainty of +/−10 % is shown. On
the x-axis the different masses, and on the y-
axis the different lengths are shown. The bar
on the right shows the colors that indicates the
reward-score. In the heading of the figure, the
overall average is shown.
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6.1.3 Domain Randomization

Combining the PPO-RMDP with domain randomization to improve the robustness as
often seen in transfer learning problems, leads to the result shown in Figure 6.5. To
make the result comparable to the results shown in Figure 6.4 and the standard ap-
proach, the same distribution is used for this experiment. In comparison to the previous
result, this approach outperforms the worst-case algorithm, with an average reward of
103.64 significantly. In comparison to the PPO-RMDP approach, the additional do-
main randomization leads to worse overall performance and does not show a benefit
in robustness compared to the heat map shown in Figure 6.3.
Taking the additional robustness improvement method of domain randomization,

therefore, does not further improve the robustness of the PPO-RMDP algorithm, but
leads to a more conservative overall performance. Because of this behaviour, the
combined approach is not used for further experiments only the comparison of do-
main randomization PPO-DR, the benchmark on the robustness of the PPO, and the
PPO-RMDP are compared in further experiments.

6.2 System Parameters

The robustness against different, not previous defined, system parameters are the first
part of the robustness evaluation of all tested algorithms. In Table 6.1 the average
score of the best performing distributions of every algorithm is shown. Each two rows
in the Table represents an algorithm: first is the standard PPO, second is the PPO-
RMDP approach and third is the PPO-DR. The firt row represents the average score
and the second shows the standard deviation over all tested runs. Each of the five
different environments is shown this table.

Table 6.1: This table shows the best average scores with system uncertainties of all tested
algorithms in the experiment environments. After the average score the standard deviation is
shown in braces.

Algorithm CartPole Hopper Acrobot Reacher Torque Reacher Position
PPO 102.22 49.18 -352.47 -8.63 -8.85
STD (14.98) (13.78) (7.89) (2.21) (2.78)
RMDP-PPO 107.87 51.43 -353.01 -8.63 -8.95
STD (12.46) (11.26) (10.73) (6.68) (7.34)
PPO-DR 105.26 57.8 -359.68 -8.61 -8.93
STD (11.9) (8.35) (6.7) (2.03) (3.57)

Significant in the results is, that in each environment, except of Acrobot, at least one
robust approach of the PPO algorithm outperforms the standard algorithm in average
scores with lower standard deviations. In the remaining four environments, where
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a robustness increase based on the average reward is reached, both, the state of
the art algorithm based on domain randomization and the PPO-RMDP lead to the
best performance in two of the environments. This leads to the assumption, that both
algorithms can improve the robustness against changing parameters depending on
the environments.

The PPO-RMDP in this case has the best average reward of 107.87 in the Cart-
Pole environment, which is the most simple and the approximately linear working en-
vironment in this research. It also provides better robustness in the Reacher Position
Based environment, where the overall performance of the agents is too bad to call it
a significant improvement. In the Acrobot environment, a nonlinear environment, the
PPO-RMDP outperforms the PPO-DR significantly with a score of −353.01, which is
very close to the best performance of −352.47 reached with the standard PPO. In this
environment, the state of the art domain randomization achieves a lower score. The
PPO-DR improves the robustness in the Hopper environment significantly compared
to the PPO-RMDP and the standard PPO.

All in all these results show, that a robustness improvement against different sys-
tem parameters of the algorithms is possible. Due to the fact, that system parameter
changes are already introduced into the training process in both robust approaches, a
robustness improvement was expected in this experiment. This research shows that
in various environments, the standard PPO is outperformed by the other algorithms.
The results also indicate that robustness improvement depends on the environment.
In general, these results lead to the assumption, that the robust approaches gain a
better robustness behaviour in terms of changing parameters. However, there is no
significant difference in the performance comparing PPO-DR and PPO-RMDP.

