
Extreme Learning Machines
with Structured Matrices

Ruslan Mammadov

Chair of Data Processing
Technische Universität München

Bachelor’s thesis

Extreme Learning Machines with Structured
Matrices

Ruslan Mammadov

02. July 2020

Ruslan Mammadov. Extreme Learning Machines with Structured Matrices. Bachelor’s thesis,
Technische Universität München, Munich, Germany, 2020.

Supervised by Prof. Dr.-Ing. Klaus Diepold and Matthias Kissel; submitted on 02. July 2020
to the Department of Electrical and Computer Engineering of the Technische Universität
München.

© 2020 Ruslan Mammadov

Chair of Data Processing, Technische Universität München, 80290 München, Germany,
http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/

Abstract

The use of structured matrices in Artificial Neural Networks has several advantages: they
require significantly less memory, enable faster propagation, and reduce the computational
complexity of matrix-vector and matrix-matrix multiplications. The reduction of computational
complexity leads to reduced energy consumption, which is especially important for mobile
devices.

In this thesis, the use of structured matrices as input weight matrices in Extreme Learning
Machines (ELMs) was investigated. The classical ELM is a single-hidden layer feed-forward
neural network, in which the input matrix is randomly generated and is not trained, and the
output matrix is calculated using linear regression.

An important finding of this thesis is that the input weight matrices can be replaced by
structured matrices in ELM without decreasing the accuracy. However, several aspects
must be considered for that, such as the distribution of free parameters, choice of a suitable
structured matrix, and degree of dissimilarity in the hidden layer’s outputs.

Another result of this thesis is that the accuracy of ELMs with structured matrices as input
weight matrices does not depend in general on the number of free parameters that were used
to construct the structured matrices, but depends on how these parameters were used.

3

Contents

Abstract 3

1 Introduction 7
1.1 Motivation . 7
1.2 Goals . 7
1.3 Approach . 7

2 Background 9
2.1 Artificial Neural Network . 9

2.1.1 Feed-forward Networks . 10
2.1.2 Training using Backpropagation . 11

2.2 Extreme Learning Machine . 12
2.2.1 Training using Linear Regression 13
2.2.2 Advantages and Disadvantages . 13

2.3 Structured Matrices . 14
2.3.1 Notations . 15
2.3.2 Circulant Matrix . 15
2.3.3 Toeplitz Matrix . 16
2.3.4 Toeplitz-like Matrix . 17
2.3.5 Fastfood Transformation Matrix . 19
2.3.6 Vandermonde Matrix . 20
2.3.7 Overview . 20

3 Design of Experiments 21
3.1 Replacement of Rectangular Input Weight Matrices 21
3.2 Datasets . 22
3.3 Preprocessing . 23
3.4 Hyperparameters . 24

3.4.1 Activation Function . 24
3.4.2 Distributions of Weights and Biases 25
3.4.3 Regularizations Values . 27
3.4.4 High-Performance Extreme Learning Machines 27

4 Results and Discussion 29
4.1 Results . 29

4.1.1 California Housing Dataset . 29

5

Contents

4.1.2 Pima Indian Diabetes Dataset . 31
4.1.3 Forest Cover Type Dataset . 32
4.1.4 MNIST Dataset . 34

4.2 Number of Required Free Parameters for Input Weight Matrices 38
4.3 Discussion . 39

5 Conclusion 43

6

1 Introduction

1.1 Motivation

The use of structured matrices in Deep Neural Networks has been examined in many previous
studies [18][22][4]. In these studies, the use of structured matrices significantly reduced the
memory requirements without notably decreasing the prediction accuracy. In the first two
studies mentioned, the use of structured matrices resulted in lower propagation time. This
may have many benefits, especially for mobile devices, where the memory requirements
and propagation speed are extremely important. Furthermore, this may also facilitate the
development of Artificial Neural Networks because of the less strict system requirements for
network training.

This motivates researchers to examine the possible use of structured matrices in other
machine learning algorithms. In this thesis, the use of various structured matrices in Extreme
Learning Machine (ELM) was studied.

1.2 Goals

The goal of this thesis was to investigate the impact of structured matrices as input weight
matrices on the accuracy, computation time, and memory requirement of ELM. Particularly,
the three following questions were answered by this thesis:

• What impact does replacing input weight matrices with structured matrices have on the
accuracy performance of ELM in general?

• How does this impact depend on the number of free parameters? Here, the term ’free
parameters’ means randomly and independently initalized parameters that are required
to construct the structured matrices.

• How does this impact depend on the class of structured matrices? Which classes of
structured matrices have better or worse impact on the prediction accuracy?

1.3 Approach

In this thesis, six classes of structuredmatrices were investigated: Circulant, Toeplitz, Toeplitz-
like, Fastfood Transformation, Vandermonde, and Low-Rank matrices. Firstly, the classical

7

1 Introduction

ELM and ELMs with the aforementioned structured matrices as input weight matrices were
implemented. In the implementation step, the distribution of the structured matrices’ entries
was addressed, because this characteristic may have an impact on accuracy performance.
For example, in the case of Toeplitz-like matrices, the ELM was programmed to rescale the
entries of Toeplitz-like matrix after initialization, so that the entries would have the desired
variance.

In order to test the implemented ELMs, four datasets were chosen. The classical ELM
was tested with different parameters on all datasets to find the appropriate hyperparameters.
These hyperparameters were used for all implemented ELMs.

