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Abstract—Deep neural networks have shown strong
performance in video action recognition tasks. The recently
proposed network architectures can learn spatiotemporal
features by fusing convolutional networks spatially and
temporally. Motivated by that, in this paper we intend to transfer
the end-to-end video-level representation learning approaches
to conduct video emotion analysis. Four of them including 3D
convolutional neural network(C3D) [1], 2plus1D convolution
neural network(R2+1D) [2], Temporal Segment Network(TSN)
[3] and an Efficient Convolutional Network(ECO) [4] are
modified to analyse video-level emotions in LIRIS-ACCEDE
dataset. Specifically, all networks are trained to analyse video-
level emotions by aggregating the frame-level features which
consist of spatial and temporal cues. The key difference among
these networks is temporal pooling method. Experimental
results show that the four networks are not performing
well as we expected, though ECO model can analyse the
emotions in training dataset quite accurately. All experiments
are implemented with PyTorch and codes are available at
https://gitlab.ldv.ei.tum.de/EmoVid/playground/tree/master/DPL.

I. INTRODUCTION

Video-level emotion analysis is a challenging task which has
drawn a significant amount of attention in computer vision
and artificial intelligence research community. As streaming
media services grow, more and more people communicate and
satisfy their certain emotional needs by watching videos. To
give people assistance in finding the videos, video contents
should be analysed and classified according to emotions au-
tomatically. Not only that, analysing emotions has a lot of
potential applications like building natural human-computer
interfaces.

Emotion can be described using discrete approach or the
continuous dimensional approach. The most frequently used
discrete descriptor in the field of video affective content
analysis is Ekman’s six basic emotion categorical classes [5],
including happiness, sadness, anger, disgust, fear, and surprise.
The dimensional descriptor divides emotion into continuous
spaces, e.g. arousal and valence, which first introduced by
Wundt [6]. The various continuous values in each space can
represent effective emotion features. For example, a relaxed
state relates to low arousal, while anger relates to high arousal.
Positive valence relates to a happy state, while negative
valence relates to a depressed or angry state [7]. In this work,
we focus on the problem where the goal is to analyse emotions
in the valence and arousal space.

Inspired by the advanced performance of deep neural net-
works in image recognition [8] [9] [10] [11], researchers are

using deep learning methods to solve video related problems
like emotion and activity recognition. In comparison with im-
age classification, the temporal context of videos provides
additional and important information for content analysis.
Recently, deep neural networks especially convolution neu-
ral networks have shown their superior ability to extract
spatiotemporal features within videos for action recognition
[12] [13] [14] [15]. The way to capture temporal relations
between frames is one of the most important parts of video-
level analysis. The temporal neighbourhood of a single frame
comprises mostly redundant information and is almost useless
for improving the belief about what happens in that frame.
On the other hand, the contextual relationship between distant
frames is meaningless, a simple aggregation of these frames
is unwise. The researchers have proposed several long-term
spatiotemporal architectures to solve this problem and each
of them has its advantages and disadvantages. Most of these
architectures are designed and evaluated for action recognition,
but it is possible that the architectures may also valuable
for other problems. Therefore, in this paper, we propose to
exploit the state-of-the-art deep neural networks, introduced
for action recognition, to analyse emotions in videos. The
intended network architectures are all end-to-end video-level
representation learning methods, including 3D convolution
neural network(C3D) [1], R2plus1D convolution neural net-
work(R2+1D) [2], Temporal Segment Network(TSN) [16],
Efficient Convolutional Network(ECO) [4].

II. RELATED WORK

A. Traditional machine learning methods

Before deep learning approach emerges, earlier methods
first extract visual and audio features to characterize the video
content using certain approaches. Visual features including
shot-related features [17], motion-related features [18], camera
distance-related features [19], lighting-related features [20],
color features [21], [22] etc.. Since shot and motion control
the tempo of videos, which reflect excitement of videos,
while color saturation, layout, heat, domination, are also
important emotion to affect viewer’s emotion. Audio features
including speech energy, pitch, duration, fundamental fre-
quency, Log Frequency Power Coefficients (LFPC) [19], Mel-
frequency Cepstrum Coefficients (MFCC) [23], For example,
happy speech has a high energy at high-frequency range, and
segmentation of music, speech and environmental sound is
also a critical part of audio feature extraction. After feature



extraction, machine learning methods are applied to map
video features and emotional descriptors, e.g. support vector
machines (SVMs) [24], Adaboost [25], Gaussian Mixture
Models (GMMs) [26], K-Nearest Neighbor (KNN) [27] etc..
The advantage of the traditional machine learning methods are
interpretable, lower computing power consumption, but they
highly rely on distinguishing feature extraction.

