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Abstract—Human Action Recognition (HAR) is gaining more
and more attention in the field of Computer Vision. As it seeks
to comprehend the human behaviour, analyze it and label it
to an action, HAR is used in various domains such as video
surveillance systems, smart homes, and hospital environments.
Commonly, the existing deep learning approaches consist of
Convolutional Neural Networks that are capable to learn robust
representations of image data by processing RGB pixels. However,
some recent works proposed the usage of compressed video data
in their networks as an alternative to reduce the complexity of
the networks caused by the high redundancy between frames. In
this paper, a deep neural network is implemented that is capable
to learn from the Discrete Cosine Transform (DCT) coefficients
of I-frames from compressed H.264 data. The results show that
the developed network is not performing as well as expected and
still need to be reviewed.
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I. INTRODUCTION

With the increasing availability of video content and rapidly
developing computational power, different computer vision
tasks on videos have also become available to the research
community. Among these computer vision tasks, Human Ac-
tion Recognition has gained a lot of attention in the last
decades. Numerous deep learning methods for human action
recognition have been proposed. Historically, deep learning
methods such as convolutional neural networks and recurrent
neural networks have shown remarkable performance and
even achieve state-of-the-art results by automatically learning
features from the raw pixel-based images [1–3]. However, such
methods have limitations since they process video information
as RGB sequences which is usually redundant [4]. Moreover,
most of the transmitted or stored video data available nowadays
are represented in compressed format. Therefore, each video
must first be decoded into RGB image before being fed to
the network. To alleviate all these limitations, recent research
has shown that the HAR task can also be performed using
compressed video data [5–8]. Therefore the following research
questions are examined during this work:

• Is it possible to achieve similar results as the state-of-
the-art networks in the task of HAR using only the
frequency-domain information of the intra-coded frames
(I-frames) encoded in H.264 format?

• How should the H.264 DCT coefficients of I-frames be
processed?

To answer these questions, entropy decoded and parsed com-
pressed video data is straightly used for the sake of perform-
ing the Human Action Recognition task. The features that
are extracted from the compressed data are restricted to the
Discrete Cosine Transform (DCT) coefficients of the I-frames
(also known as keyframes). The experiments in this work were
realized on the UCF-50 dataset [9]. The performance and com-
plexity of the proposed method were observed, discussed, and
compared to the state-of-the-art methods of video recognition
in the compressed domain.

II. STATE OF THE ART

A. Video Compression

The main goal of video compression is to reduce the spatio-
temporal redundancies by applying various image transforms
and motion compensation [4].

1) Video Coding Format: Most of the modern compres-
sion standards divide video data into three major picture
types: intra-coded (I-frames), predicted (P-frames), and bi-
directionally predicted (B-frames). As shown in Figure 3, a
Group of Pictures (GOP) starts with an I-frame followed by
P-frames and/or B-frames [4]. An I-frame or a keyframe or
an intra-frame consists only of macroblocks that use intra-
prediction. As shown in Figure 1, every macroblock in an I-
frame is allowed to refer to other macroblocks only within the
same frame. A P-frame allows macroblocks to be compressed
using temporal prediction in addition to spatial prediction.
For motion estimation, P-frames use frames that have been
previously encoded. A B-frame may be viewed as a special P-
frame. It is a bi-directional frame that can refer to frames that
occur both before and after it. B-frames are used in codecs
that use macroblock-based compression such as H.264/AVC
[10] and HEVC [11]. An example that illustrates the inter-
prediction process is shown in Figure 2. Thus, images from
B-frames and P-frames are stored in a compressed format and
are reconstructed using the encoded offsets, namely motion
vectors (MV) and residuals (R). The syntax elements of the
compression standard such as frame number, frame type (I,
P, or B), the positions and motion vectors of inter-coded
macroblocks, the DCT coefficients of intra-coded frames and
residuals can be obtained by parsing and entropy (Huffman)
decoding video bitstreams. These operations take less than
20% of the computational load in the full video decoding
process [12].
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Fig. 1: INTRA-PREDICTION [4]

Fig. 2: INTER-PREDICTION: MB1 IN THE CURRENT FRAME
IS PREDICTED FROM A REGION OF A PREVIOUS FRAME.

MB2 IS PREDICTED FROM TWO PREVIOUSLY CODED
FRAMES: A PAST FRAME AND A FUTURE FRAME. [4]

2) DCT Transform: The DCT transform [13] is applied to
non-overlapping blocks, generally of size 8×8 and commonly
called macroblocks. Each block is projected onto a basis
of 64 patterns representing various horizontal, vertical, and
composite frequencies. Any block can be fully recovered from
the knowledge of its coefficients since the basis is orthogonal
[14]. The DCT transformation processes each of the three
input channels (Luminance channel Y and two Chrominance
channels Cb and Cr) separately.