Then, implemented ELMs were tested on these four datasets with different neurones
numbers, and the results were reported in the ’Results and Discussion’ chapter. After the
first results were obtained, further experiments were suggested and conducted to better
understand these results.

The impact of structured matrices on ELMs in terms of computational complexity, propa-
gation speed, and memory requirements was examined theoretically in the ’Background’ and
’Results and Discussion’ chapters. Finally, the results were analysed and discussed.

8

2 Background

2.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are non-biological ”networks of simple processing elements
(called ’neurons’)” [20]. ANNs were inspired by the biological brain and are used for pattern
classification, clustering, function approximation, predictions, and many other problems [12].
A typical neuron has𝑁 inputs and one output that can be calculated using the following formula
[20]:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (𝑤 · 𝑥 + 𝑏) (2.1)

• 𝑥 is an input vector (𝑥1, · · · , 𝑥𝑁)𝑇 in which every component 𝑥𝑖 is an individual input.

• 𝑤 is a weight vector (𝑤1, · · · , 𝑤𝑁)𝑇 in which every component 𝑤𝑖 is a weight that is
associated with the corresponding individual input 𝑥𝑖 .

• 𝑏 is a bias.

• 𝑤 · 𝑥 is the vector multiplication of the weight vector and input vector.

• 𝑓 (·) is an activation function.

Some of the most popular activation functions are ReLU (Rectified Linear Unit) (2.2) and
sigmoid (2.3).

𝑓 (𝑥) =
{

0 for 𝑥 < 0
𝑥 for 𝑥 ≥ 0 (2.2)

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

(2.3)

According to the definition, the ANNs consist of interconnected artificial neurons. Two
neurons can be called connected if the output of one neuron is used as an input for the other
neuron. In other words, after the output of the first neuron is calculated, it is used as input for
the next neuron for calculating its output. In this example, one can also say that the output
of the first neuron is connected to the input of the second neuron if the order of neurons is
important [12].

Using this definition of connections, one can describe ANN’s structure through a directed
graph, in which the artificial neurons are nodes, and the edges are connections between

9

2 Background

Figure 2.1: Example of a single-hidden layer feed-forward neural network (SLFN). Source: [21].

the neurons, or, more precisely, between inputs and outputs of neurons. In this context, the
edges are directed from the outputs to the inputs [12]. An example of such graph is shown in
Figure 2.1.

Based on the graph notation and the cycle definition in the graph theory, the ANN can
be divided into two main groups: feed-forward networks that do not have any cycles and
recurrent networks that have at least one cycle [12] In this thesis, I have used only feed-
forward networks.

2.1.1 Feed-forward Networks

The neurons in the feed-forward networks are ordered in different layers [12]. The first and
the last layers are input and output layers respectively. The layers between input and output
layers are hidden layers. In a hidden layer, each neuron’s input is connected with the outputs
the of previous layers’ neurons, while the output is connected with the inputs of the next layers’
neurons. An example of a single-hidden layer feed-forward network (SLFN) architecture with
one hidden layer is shown in Figure 2.1.

Although the neurons’ outputs can be calculated using equation 2.1 and the graph notation,
it is sometimes easier to use vector-matrix multiplication notation. Thus, the outputs of a
hidden or output layer in a feed-forward neural network can be calculated using the weight
matrix𝑊 , in which every row 𝑖 is the weight vector of the 𝑖th neuron, and the bias vector 𝑏,
in which every component 𝑖 is the bias of the 𝑖th neuron. The final equations are (2.4) for one

10

2.1 Artificial Neural Network

sample or (2.5) for many samples:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (𝑊 · 𝑥 + 𝑏) (2.4)

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (
[
𝑏 𝑊

]
·
[

11,𝑁
𝑋

]
) (2.5)

• 𝑥 is an input vector. 𝑋 is an input matrix in which every column 𝑥𝑖 is an input vector of
the 𝑖th sample.

• 𝑁 is a number of data samples. 11,𝑁 is 1 × 𝑁 matrix of ones.

• 𝑓 (·) is an activation function that is applied element-wise to its inputs.

• 𝑜𝑢𝑡𝑝𝑢𝑡 is a matrix in which every column 𝑖 is an output of the 𝑖th sample.

The weights𝑊 of the first hidden and output layers can be referred to as input and output
weights respectively, as it was done in [10][16][2]. Thus, the output of SLFN (Fig. 2.1) can be
calculated using equation (2.6) for one sample:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑜𝑢𝑡 𝑝𝑢𝑡 (𝑊𝑜𝑢𝑡 𝑝𝑢𝑡 · 𝑓ℎ𝑖𝑑𝑑𝑒𝑛 (𝑊𝑖𝑛𝑝𝑢𝑡 · 𝑥 + 𝑏ℎ𝑖𝑑𝑑𝑒𝑛) + 𝑏𝑜𝑢𝑡 𝑝𝑢𝑡) (2.6)

2.1.2 Training using Backpropagation

Before the neural network can be used to solve problems, it must be trained, i.e., the net-
work’s weights and biases have to be adjusted. In supervised training, the datasets with
known outputs are used. Since ANN’s final goal is to predict the results of unknown data
that is not included in the datasets, it is common to divide the datasets into the training and
testing sets and to use only the training set to train the network. In this way, the network’s
accuracy can be checked using the testing set that was never presented to the network before.

One of the most widely used supervised training algorithms is backpropagation. The back-
propagation algorithm uses the partial derivative of the error function, also called a loss func-
tion, with respect to every weight or bias to adjust them [20]. One of the examples of error
functions is mean-square-error (MSE) (2.9).