B. Deep learning methods

Most of the deep learning approaches are applied for action
recognition. Simonyan et al. [15] introduced a well known
two-stream ConvNets, which utilize pre-trained ImageNet [9]
for the spatial stream and optical flow to capture short-term
motion cues for the temporal stream. It samples a fixed number
of RGB images to extract appearance features and a stack of
optical flow frames to capture temporal motion information.
Feichtenhofer et al. enhanced this two-stream networks with
ResNet architecture [28] and additional connections between
streams [29].

In another direction,3D ConvNets(C3D) [1] [30] extends
2D ConvNets [9] [10] [11] [28] to a to learn spatiotemporal
features from a short video clip with consecutive frames.
Later, Tran et al. [31] applied ResNet architecture with 3D
convolutions and showed the improvements over their earlier
C3D architecture. Recently, they are focusing on decomposing
the 3D convolution filters into separate 2D spatial and 1D
temporal filters [2], so-called R2+1D network, which obtains
comparable and superior results compared to state-of-the-art
action recognition methods. Carreira et al. [32] presents a two-
stream Inflated 3D ConvNet (I3D) that inflates the 2D filters
and pooling kernels (and optionally their parameters) into 3D,
the very deep network achieves high performance after pre-
training on Kinetics dataset [33].

However, the methods mentioned above extract clip-level
features instead of video-level representations, they do not
sufficiently capture the comprehensive information from the
whole video, that suffers from the confusion caused by par-
tial observation. Diba et al. [34] designed Temporal Linear
Encoding (TLE), which aggregate temporal features sparsely
sampled over the entire video with bilinear coding, but it
only samples three frames in a video. Another solution to
capture entire video-level features is Temporal Segment Net-
work(TSN) [3], [16]. TSN combines a fixed number of frame-
level predictions to make a global video prediction during
training, typically eight and sixteen frames. Built upon TSN,
an Efficient Convolutional Network(ECO) [4] was proposed
to take advantage of 3D convolutional kernels to learn the
temporal context between the frames that are chosen and
processed by the same method as TSN. The ECO architecture
also achieves favorable performance with a superior runtime-
accuracy trade-off. Table I compares the performance of
different network architectures for action recognition.

Besides, Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) [37] [38] [39] are widely used to learn
the features of temporal sequence. Donahue et al. [40] and Ng

TABLE I
COMPARISON OF STATE-OF-THE-ART METHODS ON THE UCF101 [35]

AND HMDB51 [36] ACTION RECOGNITION DATASETS. FOR FAIR
COMPARISON, WE CONSIDER METHODS THAT USE ONLY RGB INPUT.

Model Pretrain dataset UCF101 HMDB51
Two Stream-RGB [15] ImageNet 73.0% 40.5%
C3D [1] ImageNet 82.3% 52.6%
I3D-RGB [32] ImageNet 84.5% 49.2%
TSN-RGB [16] ImageNet 86.4% 53.8%
ECO Lite [4] - 90.2% 63.3%
ECO Full [4] - 91.7% 65.6%
R(2+1)D-RGB [2] Kinetics 96.8% 74.6%

et al. [41] employed a LSTM incorporated with a 2D CNN to
aggregate spatiotemporal features. Yet LSTM has not shown
its capacity in action recognition.

III. NEURAL NETWORK ARCHITECTURES

A. 3D Convolution Neural Network(C3D)

C3D [1] is the initial study to utilize 3D convolutional filters
to capture spatiotemporal features in videos, proposed in the
year 2015. Since 2D convolutional filter only preserves spatial
features, the 3D convolutional filter can simultaneously capture
temporal information and propagate it through the layers of the
network, which is indispensable for video-level analysis.

(a) 2D convolution (b) 3D convolution

Fig. 1. 2D and 3D convolution kernel, redrawn from [1]

As shown in Figure 1, a stack of L consecutive frames
stands for the video and then feeds to network, the 3D
convolutional kernel of size t × k × k where t donates
the temporal continuous extent of the kernel. Depends on
computing resource, the structure of the network can be varied.
The C3D architecture we used is illustrated in Figure 2.