6.3 Noise

The second part of the evaluation deals with the robustness of the algorithms against
action- and observation noise. The results of this experiment are shown in Table 6.2.
The results are visualized in the same way as in Section 6.2, therefore the shown re-
sults are averaged over all tested noise levels. Noise is modelled as white noise in this
experiment. The best performing distributions of every environment and algorithm are
considered in this section. Besides the learning distributions further, hyper-parameter
does not change between the approaches.

In contrast to the previous results, the PPO-DR outperforms the PPO-RMDP ap-
proach in every environment. In all experiments expect of bothReacher environments,
an improvement of the robustness against observation and action noise can be ob-
served. In the CartPole environment the PPO-DR approach has a score of 170.21
and outperforms the standard PPO and the PPO-RMDP significantly. Also in the Hop-
per environment with an average score of 166.46 compared to the PPO-RMDP and
the standard PPO as well as in the Acrobot environment with an average score of
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Table 6.2: This table shows the best average scores with noise uncertainties of all tested al-
gorithms in the experiment environments. After the average score the standard deviation is
shown in braces.

Algorithm CartPole Hopper Acrobot Reacher Torque Reacher Position
PPO 166.56 69.4 -95.22 -8.49 -9.05
STD (5.54) (12.29) (20.27) (1.89) (2.34)
RMDP-PPO 160.92 105.14 -90.94 -9.85 -9.94
STD (13.42) (15.25) (13.97) (5.45) (6.83)
PPO-DR 170.21 166.46 -83.72 -9.15 -9.53
STD (5.16) (13.22) (1.07) (4.92) (2.63)

−83.72 compared the PPO-RMDP and standard PPO the state of the art algorithm
outperforms the other approaches significantly.
Since the PPO-DR already introduces a form of noise within a permanently chang-

ing environment during the training process, the results of adding noise in the agents
evaluation are significantly better. The PPO-RMDP approach in contrast just consid-
ers different system dynamics. The system always works in its standard parameters,
without having noise in the environment itself. Out of these reasons the result could
have been expected.

The standard algorithm outperforms the robust approaches in both of the Reacher
environments, with average scores of −8.49 in the torque based and −9.05 in the posi-
tion based experiment. Therefore also in terms of noise, the robustness improvement
depends on the tested environment.
All in all the PPO-DR outperforms both other algorithms in most of the environments.

This leads to the assumption, that domain randomization is still the state of the art
approach by handling noise in the observation and action space of an agent.

6.4 Transfer

Transfer Learning is one of the most challenging applications of RL and therefore also
indicates information about the robustness of an algorithm. In the transfer learning
evaluation of this work, only the CartPole and the Reacher environment is realized.
The results concerning average scores are shown in Table 6.3 and the corresponding
transfer ratios according to the nominal behaviour of the agent in the environment are
shown in Table 6.4. These figures are built up in the same way as described in the
Section 6.2.
In the last part of the robustness evaluation, the results show that the PPO-RMDP

never leads to a better average performance including the standard deviation than the
standard PPO achieves. Therefore, in terms of transfer learning RMDPs do not pro-
vide any advantages. In case of the CartPole environment, the PPO-DR significantly
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Table 6.3: This table shows the best average scores with transfer learning of all tested algo-
rithms in the experiment environments. After the average score the standard deviation is shown
in braces.

Algorithm CartPole System CartPole Noise Reacher Torque Reacher Position
PPO 50.45 66.71 -8.51 -9.11
STD (7.36) (12.45) (1.83) (1.57)
RMDP-PPO 46.04 57.58 -9.63 -10.23
STD (6.19) (8.16) (3.94) (2.21)
PPO-DR 91.13 72.37 -9.56 -10.81
STD (13.22) (15.46) (1.03) (0.99)

Table 6.4: Transfer Ratios

Algorithm CartPole System CartPole Noise Reacher Torque Reacher Position
PPO 0.49 0.4 1.0 1.01
RMDP-PPO 0.45 0.35 0.88 0.88
PPO-DR 0.89 0.43 0.89 0.84

leads to better results. Since the transfer ratio is a common indicator to compare perfor-
mances in terms of transfer learning this value is taken into account for the comparison
of the algorithm performances. The transfer ratio of 0.89 in system robustness of the
PPO-DR, compared to the PPO and PPO-RMDP performances as well as the ratio of
0.43 in noise robustness of the PPO-DR, compared to both other values show, that the
domain randomization achieves the best performance in this environment. In terms of
the Reacher environment, no transfer ratio improvements is achieved compared to the
standard PPO, which achieves very high transfer ratios. It is striking, that with transfer
ratios of 1 or above in the Reacher environment the performance does not get worse.
This can be attributed to the implementation of the environments in this case.