𝑤𝑘+1
𝑖 𝑗 = 𝑤𝑘

𝑖 𝑗 − 𝛼
𝜕𝐸

𝜕𝑤𝑖 𝑗

𝑘

(2.7)

𝑏𝑘+1
𝑖 = 𝑏𝑘𝑖 − 𝛼

𝜕𝐸

𝜕𝑏𝑖

𝑘

(2.8)

𝑀𝑆𝐸 =
1
𝑛
Σ𝑛
𝑡=1

(
𝑜𝑢𝑡𝑝𝑢𝑡𝑡𝑟𝑢𝑒,𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝑡

)2
(2.9)

• 𝑤𝑖 𝑗 in the weight of the 𝑗 th input of the 𝑖th neuron. 𝑏𝑖 is the bias of the 𝑖th neuron.

11

2 Background

• 𝑘 is a step number.

• 𝐸 is an error function, e.g. MSE (2.9).

• 𝑛 is the number of samples. 𝑡 is an index of sample.

2.2 Extreme Learning Machine

Extreme Learning Machine (ELM) was proposed 2004 as a single-hidden layer feed-forward
neural network, in which the input matrix and biases are chosen randomly, and the output
matrix is calculated analytically, for example, using linear regression [10]. However, after
2004, different versions of ELM with more than one hidden layer [21][5] or with an input matrix
calculated using training data [16][2] were proposed. Nevertheless, in all of these cases, the
input matrix was not tuned by iterative methods, and the output matrix was calculated using
linear regression. Because the linear regression was used to calculate the outputs, no output
activation function was used. Furthermore, in all mentioned research studies, no output bias
was used. According to [9], the output bias is not required and can even lead to suboptimal
solutions.

In this thesis, I have discussed only the ELM with one hidden layer and with a randomly
initialized input matrix, as it was proposed in the original paper [10]. To be consistent with other
ELM studies [10][17][21], I have used the notation with transposed output matrix 𝛽 = 𝑊𝑇

𝑜𝑢𝑡 𝑝𝑢𝑡

instead of output matrix 𝑊𝑜𝑢𝑡 𝑝𝑢𝑡 and targets 𝑇 = 𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑇 instead of outputs in respect
to the equation (2.6). Therefore, considering the other details mentioned above, the following
final equation for ELM is obtained:

𝑇 = 𝑓ℎ𝑖𝑑𝑑𝑒𝑛 (𝑊𝑖𝑛𝑝𝑢𝑡 · 𝑥 + 𝑏ℎ𝑖𝑑𝑑𝑒𝑛)𝑇 · 𝛽 (2.10)

• 𝑥 is a 𝑛 long input vector that represents one sample.

• 𝑊𝑖𝑛𝑝𝑢𝑡 is a ℎ × 𝑛 matrix, and 𝑏ℎ𝑖𝑑𝑑𝑒𝑛 is a ℎ long vector, where ℎ is a number of
hidden neurons.

• 𝛽 is a ℎ× 𝑡 matrix, and 𝑏𝑜𝑢𝑡 𝑝𝑢𝑡 a 𝑡 long vector, where 𝑡 is a number of output neurons.

• 𝑇 is a 1 × 𝑡 matrix. If there are 𝑁 > 1 samples, the size of 𝑇 would be 𝑁 × 𝑡.

• In the case of multiple 𝑁 > 1 samples, the equation must be adjusted so that 𝑏ℎ𝑖𝑑𝑑𝑒𝑛
and 𝑏𝑜𝑢𝑡 𝑝𝑢𝑡 have 𝑁 same columns. In this case, the size of 𝑖𝑛𝑝𝑢𝑡 and 𝑇 would be
𝑛 × 𝑁 and 𝑁 × 𝑡 accordingly.

12

2.2 Extreme Learning Machine

2.2.1 Training using Linear Regression

Given the training data 𝑋 consisting of 𝑁 samples, where every column is a distinct sample,
and targets 𝑇 , where every row is a true output of the distinct sample, the typical ELM training
proceeds as follows[10]:

1. Initialize the input matrix𝑊𝑖𝑛𝑝𝑢𝑡 and hidden layer biases 𝑏ℎ𝑖𝑑𝑑𝑒𝑛 randomly.

2. Calculate the output of the hidden layer 𝐻 for all samples. It can be done, for example,
using equation (2.5):

𝐻𝑇 = 𝑓ℎ𝑖𝑑𝑑𝑒𝑛 (
[

1ℎ,1 𝑊𝑖𝑛𝑝𝑢𝑡

]
·
[
𝑏𝑇ℎ𝑖𝑑𝑑𝑒𝑛

𝑋

]
) (2.11)

3. According to (2.10), the output for all samples can be calculated using 𝑇 = 𝐻 · 𝛽.
Therefore, if true outputs 𝑇 are known, the output weights 𝛽 can be calculated using
linear regression, e.g., the ridge regression (2.12).

𝛽 = 𝐻𝑇 (𝛼𝐼 + 𝐻𝐻𝑇)−1 · 𝑇 (2.12)

Here, 𝛼 represents the penalty value for output weights. In the case of 𝛼 = 0, the
left multiplicand becomes 𝐻𝑇 (𝐻𝐻𝑇)−1, which is an ordinary Moore-Penrose inverse
𝐻+.

2.2.2 Advantages and Disadvantages

ELM has several advantages against standard SLFN in which all neurons are trained using
backpropagation [10]:

• Since backpropagation uses many iterations to adjust neurons, while the weights are
calculated directly in the case of linear regression, training of ELM takes significantly
less time. This is supported by several experiments [10][8][11].