B. R2+1D Convolution Neural Network(R2+1D)

R2+1D [2] was introduced in the year 2018 to take ad-
vantage of both 2D and 3D ConvNets, which decompose full
3D convolution filter into a 2D spatial convolution followed
by a 1D temporal convolution(see the 2+1D filter in Figure
3). Compared to full 3D convolution, the decomposition form
is easier to optimize. Furthermore, R2+1D utilize residual
block in ResNet instead of convolution. Figure 4 shows the
architecture of R2+1D and notation is the same as in C3D.
Besides each residual or convolution block also include Batch
Normalization and ReLU activation.



Fig. 2. C3D Architecture, redrawn from [1]

Fig. 3. R2+1D convolution, redrawn from [2].

C. Temporal Segment Network(TSN)

As the two ConvNets above capture temporal features of
short-term consecutive frames, normally 1 - 2 seconds. For
instance, the sampled frames only occupy a small portion of
a 10-second video. TSN was designed to incorporate long-
range information in the year 2016. To tackle the redundancy
from consecutive frames, as shown in Figure 5, TSN first
divides a video into K segments of equal duration, typically
8 segments. Then a snippet is randomly sampled from each
segment. Thus, no matter how long a video is, TSN operates

Fig. 4. R2+1D Architecture, redrawn from [2].

on the certain number of frames that evenly distributed in the
video.ConvNets take the snippets as input and process them in-
dependently. The segmental consensus fuses the output feature
representations from multiple snippets to yield a video-level
prediction. Normally TSN uses weighted average pooling to
aggregate the predictions of different snippets. When K equals
to 1, TSN degenerates to the plain two-stream ConvNets. The
2D ConvNets in TSN here apply BN-Inception network [42]
as the backbone.

Fig. 5. TSN Architecture, redrawn from [3]. Each video is divided into
K segments of equal duration. Then a snippet is randomly sampled from
each segment. 2D ConvNets take the snippets as input and process them
independently. The segmental consensus fuses the output snippet-level feature
representations from multiple snippets to yield a video-level prediction.

D. Efficient Convolutional Network(ECO)

Motivated by the concept of TSN, Zolfaghari et al. devised
the ECO model [4] last year. The early parts of ECO are
similar to TSN, a fixed number of frames are selected from
corresponding segments in the entire video. After 2D Con-
vNets, the sequences of extracted 2D feature maps are fed
into a 3D ConvNet in order to catch temporal information.
The 3D feature maps are obtained from 3D ConvNet and
pass through fully-connected layers to get the final prediction.
This architecture is illustrated in Figure 6 and called ECO
Lite. There is another variant known as ECO Full. In ECO
Full design, the 3D feature map and 2D feature maps are
concatenated at the second last step and used to make the
final decision. Note that the backbone of ECO is the same as
TSN.

Fig. 6. ECO Architecture, redrawn from [4]. Each video is divided into K
segments of equal duration. Then a frame is randomly sampled from each seg-
ment. 2D ConvNets take the frames as input and process them independently.
Then the output frame-level feature representations from multiple frames are
fed into 3D ConvNet to yield a video-level prediction.



IV. EXPERIMENTS

In this section, we first introduce the evaluation dataset.
Second, we present implementation details of the above four
architectures C3D, R2+1D, TSN, ECO. Third, quantitative and
qualitative results of applying different networks on the video
emotion analysis dataset are reported.

A. Dataset

Experiments are conducted on video emotion dataset LIRIS-
ACCEDE [43], which consists of 9800 video clips extracted
from 160 movies. They are annotated by 1517 people from
89 different countries. All clips have a fixed frame rate and
resolution of 25 FPS and 280x390 respectively. The length
of all excerpts ranges from 8 to 12 seconds. The emotion in
each video clip is annotated by a valence value and an arousal
value with variance, which caused by different feelings of
annotators. Valence values range from 1.3 to 3.6 while arousal
values from 1.3 to 4.55. The dataset is split into training set
4900 clips, validation set 2450 clips and test set 2450 clips, in
which the authors marked training set and test set are switched.
The distributions of valence and arousal labels on training,
validation, test set are drawn in Figure 7,8 and 9.

Fig. 7. Distribution of valence and arousal value on trainning set.