Even if there is no improvement in any environment in this experiments the PPO-DR
holds as the state of the art algorithm for transfer learning problems. This assumption
is also confirmed by several transfer learning researches like Peng et al. [2018], where
the best results are achieved by introducing domain randomization into the learning
algorithm.

6.5 Position Based Control

Coming to the last experiment the position based control for RL environments the re-
sults are included into the previous mentioned result Figures 6.1, 6.2, 6.3 and 6.4. The
results in this case do not promise any robustness improvements in the first try of a
position based control combined with deep RL algorithms. The position-based results
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do not provide significantly better performance compared to the torque based results.
These results are consistent through all algorithms, which means, that there is no
robustness improvement by handling environments based on position-based control
with robust approaches of the PPO. This underlines the assumption that robustness
depends very much on the implementation of the environment and also on the envi-
ronment properties itself.

In position-based control problems usually, the controller has to be optimized on
exactly the environment and problem to get a good performance. In this case, no
parameter optimization of the control is performed, which also could lead to a perfor-
mance loss. In literature, there are several ways like described by Günther [2018] to
perform an optimization of the controller, which could be part of a future work in this
field.
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To answer the questions about the improvement of the robustness concerning the
overall performance, the results show that the robustness of an RL algorithm can be
improved by using different distributions in the learning process without disturbing the
best performance of the agent. This improvement depends strongly on the environ-
ment. Concerning the question of how the type of distribution influences the perfor-
mance, the results show that the performance does not correlate with the type of dis-
tribution but the spread of distribution is the important factor. There is also not one
spread of distribution to achieve the best performances. For every environment, the
distribution differs and can be optimized on its own. All in all, the approach of deep
RL with RMDPs does not provide a significant performance improvement compared to
the state of the art algorithm and often achieves similar results to the standard PPO.
It outperforms the standard as well as the state of the art approach only in the system
variation of the very simple environment CartPole. This environment is simple to solve
for RL algorithms, however, the performance in more complex environments stands
behind the PPO-DR approach. The overall performance of the PPO-RMDP does not
provide a robustness improvement in general, although the performance of the new
algorithm increases the robustness in comparison to the PPO in various evaluations.
In nonlinear and therefore more complex environments the state of the art algorithm
PPO-DR provides, concerning system variation, noise and also transfer learning, bet-
ter results than the proposed approach. The PPO-DR still holds to be state of the art
and provides the best performing results concerning robustness in this case. Espe-
cially transfer and noise stability is significantly better than in the PPO-RMDP approach
as well as in the standard PPO.

The robustness evaluation created in this work can be used as a new benchmark
to evaluate robustness. Within this approach different facilities of robustness, such as
noisy data, system parameter changes and transfer learning, are taken into account
and the algorithms can be compared based on the performance in the single envi-
ronments. The evaluation method also provides the possibility to combine different
aspects of robustness evaluation to get more meaningful results. As the next step in
this case a metric including all the separate results could be developed and taken as
a key figure for robustness in RL.

Another finding is that position-based control of an RL problem does not necessarily
lead to better performances regarding noise robustness, which was expected before.
A problem, in this case, is the parametrization of the controller which has a big impact
on the overall performance. By performing position control based on a PID-control,
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the results are even worse than using a torque based control of the system. This can
be attributed to the environment, but also to the not optimized controller performance
in this case.