• It may be easier to achieve better generalization using ELM for the same network
architecture. One of the reasons is that the norm of the weights calculated us-
ing Moores-Penrose is the smallest between all possible least-square solutions, and
smaller weights in general lead to better generalization [10][11].

• Backpropagation tends to reach local minima in opposite to ELM [10].

• Backpropagation requires differentiable activation functions in opposite to ELM [10]

Despite the ELMs with many layers were proposed [21][5], one of the disadvantages of
ELM against traditional neural networks is that it seems to be difficult to achieve the same
variety of layers and the same depth for deep ELM as in deep neural networks. For example,
in the study [7], residual networks with up to 152 layers were proposed, which seems to be
impossible for ELM. Therefore, it is questionable if ELM can achieve the same accuracy in
such domains as image classification, especially on complex databases, e.g., ImageNet [3].

13

2 Background

2.3 Structured Matrices

Structured matrix is a matrix with a size 𝑚 × 𝑛 that can be constructed using much fewer
parameters than 𝑚𝑛[18]. I referred to these few parameters as free parameters. An example
of structured matrices is a Circulant matrix (2.13) because the 𝑛 × 𝑛 Circulant matrix can be
described with only 𝑛 independent parameters.

𝐶 (𝑣) =


𝑣1 𝑣𝑛 · · · 𝑣2
𝑣2 𝑣1 · · · 𝑣3
...

...
. . .

...
𝑣𝑛 𝑣𝑛−1 · · · 𝑣1


(2.13)

Here, 𝑣 ∈ R𝑛 is a vector consisting of free parameters.

Another well-known example of structured matrices are 𝑚-by-𝑛 Low-Rank matrices that
have rank 𝑟 << 𝑚𝑎𝑥(𝑚, 𝑛). These matrices can be described as follows [4]:

𝑀 = 𝐺𝐻𝑇 (2.14)

Here,𝐺 ∈ R𝑚×𝑟 and𝐻 ∈ R𝑛×𝑟 can be interpreted asmatrices consisting of free parameters.

The use of structured matrices can reduce the memory requirements because one can save
only the matrix’s free parameters instead of every element of the matrix. Another advantage of
structured matrices is that for some of these matrices, the matrix-vector multiplication can be
performed faster than for general matrices because of their special structure. For example, the
multiplication of 𝑛×𝑛 Circulant matrix with a vector can be computed in𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time [18].

One of the subgroups of the structured matrices is Low Displacement Rank (LDR) matri-
ces that are defined by a displacement operator 𝐿 : R𝑚×𝑛 → R𝑚×𝑛 that transform these
matrices into matrices with rank 𝑟 << 𝑚𝑖𝑛(𝑚, 𝑛) [18]:

𝐿 [𝑀] = 𝐺𝐻𝑇 (2.15)

Here, 𝑀 is a structured matrix, 𝐺 and 𝐻 are 𝑚 × 𝑟 and 𝑛 × 𝑟 matrices. The rank 𝑟 is called
displacement rank of 𝑀 under operator 𝐿. 𝐺 and 𝐻 are low-displacement generators. Thus,
one of the advantages of the displacement operator is that if an inverse of displacement
operator 𝐿−1 [·] exists for a specific class, one can create structured matrices 𝑀 of this class
using 𝑀 = 𝐿−1 [𝐺𝐻𝑇][18].

One of the most widely used displacement operators is Sylvester displacement operator
(2.16), denoted by ∇𝐴,𝐵 : R𝑛×𝑛 → R𝑛×𝑛 [18].

∇𝐴,𝐵 [𝑀] = 𝐴𝑀 − 𝑀𝐵 (2.16)

14

2.3 Structured Matrices

• 𝑀 is a 𝑛 × 𝑛 structured matrix.

• 𝐴 and 𝐵 are 𝑛 × 𝑛 fixed matrices that should be chosen depending on the class of
structured matrices.

In the next sections, all structured matrices that are used in this thesis are described. How-
ever, firstly, the notations that are used frequently in the next subsections are explained.

2.3.1 Notations

1. 𝑑𝑖𝑎𝑔(𝑥) denotes a diagonal matrix where 𝑑𝑖𝑎𝑔(𝑥)𝑖𝑖 = 𝑥𝑖𝑖 and {𝑑𝑖𝑎𝑔(𝑥)𝑖 𝑗 = 0}𝑖≠ 𝑗 .

2. 𝐼𝑛 is a 𝑛 × 𝑛 identity matrix.

3. 0𝑛 is a 𝑛 long zero vector. 0𝑛×𝑚 is a 𝑛-by-𝑚 zero matrix.

4. 𝐹𝑛 denotes the 𝑛-by-𝑛 Discrete Fourier Transformation (DFT) matrix. The size of the
DFT matrix is specified only if it is not obvious.

5. fft(𝑥) denotes Fast Fourier Transformation (FFT) of the vector 𝑥. Since FFT is an algo-
rithm that calculates the DFT transformation, which can be computed as multiplication
of DFT matrix with 𝑥 vector, fft(𝑥) is equal to 𝐹𝑥. This equation is used frequently in
the next sections.

6. ifft(𝑥) denotes Inverse Fast Fourier Transformation (IFFT). Similarly to FFT, equation
ifft(𝑥) = 𝐹−1𝑥 is true.