V. EXPERIMENTS

A. Implementation Details

All networks use the mini-batch stochastic gradient descent
algorithm to learn the network parameters. To ensure the fair-
ness of experiments, every network takes eight RGB frames as
input. The reason is that the average clip length of the mostly
used action recognition dataset UCF101 [35] is 7.21 seconds,
which is similar as LIRIS-ACCEDE dataset, and the paper

Fig. 8. Distribution of valence and arousal value on validation set.

Fig. 9. Distribution of valence and arousal value on test set.

[1] [3] [4] have proven that eight frames as input can achieve
best runtime-accuracy trade-off. We also campared the effects
of different numbers of input frames. The frames are resized
to 224× 224 using BILINEAR interpolation. In addition, the
video clips in the original dataset are downsampled into 5
FPS. Since all the networks are originally designed for action
recognition, and action recognition is a classification problem,
we have to modify the last layer of network structure to
transfer classification to regression. Meanwhile, Mean Square
Error(MSE) is used as a loss function. All the neural networks
are implemented using PyTorch and trained on a NVIDIA



TITAN X GPU. If not specifically noted, the experiments in
the section are trained from scratch.

To evaluate the effect of different networks, we adopt the
Pearson correlation coefficient [44] with p-value to show the
relationships between predictions and ground truth of emotion.
Pearson correlation coefficient(marked as pearsonr) is a mea-
sure of the linear correlation between two variables X and Y .
It ranges from −1 to 1. A value of 1 implies that a linear
equation describes the relationship between X and Y perfectly,
with all data points lying on a line for which Y increases
as X increases. A value of −1 implies that all data points
lie on a line for which Y decreases as X increases. A value
of 0 implies that there is no linear correlation between the
variables. And p-value tells you whether the correlation is
statistically significant. If p-value less than the a significance
level(typically 0.05), which indicates that the correlation co-
efficients are significant.

B. Results

1) C3D: In C3D experiment, eight temporal consecutive
frames(224×224) of each video clip are selected and fed into
the C3D for training, then the network outputs a predicted
valence or arousal value through fully-connected layers. The
network settings include the size and number of the convo-
lutional kernel, the order of different layers are presented in
Figure 2. Batch normalization is applied to all convolutional
layers. The learning rate starts at 0.0001 and is decreased by
a factor of 10 every 4 epoch with in total 20 epochs.

(a) Predictions and truth of Valence
on training set

(b) Predictions and truth of Valence
on test set

(c) Predictions and truth of Arousal
on training set

(d) Predictions and truth of Arousal
on test set

Fig. 10. Results of C3D

Fig. 11. Evolution of loss during training C3D.

Figure 10 reports the difference between network predic-
tions and targets of valence and arousal value on training
set and test set, where pearsonr refers to Pearson correlation
coefficient and p refers to p-value. The white circles with
light gray region indicate ground truth with corresponding
annotated standard deviation. The best performance should be
a straight line with a slope of 1. The predictions on training
set and test set mostly distributed around 2.8 and are not
related to ground truth. Thus we can say, that C3D doesn’t
perform qualified for emotion analysis and can’t extract useful
information. The line chart of loss value during training and
test is plotted in Figure 11 and shows that the network doesn’t
overfit. Notably, that loss value is Mean Square Error(MSE).

2) R2+1D: R2+1D is a improved version of C3D achieved
better performance than C3D for action recognition. Except
those 3D convolutions are replaced with 2+1D convolutions,
the other parts of R2+1D are similar to C3D, see Figure 4.

(a) Predictions and truth of Valence
on training set

(b) Predictions and truth of Valence
on test set

(c) Predictions and truth of Arousal
on training set

(d) Predictions and truth of Arousal
on test set

Fig. 12. Results of R2+1D



Fig. 13. Evolution of loss during training R2+1D.

The initial learning rate is set to 0.0001 and divided by 10
every 4 epochs. The results in Figure 12 show that R2+1D
doesn’t perform better than C3D in our task.

3) TSN: In original TSN settings, the network takes two-
stream RGB and optical flow as input. But in our task
we use only RGB frames. Every video is averagely split
into eight segments. The concatenated feature maps through
BN-Inception and consensus function are utilized to predict
emotion value. We trained the network for 30 epochs and
reducing the learning rate every 5 epochs by a factor of 10,
which is initialized as 0.001. Figure 14 displays that on train
set TSN can roughly predict the emotion value with small
error. The Pearson correlation coefficient 0.84 s shows that the
predictions and truth are obvious related. Nonetheless, TSN
doesn’t make much improvement on test set. Thus, TSN is
fit well on training set, but if it faces the videos never seen
before, it can’t show its recognition ability.