As an outlook and upcoming works, it is possible to perform a controller parametriza-
tion based on the work of Günther [2018] and therefore perform another robustness
evaluation on this approach. Moreover, since the robustness performance depends on
the environment the torque and position based research should be performed in more
different environments. As already mentioned a very interesting and recent point to go
on with the research in the field of robustness in RL is, to derive a single metric for the
evaluation of the robustness out of the possible robustness indicators shown in this
work. Another very interesting point, in this case, is a robustness evaluation of not just
deterministic but also stochastic environments. Especially the realization of the RMDP
approach as well as its performance in stochastic environments is a new possibility to
continue this research.
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Appendix

Hyperparameter

In the following tabular all hyperparameters used to perform the RL experiments are
given.

Table 7.1: Parameter setup for the hyperparameter search

Parameter Symbol Values
MLP architecture (64, 64)
activation function h(·) ∈ {tanh}
learning rate α ∈ {0.0003, 0.001}
trained epochs 60
update cycle K ∈ {1, 4, 8}
clipping factor ε 0.2
steps per epoche 9600
mini batch size 1200
discount factor γ 0.95
GAE κ 0.95
target kl 0.01

Detailed Results

In the following section, all detailed results are shown. The average scores for the PPO-
RMDP and the PPO-DR with different learning distributions for every environment and
experiment are shown in the following tables.
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Table 7.2: System robustness average scores
CartPole
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

104.21 103.42 105.21 105.26 102.22
Hopper

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Uniform 30% Gauss σ = 0.05

39.30 41.64 51.43 46.69 43.11
Gauss σ = 0.1 Lognorm σ = 1

42.23 48.32
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

52.21 55.13 53.71 57.8 36.27
Acrobot

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Uniform 30% Gauss σ = 0.05

-361.19 -355.15 -353.01 -360.12 -359.31
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Uniform 30% Gauss σ = 0.05

-363.23 -361.35 -365.56 -360.03 -359.68
Reacher Torque Control

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Uniform 30%

-8.63 -8.85 -8.92 -8.97
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Uniform 30%
-9.21 -8.83 -8.61 -9.11

Reacher Position Control
PPO-RMDP

Uniform 5% Uniform 10% Uniform 20% Uniform 30%
-8.95 -9.01 -9.05 -9.12

PPO-DR
Uniform 5% Uniform 10% Uniform 20% Uniform 30%

-9.3 -9.12 -8.93 -9.21
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Table 7.3: Noise robustness average scores
CartPole

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

160.92 156.1 154.23 155.31 151.24
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

165.15 167.34 166.45 169.42 170.21
Hopper

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

70.85 80.79 105.14 85.73 91.42
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

150.31 156.15 153.82 166.46 147.6
Acrobot

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

-90.94 -91.46 93.12 -92.56 -95.47
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

-87.42 -85.45 -86.93 -83.72 -84.34
Reacher Torque Control

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Uniform 30%

-10.26 -9.86 -9.85 -9.92
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Uniform 30%
-9.79 -9.75 -9.15 -9.58

Reacher Position Control
PPO-RMDP

Uniform 5% Uniform 10% Uniform 20% Uniform 30%
-9.94 -10.08 -10.12 -10.49

PPO-DR
Uniform 5% Uniform 10% Uniform 20% Uniform 30%

-12.89 -11.07 -9.53 -10.46

67



Bibliography

Table 7.4: Transfer learning average scores
CartPole system robustness

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

44.58 46.04 41.78 40.69 45.23
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

80.31 81.6 83.64 91.13 86.59
CartPole noise robustness

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

56.87 57.58 55.43 52.34 51.89
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Gauss σ = 0.05 Gauss σ = 0.1

63.21 65.36 69.87 72.37 68.6
Reacher Torque Control

PPO-RMDP
Uniform 5% Uniform 10% Uniform 20% Uniform 30%

-9.63 -10.04 -10.05 -11.35
PPO-DR

Uniform 5% Uniform 10% Uniform 20% Uniform 30%
-9.85 -9.81 -9.56 -9.79

Reacher Position Control
PPO-RMDP

Uniform 5% Uniform 10% Uniform 20% Uniform 30%
-10.23 -10.40 -10.42 -10.78

PPO-DR
Uniform 5% Uniform 10% Uniform 20% Uniform 30%

-13.61 -12.64 -10.81 -11.85
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