7. 𝑥 ⊙ 𝑦 denotes element-wise (Hadamard) multiplication between 𝑥, 𝑦 ∈ R𝑛 so that
(𝑥 ⊙ 𝑦)𝑖 = 𝑥𝑖𝑦𝑖 and (𝑥 ⊙ 𝑦) ∈ R𝑛.

8. 𝑒1, · · · , 𝑒𝑛 are canonical basis vectors in R𝑛.

2.3.2 Circulant Matrix

Circulant matrices are square matrices with the structure described in the equation (2.13). A
specific feature of circulant matrices is that their eigenvectors can be chosen or rather scaled
to be equal to the columns of Discrete Fourier Transformation (DFT) matrix. Therefore, the
𝑛-by-𝑛 circulant matrix can be decomposed as [6, p. 32]:

𝐶 (𝑣) = 𝐹−1Λ𝐹 where Λ = 𝑑𝑖𝑎𝑔(𝐹𝑣) (2.17)

where 𝑣 ∈ R𝑛. Therefore, a vector 𝑥 ∈ R𝑛 can be multiplied with a Circulant Matrix using
FFT [18]:

𝐶 (𝑣)𝑥 = ifft(fft(𝑣) ⊙ fft(𝑥)) (2.18)

Since both FFT and Inverse FFT element-wise multiplication require only 𝑂 (𝑛 𝑙𝑜𝑔𝑛)
time, the matrix-vector multiplication with Circulant matrix (2.18) can also be performed in
𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time. 𝑛-by-𝑛 Circulant matrices can be described by 𝑛 free parameters.

15

2 Background

2.3.3 Toeplitz Matrix

Toeplitz matrices are square matrices that can be described by the following formula:

𝑇 (𝑣) =


𝑣𝑛 𝑣𝑛−1 · · · 𝑣1
𝑣𝑛+1 𝑣𝑛 · · · 𝑣2
...

...
. . .

...
𝑣2𝑛−1 𝑣2𝑛−2 · · · 𝑣𝑛


(2.19)

where 𝑣 ∈ R2𝑛−1 is a vector with free parameters.

As one can see in previous equation, there are some similarities between Toeplitz and
Circulant matrices. One can exploit these similarities and expand the 𝑛-by-𝑛 Toeplitz matrix
into the (2𝑛 − 1)-by-(2𝑛 − 1) Circulant matrix[6, p. 44], for example :

𝑇𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 (𝑣) =



𝑣𝑛 𝑣𝑛−1 · · · · · · 𝑣1 𝑣2𝑛−1 𝑣2𝑛−2 · · · 𝑣𝑛+1
𝑣𝑛+1 𝑣𝑛 · · · · · · 𝑣2 𝑣1 𝑣2𝑛−1 · · · 𝑣𝑛+2
...

...
. . .

. . .
...

...
. . .

. . .
...

𝑣2𝑛−2 𝑣2𝑛−3 · · · · · · 𝑣𝑛−1 𝑣𝑛−2 · · · 𝑣1 𝑣2𝑛−1
𝑣2𝑛−1 𝑣2𝑛−2 · · · · · · 𝑣𝑛 𝑣𝑛−1 · · · · · · 𝑣1
𝑣1 𝑣2𝑛−1 𝑣2𝑛−2 · · · · · · · · · · · · · · · 𝑣2

𝑣2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

𝑣𝑛−1 𝑣𝑛−2 · · · 𝑣1 𝑣2𝑛−1 𝑣2𝑛−2 · · · · · · 𝑣𝑛


(2.20)

here 𝑣 ∈ R2𝑛−1.

For ease of calculations, a permutationmatrix 𝑃 that satisfies 𝑃𝑣 = [𝑣𝑛, · · · , 𝑣2𝑛−1, 𝑣1, · · · , 𝑣𝑛−1]𝑇
where 𝑣 ∈ R2𝑛−1 was defined. This permutation matrix is given as:

𝑃 =

[
0𝑛×(𝑛−1) 𝐼𝑛
𝐼𝑛−1 0(𝑛−1)×𝑛

]
(2.21)

As suggested by [6, p. 45], using this permutation matrix and equation (2.17), one can
decompose the Toeplitz matrix:

𝑇 (𝑣) =
[
𝐼𝑛 0(𝑛−1)×𝑛

]
𝐶 (𝑃𝑣)

[
𝐼𝑛

0𝑛×(𝑛−1)

]
=
[
𝐼𝑛 0(𝑛−1)×𝑛

]
𝐹−1

2𝑛−1𝑑𝑖𝑎𝑔(𝐹2𝑛−1𝑃𝑣)𝐹2𝑛−1

[
𝐼𝑛

0𝑛×(𝑛−1)

] (2.22)

𝑇 (𝑣) = {(𝐹−1
2𝑛−1Λ𝐹2𝑛−1)𝑖 𝑗}𝑖, 𝑗∈[1,𝑛] where Λ = 𝑑𝑖𝑎𝑔(𝐹2𝑛−1𝑃𝑣) (2.23)

Similar to Circulant matrices, the matrix-vector multiplication with the Toeplitz matrix can be
performed in 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time. 𝑛-by-𝑛 Circulant matrices can be described by 2𝑛 − 1 free
parameters.

16

2.3 Structured Matrices

2.3.4 Toeplitz-like Matrix

Before discussing the Toeplitz-like Matrices, the 𝑓 -unit-circulant matrices 𝑍 𝑓 (2.24) and 𝑓 -
Circulant matrices 𝑍 𝑓 (𝑣) (2.25) should be defined [18]:

𝑍 𝑓 = [𝑒2, 𝑒3, · · · , 𝑒𝑛, 𝑓 𝑒1] =


0 0 · · · 𝑓
1 0 · · · 0
...