Fig. 3: EXAMPLE OF A GOP.

B. Human Action Recognition
Human activity recognition, or HAR, is a challenging time

series classification task. The task of HAR has the potential to
aid in different applications such as video surveillance systems
[15] and understanding of visual information [16]. Recently,
deep learning has been successfully used to learn powerful and
interpretable features for recognizing human actions in pixel-
based videos and compressed videos.

1) RGB Human Action Recognition:
The majority of the existing action recognition algorithms
are implemented using large CNNs [1] [2]. K. Simonyan
et al. suggested a two-stream network that uses two CNNs
to simulate raw video frames and optical flow, respectively
[1]. The Temporal Segment Network (TSN) is one of many
enhanced versions of [1] created to capture the long-range
temporal structure, although it still depends on the optical flow
stream, which is too expensive to compute [3].

2) Compressed Human Action Recognition:
The most modern compression standards use the motion com-
pensation technique that reduces the video data size based
on motion estimation from neighboring frames. Recent works
profited from this aspect and showed different approaches to
acquiring useful information videos in compressed format. The
CoViAR method [6] (Compressed Video Action Recognition),
which uses MPEG-4 compressed streams, is a multi-stream
network composed of three independent CNNs. Each CNN is
for one of these three features available in the compressed
data:

1) RGB images encoded in I-frames
2) motion vectors
3) residuals encoded in P-frames

In fact, the CoViAR still operates on the pixel-based domain
since the frequency domain representation used to encode the
pictures in I-frames and the residuals in P-frames needs to
be decoded to the spatial domain (RGB pixel values) before
being fed to the network. Ultimately, the final prediction is
computed via a weighted averaging of the video scores from
all three streams. Gueguen et al. [14] approached the problem
from another perspective by proposing various architectural
modifications to the ResNet-50 network in order to operate
directly in the frequency domain. The DCT coefficients are
obtained by partial decoding, thus saving the high computa-
tional load and memory usage in fully decoding the JPEG
images. Recently, Santos et al. [7] proposed the Fast-CoViAR,
an extended version of CoViAR, that also operates directly on
the frequency domain. The network is a two-stream network
that is comprised of two different CNNs:

1) I-frames network using a modified ResNet-50 proposed
by Santos et al. [8].

2) Motion vectors from P-frames network using a ResNet-
18.

According to Santos et al. [7], the residual network was ex-
cluded since it only results in a minor increase in network per-
formance at the cost of a significant increase in computational
complexity. The Fast-CoViAR method utilizes a technique
called FBS (Frequency Band Selection). The idea is to reduce
the network complexity by selecting the DCT coefficients of



3

Fig. 4: OVERVIEW OF THE FAST-COVIAR METHOD [7].

the lowest frequencies which are more relevant in terms of
visual effect. Similar to CoViAR, the final prediction of the
Fast-CoViAR is computed via a weighted average of the video
scores from both streams. An illustration of the Fast-CoViAR
method can be observed in Figure 4. The Fast-CoViAR also
utilizes videos in MPEG-4 format.

III. METHODOLOGY

A. Dataset and Feature Extraction
The UCF-50 dataset is used in this work. The UCF-50

consists of 6676 realistic videos taken from YouTube1 and
contains 50 action classes. It has a more popular dataset called
the UCF-101 [17].

To re-encode the UCF-50 dataset according to the
H.264/MPEG-4 AVC standard, FFMPEG2 command-line tools
are used. Since the default GOP size is set to 250 frames in the

1https://www.youtube.com/
2https://github.com/FFmpeg/FFmpeg

FFMPEG and many videos in the dataset are not long enough,
the GOP size is then forcefully set to 50 frames in order to
reach a decent number of I-frames for short videos. In Table
I, the distribution of the videos in both training and test sets
after forcing the GOP to 50 can be observed.

Following the compression, the macroblock information
is extracted using the JM 16.13 which then creates XML-
based trace files that contain information of the encoded
bitstream. As mentioned before, only DCT coefficients of
I-frames are used in this work since the I-frames record
the main information of video data. Therefore, a customized
parser is implemented that returns only the DCT coefficients
of the I-frames for each video. The parser goes through all
macroblocks of each I-frame for all three planes (Luminance
Y and Chrominance Cb/Cr). Considering that the two chromi-
nance planes, Cb and Cr are down-sampled horizontally and
vertically by a factor of 2 during the JM 16.1 extraction, due
to the fact that human vision is more sensitive to brightness
details than to color detail, both planes are zero-padded in the
frequency domain to match the dimension of the luminance
plane. Namely, each frame that has a size of (352, 256, 3) will
end up with (352, 256, 3) shaped DCT coefficients.