(a) Predictions and truth of Valence
on training set

(b) Predictions and truth of Valence
on test set

(c) Predictions and truth of Arousal
on training set

(d) Predictions and truth of Arousal
on test set

Fig. 14. Results of TSN

Fig. 15. Evolution of loss during training TSN.

4) ECO: Encouraged by the results of TSN, we focus on
the newly introduced ECO model. ECO additionally applies
3D convolutions to the sparsely sampled frames. The other
settings including learning rate remain the same as TSN. As
mentioned before, ECO has two variants, ECO Lite and ECO
Full. Due to complexity, ECO Full consumes more computing
power and more time for training. However, from Figure 16
and 18 we can observe that ECO Lite outperforms ECO Full
on training set, which is contrary to the results in action
recognition. And ECO Lite shows the best capacity to analyse
emotion on training set, while unfortunately, the performance
on test set remains not good. Furthermore, some adjustments
including different optimizers and numbers of fully-connected
layers are applied for evaluation, as the results are shown
in Table II. Not only that, we also compared the effects of
different numbers of frames as the input of network in Table
III.

(a) Predictions and truth of Valence
on training set

(b) Predictions and truth of Valence
on test set

(c) Predictions and truth of Arousal
on training set

(d) Predictions and truth of Arousal
on test set

Fig. 16. Results of ECO Lite



Fig. 17. Evolution of loss during training ECO Lite.

(a) Predictions and truth of Valence
on training set

(b) Predictions and truth of Valence
on test set

(c) Predictions and truth of Arousal
on training set

(d) Predictions and truth of Arousal
on test set

Fig. 18. Results of ECO Full

Fig. 19. Evolution of loss during training ECO Full.

Table IV summarizes all the implementation results of
C3D, R2+1D, TSN and ECO network models for valence and
arousal value prediction separately. Despite great fitting effects
on training set, TSN and ECO did not show the desired effect
on test test. C3D and R2+1D can not even learn the features
from training set properly.

TABLE II
PERFORMANCE OF DIFFERENT HYPER-PARAMETERS IN ECO MODEL ON

VALENCE TRAINING DATASET

Model Optimizer FC layer MSEa

ECO Lite

SGD 1 0.412
SGD 3 0.532
ADAM 1 0.136
ADAM 3 0.317

ECO Full

SGD 1 0.375
SGD 3 0.432
ADAM 1 0.183
ADAM 3 0.336

aMean Square Error.

TABLE III
EFFECT OF DIFFERENT NUMBERS OF INPUT FRAMES FOR AROUSAL

Model Frames Trainning Set Test Set
Pearsona MSEb Pearsona MSEb

ECO Lite
4 0.860 0.221 0.160 0.999
8 0.939 0.109 0.182 0.963
12 0.917 0.123 0.199 0.964

aPearson Correlation Coefficient.
bMean Square Error.

TABLE IV
SUMMARY OF INPLEMENTATION RESULTS

Model Trainning Set Test Set
Pearsona MSEb Pearsona MSEb

Valence

C3D 0.298 0.372 0.149 0.380
R2+1D 0.277 0.390 0.123 0.400
TSN 0.838 0.123 0.195 0.429
ECO Lite 0.924 0.061 0.172 0.420
ECO Full 0.843 0.124 0.162 0.437

Arousal

C3D 0.190 0.871 0.156 0.884
R2+1D 0.194 0.901 0.138 0.920
TSN 0.891 0.192 0.132 1.047
ECO Lite 0.939 0.109 0.182 0.963
ECO Full 0.942 0.109 0.150 1.029

aPearson Correlation Coefficient.
bMean Square Error.

VI. CONCLUSION

In this paper, we have investigated different deep neural net-
works that originally proposed for video-level action recogni-
tion, and evaluated the performances for emotion analysis. The
network architectures look only at a small stack of frames from
a video and learn to capture spatiotemporal information of
the video. Four network architectures including C3D, R2+1D,
TSN and ECO are modified to analyse emotion in video and
adapt LIRIS-ACCEDE dataset. Though the ECO model fits



the training dataset very well, the performances of all four
network on test dataset are not as satisfied as we expected
due to a poor generalization ability. This time the transfer
learning didn’t achieve expectable results on the dataset but we
hope that this work could make some contributions to future
research in video-level emotion analysis.
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