...
...

...
0 · · · 1 0


(2.24)

𝑍 𝑓 (𝑣) =



𝑣1 𝑓 𝑣𝑛 · · · 𝑓 𝑣3 𝑓 𝑣2
𝑣2 𝑣1 · · · 𝑓 𝑣4 𝑓 𝑣3
...

...
...

...
...

𝑣𝑛−1 𝑣𝑛−2 · · · 𝑣1 𝑓 𝑣𝑛
𝑣𝑛 𝑣𝑛−1 · · · 𝑣2 𝑣1


(2.25)

Here, both matrices are square 𝑛 × 𝑛 matrices. The special cases of 𝑓 -Circulant matrices
are 𝑍−1(𝑣), which is a skew-Circulant matrix [18], and 𝑍1(𝑣), which is an ordinary Circulant
matrix 𝐶 (𝑣) [18]. Below, two examples of these matrices are illustrated:

𝑍−1(
[
1 2 3

]𝑇) = 
1 −3 −2
2 1 −3
3 2 1

 (2.26)

𝑍1(
[
1 2 3

]𝑇) = 
1 3 2
2 1 3
3 2 1

 (2.27)

Toeplitz-like Matrices are square LDRmatrices that can be described by Sylvester displace-
ment operator ∇𝐴,𝐵 where 𝐴 = 𝑍1 and 𝐵 = 𝑍−1 [18]:

∇𝑍1,𝑍−1 [𝑀] = 𝐺𝐻𝑇 (2.28)

• 𝑀 is a 𝑛-by-𝑛 Toeplitz-like matrix

• 𝐺 and 𝐻 are 𝑛-by-𝑟 matrices where 𝑟 is a displacement rank of 𝑀 .

Toeplitz-like structures with displacement rank 𝑟 can be constructed from 𝑛 × 𝑟 low-
displacement generators𝐺 = [𝑔1, · · · , 𝑔𝑟] and𝐻 = [ℎ1, · · · , ℎ𝑟] that satisfy the equation
(2.28) using the following formula [18]:

𝑀 =
1
2

𝑟∑
𝑖=1

𝑍1(𝑔𝑖)𝑍−1(𝐽𝑛ℎ𝑖) (2.29)

where 𝐽𝑛 = [𝑒𝑛, 𝑒𝑛−1, · · · , 𝑒1] is the anti-identity reflection matrix [18].

17

2 Background

Therefore, one can generate the Toeplitz-like matrices with displacement rank 𝑟 from any
𝐺 = [𝑔1, · · · , 𝑔𝑟] 𝐻 = [ℎ1, · · · , ℎ𝑟] using the generalized form of the equation (2.29) [18]:

𝑀 =
𝑟∑
𝑖=1

𝑍1(𝑔𝑖)𝑍−1(ℎ𝑖) (2.30)

The advantage of this representation of Toeplitz-like Matrices is that one can use the FFT
algorithm to perform matrix-vector multiplication faster. The fast matrix-vector multiplication
with Circulant matrices was already described in the previous chapter (2.18). The fast multi-
plication with skew-Circulant matrices was shown in [18]:

𝑍−1(𝑣)𝑥 = 𝜂 ⊙ ifft(fft(𝜂 ⊙ 𝑣) ⊙ fft(𝜂 ⊙ 𝑥)) (2.31)

𝑍1(𝑣)𝑥 = ifft(fft(𝑣) ⊙ fft(𝑥)) (2.32)

• 𝑥 and 𝑣 are 𝑛 long vectors.

• 𝜂 = [1, 𝑧, 𝑧2, · · · , 𝑧𝑛−1]𝑇 where 𝑧 = 𝑛
√
−1 = 𝑒𝑥𝑝(𝑖 𝜋𝑛).

Thus, after combining the equations (2.30), (2.32), and (2.31), the product between a vector
𝑥 and the Toeplitz-like Matrix 𝑀 can be computed using the following formula [18]:

𝑀𝑥 =
𝑟∑
𝑖=1

𝑍1(𝑔𝑖)𝑍−1(ℎ𝑖)𝑥 = ifft

[
𝑟∑
𝑖=1

fft(𝑔𝑖) ⊙ fft(𝜂 ⊙ ifft(fft(𝜂 ⊙ ℎ𝑖) ⊙ fft(𝜂 ⊙ 𝑥)))
]

(2.33)
A critical property of Toeplitz-Like matrices built using the equation (2.30) is that if the entries

of 𝐺 and 𝐻 matrices are statistically independent with zero mean and standard deviation
equal to 𝜎, the entries of resulting Toeplitz-like matrix will have deviation equal to 𝜎2 and
zero mean. To prove it, one can rewrite the equation (2.30):

𝑀𝑖 𝑗 =
𝑟∑

𝑚=1

𝑛∑
𝑘=1

[𝑍1(𝑔𝑚)]𝑖𝑘 · [𝑍−1(ℎ𝑚)]𝑘 𝑗 (2.34)

𝑣𝑎𝑟 (𝑀𝑅𝑉) = 𝑟𝑛 𝑣𝑎𝑟 (𝐺𝑅𝑉 · 𝐻𝑅𝑉) (2.35)

Here, 𝑀𝑅𝑉 , 𝐺𝑅𝑉 , and 𝐻𝑅𝑉 are random variables from the distributions which 𝑀 , 𝐺 and
𝐻 matrices entries belong to. I assumed here that the distribution of 𝐺𝑅𝑉 and 𝐻𝑅𝑉 are
symmetrical with zero mean so that the changing of sign does not affect the distribution.
Another conclusion from the equation (2.34) is that for 𝑟𝑛 → ∞ the weights’ distribution will
be Gaussian.