I-frames= 1 I-frames= 2 I-frames= 3 I-frames> 3
Train Set(∼70%) 9 657 938 3028
Test Set(∼30%) 2 267 389 1179

Total 11 924 1327 4207

TABLE I: DISTRIBUTION OF VIDEOS BY NUMBER OF I-
FRAMES AFTER CHANGING THE GOP SIZE TO 50.

B. Network Input
Inspired by [7] and [3], exactly 3 I-frames of each video

is fed into the network. Furthermore, the DCT coefficients
are rearranged in a way so that for each color channel, each
macroblock is then projected into the 64 orthonormal DCT
basis vectors which gives a frame of size (44, 32, 64) given
a macroblock size of (8×8) and frame size of (356, 252,
3). In other words, the DCT coefficients of the macroblocks
that correspond to the same DCT basis function are arranged
together on the same depth dimension while conserving the
spatial order. As a result, low-frequency DCT coefficients will
end up in the shallow channels along the depth dimension,
while high-frequency coefficients will end up in the deep
channels [14]. Lastly, DCT coefficients for all three Y, Cb,
and Cr planes are concatenated channel-wise. Thus the final
dimensions are I ∈ R3×192×44×32

C. Network Architecture
As a whole, the network is inspired by the Fast-CoViAR net-

work proposed by Santos et al. [7]. Unlike the Fast-CoViAR,
the proposed network in this work is a spatial single-stream
network that operates only on the DCT coefficients from the

3https://vqeg.github.io/software-tools/encoding/modified-avc-codec/
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I-frames. The network corresponds to the improved version
of ResNet-50 network [8] that extends the ResNet-50 network
proposed by [14]. Additionally, the network uses a Frequency
Band Selection (FBS) technique to select the most significant
DCT coefficients before feeding them to the network [8]. Since
higher frequency information has a less visual effect, only the
lowest frequency coefficients are retained. An illustration of
the network can be observed in Figure 5.

IV. EXPERIMENTS AND RESULTS

A. Experiments
As mentioned in the previous section, exactly 3 frames

are selected for each video. Therefore, 4 different cases were
investigated:

1) Case 1: Number of I-frames is equal to 1
2) Case 2: Number of I-frames is equal to 2
3) Case 3: Number of I-frames is equal to 3
4) Case 4: Number of I-frames is greater than 3

At this stage, different approaches were tested to select the
I-frames for each video.

1) Case 1:
• Pick the existing I-frame and fill the 2 remaining

frames with zeros
• Pick the existing I-frame and assign the 2 remaining

frames with the same values as the existing I-frame
2) Case 2:
• Pick the 2 existing I-frames and fill the remaining

I-frame with zeros
• Pick the 2 existing I-frames and assign the third frame

the values of either frame 1 or 2
• Pick the 2 existing I-frames and assign the third frame

the averaged values of frames 1 and 2
3) Case 3:
• Pick all three existing I-frames
4) Case 4:
• Randomly pick 3 I-frames
• Pick the first 3 I-frames
• Pick the first, the middle, and the last I-frames

However, the best accuracy results are obtained with the points
mentioned in bold text. Understanding the cause of this is
beyond the scope of this work.

To recapitulate, the learning procedure of the proposed
network can be divided into these 4 steps:

1) Parse compressed video and obtain DCT coefficients of
the I-frames

2) Pick exactly 3 I-frames.
3) Feed the network with rearranged and concatenated

DCT coefficients. (Optionally: apply the FBS technique
with n = 32 or n = 16 for each color channel)

4) Assign a score for each frame and average all scores to
give a final score to the whole video.

The experiments were performed on a computer provided
by the Chair of Data Processing at the Technical University of
Munich equipped with an Intel Core i7-7000K processor and a
GeForce RTX 2060 SUPER GPU. The ResNet-50 network is

pre-trained on the ImageNet dataset [18]. Adam is used as an
optimizer to fine-tune the model with a batch size of 16. Step-
decay is implemented that divides the initial learning rate by
a factor of 10 after a certain number of epochs. Other hyper-
parameters used in the experiments can be observed in Table
II.

Hyperparameter Value
Initial Learning Rate 0.01
Total Number of epochs 255
The step-decay scheduler setting 75, 135, 195

TABLE II: THE HYPERPARAMETERS USED IN THE EXPERI-
MENTS.

As mentioned in the previous chapter, the UCF-50 dataset
is used in the experiments. There is no official train/test split
for UCF-50. Since UCF-101 is the extension of UCF50, split
1 from UCF-101 was used after removing the additional 51
categories.

Similar to [7], two data augmentation techniques were
applied during the training phase namely, a horizontal flipping
with a probability of 50% and random cropping with scale
jittering. Afterward, the input size is resized to 28×28. In the
end, the size of the input that is fed into the network is (3,
192, 28, 28).

Three different ResNet-50 networks were tested: the stan-
dard network that operates on all 64 frequency channels for
all three color channels (Y, Cb, and Cr); and the network
with the FBS technique that only considers the lowest 32 and
16 frequency channels for each color channel. For FBS with
n = 32, the input size would be (3, 96, 28, 28), and (3, 48,
28, 28) in case of FBS with n = 16.

B. Results
All three models are evaluated on the first test split of the

UCF-50 dataset as discussed in the previous section.
Table III shows the classification accuracy and the number

of learnable parameters of the tested networks. The best results
in terms of performance are obtained from the network that
utilizes the FBS technique with n = 32 with an accuracy of
57.16 %. In terms of network complexity, the network that
utilizes the FBS technique with n = 16 is obviously the best
network among other networks with a number of parameters
equal to 25.6M.

Table IV compares the accuracy of the best-performing
version of the proposed network (with FBS (32)) and the state-
of-the-art human action recognition networks. Although, since
the UCF-50 dataset is used in this work while the UCF-101
dataset is used in nearly all the state-of-the-art models, the
comparison is more or less inequitable.

Figure 6 illustrates the confusion matrix of the best-
performing version of the proposed network (with FBS (32))
over the 50 classes of the UCF-50 dataset. Almost all of
the action classes in the UCF-50 dataset have inner-class
variation. The network performed well in the following action
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Fig. 5: ILLUSTRATION OF THE NETWORK [8].

classes: Billiards, and BreastStroke. By investigating the UCF-
50 dataset videos, it is noticed that the videos for each of
these classes show similar background scenes. However, the
network performance is extremely poor in the following action
classes: Mixing, PullUps, and YoYo. where the videos for each
class contain different background scenes. The lack of motion
information should also be a potential reason for the low
performance.

Method Accuracy Complexity (# of Parameters (106))
Standard Network 56.18% 28.4

w/ FBS n = 32 57.16% 26.2
w/ FBS n = 16 52.53% 25.6

TABLE III: THE CLASSIFICATION ACCURACY AND THE
COMPLEXITY OF THE THREE DIFFERENT PROPOSED VER-
SIONS OF THE RESNET-50 NETWORKS. ALL THREE VER-
SIONS PROCESS DCT COEFFICIENTS OF I-FRAMES FROM
THE UCF-50 DATASET.

Method Accuracy Complexity
(# of Parameters

(106))
DCT [7] 78.8% (split1 UCF-101) 28.4

DCT w/ FBS (32) [7] 80.9% (split1 UCF-101) 26.2
CoViAR [6] 90.8% 83.6

DMC-Net [19] 90.9% 83.6

TABLE IV: PERFORMANCE AND COMPLEXITY OF SOME
STATE-OF-THE-ART NETWORKS THAT ARE USED FOR COM-
PARISON PURPOSES AGAINST THE PROPOSED NETWORKS.

V. DISCUSSION

Inspired by the Fast-CoViAR method, the model proposed
in this work consists of the frequency stream network proposed
by Santos et al. [7] that operates only on the DCT coefficients
of the I-frames. Therefore, only I-frames are extracted and
parsed from the compressed videos. They provide general in-
formation about the scene and the objects within the scene. Un-
like Fast-CoViAR, the implemented network supports H.264
compressed data instead of MPEG-4 compressed videos. Fur-
thermore, the model in this work is trained on the UCF-50
dataset instead of the UCF-101 dataset. The obtained results in

Fig. 6: CONFUSION CHART FOR UCF-50 DATASET.

terms of accuracy are mediocre compared to the Fast-CoViAR
model and other state-of-the-art models. The complexity of the
proposed network which matches the same complexity of the
Fast-CoViAR network is significantly less than other state-of-
the-art models.

VI. CONCLUSION

In the scope of this paper, a deep neural network is pro-
posed that straightly digests frequency domain information in
contrast to the conventional networks that operate on pixel-
based information.

The network consists of a single-stream network that learns
from the DCT coefficients of the I-frames that are extracted
and parsed from compressed videos. As a compression stan-
dard, H.264 is used throughout the experiments. The training
of the network is performed with the UCF-50 dataset; a
sub-dataset of the famous UCF-101 dataset. Three different
versions of the network were tested during the experiments.
The results show that the best classification accuracy over 50
action classes is ordinary (57.16%) and it is achieved by the
network that utilizes the Frequency Band Selection technique
with n = 32.

In future work, UCF-101 can be used in the experiments
for a more fair comparison with the state-of-the-art models.
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Furthermore, the techniques that are used to select the I-frames
that are fed into the network can be reviewed and investigated.
Additionally, a temporal stream that digests MV from predicted
frames (P and/ or B frames) can be implemented and investi-
gated.
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