Similarly to Circulant matrices, the matrix-vector multiplication with Toeplitz-like matrices
can be performed in 𝑂 (𝑟𝑛 𝑙𝑜𝑔 𝑛) time. However, the number of FFT calculations required
for Toeplitz-like matrices is higher as by Circulant matrices. 𝑛-by-𝑛 Toeplitz-like matrices can
be described by 2𝑟𝑛 free parameters.

18

2.3 Structured Matrices

2.3.5 Fastfood Transformation Matrix

Fastfood Transformation was proposed in 2013 by [14] as a tool for the approximation of ker-
nel expansions. Fastfood Transformation was based on the Random Kitchen Sinks algorithm,
in which the input is multiplied with a Gaussian random matrix, and a non-linear function is
applied to the outputs. Fastfood Transformation works similarly but requires only𝑂 (𝑛 𝑙𝑜𝑔 𝑑)
time in opposite to 𝑂 (𝑛𝑑) in Random Kitchen Sinks. Here, 𝑛 and 𝑑 are input and output
dimensions respectively [14].

The main step of Fastfood Transformation is the multiplication of inputs with the Fastfood
Transformation matrix, which I have discussed in this subsection. Fastfood Transformation
matrices are square 2𝑛-by-2𝑛 matrices that can be described by the following equation [14]:

𝑉 = 𝑆𝐻𝐺Π𝐻𝐵 (2.36)

• 𝑑 = 2𝑛 is input and output dimensions of the single matrix.

• Binary scaling matrix 𝐵 is a diagonal matrix with 𝐵𝑖𝑖 ∈ {−1, 1}. One of the impacts of
𝐵 matrix is that the components of rows in 𝐻𝐺Π𝐻𝐵 have zero correlation [14].

• 𝐻 is the Wash-Hadamard matrix. Wash-Hadamard matrices always have the 2𝑙-by-2𝑙
shape, where 𝑙 ∈ N. Therefore, the whole Fastfood Transformation matrix can only
be a square 2𝑙-by-2𝑙 matrix.

• Π ∈ 0, 1𝑑×𝑑 is a permutation matrix.

• Gaussian scaling matrix𝐺 is a diagonal matrix which entries are generated by standard
normal distributionN(0, 1)

• As a result, 𝐻𝐺Π𝐻𝐵 entries are from Gaussian DistributionN(0, 𝑑) [14].

• Scaling matrix 𝑆 is a diagonal matrix with random entries that are used to control the
length distribution of rows in𝑉 . Without 𝑆, every row in𝐻𝐺Π𝐻𝐵 has the same length
𝑙2 := [(𝐻𝐺Π𝐻𝐵)(𝐻𝐺Π𝐻𝐵)𝑇] 𝑗 𝑗 =

∑
𝑖 𝐺

2
𝑖𝑖𝑑 [14].

Rescaling of the lengths is necessary for kernel approximation where different distributions of
𝑆 correspond with different kernels. However, if the Fastfood Transformation matrix is used
in ELM as an input matrix, there is no particular need for having rows with different lengths.
Therefore, in this thesis, I have not used a Scaling matrix 𝑆. In this case, if it is desired that
the standard deviation of the entries is 𝜎 ∈ R, one can scale 𝐻𝐺Π𝐻𝐵 with 𝜎√

𝑑
.

Matrix-vector multiplication with theWalsh-Hadamardmatrix𝐻 can be calculated using Fast
Hadamard Transform in 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time. 𝑛-by-𝑛 Binary scaling matrix 𝐵, permutation ma-
trix Π, and Gaussian scaling matrix 𝐺 each have only 𝑛 elements. Therefore, vector-matrix
multiplication with these matrices can be performed in 𝑂 (𝑛) time. Thus, the Fastfood Trans-
formation requires only 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) time. Additionally, the Fastfood Transformation matrix

19

2 Background

can be built using 4𝑛 free parameters, where 𝑛 parameters are used for permutation matrix,
and other 𝑛 parameters are integer numbers from the set {−1, 1}.

2.3.6 Vandermonde Matrix

Vandermonde matrix has the following structure:

𝑉 (𝑣) =


1 𝑣1 𝑣2

1 · · · 𝑣𝑛−1
1

1 𝑣2 𝑣2
2 · · · 𝑣𝑛−1

2
...

...
...

. . .
...

1 𝑣𝑛 𝑣2
𝑛 · · · 𝑣𝑛−1

𝑛


(2.37)

where 𝑣 ∈ R𝑛 is a vector with free parameters.
Matrix-vector multiplication with the Vandermonde matrix can be performed in𝑂 (𝑛 𝑙𝑜𝑔2 𝑛)

time [18]. 𝑛-by-𝑛 Vandermonde contains 𝑛 free parameters.

2.3.7 Overview

In the following table, the information of this section is summarized. A non-structured matrix
was added as a reference. The following notation was used:

1. 𝑃𝑅𝑉 is a random variable of free parameters,𝐺𝑅𝑉 and 𝐻𝑅𝑉 are random variables of
low-displacement generators’ entries from the equation (2.30). I made an assumption
here that𝐺𝑅𝑉 and𝐻𝑅𝑉 distributions are symmetrical with zero mean. 𝐷 (𝑋) denotes
the distribution of some random variable 𝑋 .

2. 𝑟𝑑 is a displacement rank. 𝑛 is an input dimension. In the case of the Fastfood Trans-
formation matrix, 𝑛 = 2𝑙 where 𝑙 ∈ N. 𝑚 is an output dimension of non-structured and
Low-Rank matrices.

3. ’NFR’ is a number of free parameters. ’Mul. Time’ is matrix-vector multiplication time.
’Ref.’ denotes references, ’Eq.’ means equation. Entries distribution was given with
respect to the equation in ’Eq.’ column.

Name Size NFR Mul. Time Eq. Entries Distribution Ref.
Circulant 𝑛-by-𝑛 𝑛 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) (2.13) 𝐷 (𝑃𝑅𝑉) [6]
Toeplitz 𝑛-by-𝑛 2𝑛 − 1 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) (2.19) 𝐷 (𝑃𝑅𝑉) [6]
Toeplitz-like 𝑛-by-𝑛 2𝑟𝑑𝑛 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) (2.30) 𝐷 (∑𝑟𝑑𝑛

𝑖=0 𝐺𝑅𝑉 𝑖𝐻𝑅𝑉 𝑖) [18]
Fastfood 2𝑙-by-2𝑙 4𝑛 𝑂 (𝑛 𝑙𝑜𝑔 𝑛) (2.36) Gaussian [14]
Vandermonde 𝑛-by-𝑛 𝑛 𝑂 (𝑛 𝑙𝑜𝑔2 𝑛) (2.37) - -
Low-Rank 𝑛-by-𝑚 𝑛𝑟 + 𝑟𝑚 𝑂 (𝑛𝑟 + 𝑟𝑚) (2.14) 𝐷 (∑𝑟

𝑖=0 𝑃𝑅𝑉 𝑖𝑃𝑅𝑉 𝑖+𝑟) [4]
Non-structured 𝑛-by-𝑚 𝑛𝑚 𝑂 (𝑛𝑚) - 𝐷 (𝑃𝑅𝑉) -
Matrix

20

3 Design of Experiments

The main goal of the experiments was to investigate the performance of the Extreme Learning
Machine (ELM) with structured matrices as input weight matrices in terms of accuracy. In
this thesis, only the standard versions of ELM proposed by [10] with one hidden layer and
randomly initialized input weight matrix was tested. In this context, a randomly initialized
matrix means that all entries were randomly initialized in the case of a non-structured matrix,
and free parameters were randomly initialized in the case of a structured matrix. The general
procedure of my experiments was as follows:

Firstly, ELMs with different weight input matrices were implemented: classical ELM with
non-structured matrices, Circulant ELM with Circulant matrices, Toeplitz ELM with Toeplitz
matrices, Toeplitz-like ELM with Toeplitz-like matrices, Fastfood ELM with Fastfood Transfor-
mation matrices, Vandermonde ELM with Vandermonde matrices, and Low-Rank ELM with
low-rank matrices. For implementation, Tensorflow and Keras were used to calculate the
hidden layer’s outputs. For linear regression, the least-squares algorithm provided by NumPy
was used for function approximation, and sklearn’s implementation of Ridge Regression
Classifier was used for classification problems.

Since the experiments aimed to investigate only the prediction performance, fast matrix-
vector multiplication algorithms of structured matrices were not used. Instead, the input
matrices were just built from free parameters and multiplied with input vectors as a standard
matrix.

Then, the classical ELM was tested with different parameters to choose the appropriate
hyperparameters. Finally, implemented ELMs were tested with different numbers of neurons
on four datasets. These steps are described more extensively in the next sections.

3.1 Replacement of Rectangular Input Weight Matrices

As shown in Table 2.3.7, almost all structured matrices are square matrices. Relatively, the
replacement of rectangular input weight matrix with structured matrix is not trivial. In this
section, the replacement process is explained.

• It is assumed that 𝑑 is number of inputs, and 𝑛 is number of hidden layer neurons. ⌈·⌉
denotes the ceil function.

21

3 Design of Experiments

• For Fastfood Transformation matrix (which can only have dimensions that are numbers
of the form 2𝑙 where 𝑙 is an integer), if 𝑑 is not in the form 2𝑙 , zeros were attached to
the input vectors till the dimension of the input vector became 2𝑙 . The resulting input is
referred to as 𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 = 2 ⌈𝑙𝑜𝑔2 (𝑑) ⌉ . After that, ⌈𝑛/𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⌉ Fastfood matrices
with the shape 𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 × 𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 were stacked. Then, if the output dimension
⌈𝑛/𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⌉ · 𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 was greater than the desired output dimension 𝑛, the
products between inputs and input weight matrix were pruned.

• For Toeplitz-like, Toeplitz, Circulant, and Vandermonde matrices, the implementation
can be interpreted as follows: firstly, a square structured matrix with the dimension
𝑑𝑖𝑚𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑛, 𝑑) was created. Then, this matrix was pruned to achieve the
desired size 𝑛×𝑑. The parameters that do not have any impact on the the pruned final
matrix and are unnecessary to describe this matrix are not counted as free parameters
in this thesis. For example, the pruned Toeplitz matrix

𝑇𝑝𝑟𝑢𝑛𝑒𝑑 =


3 2
4 3
5 4

 (3.1)

requires only four free parameters.

The resulting numbers of free parameters that are required to build the structured input weight
matrices in the way explained in this section are the following:

• 4 · ⌈𝑛/𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⌉ · 𝑑𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 for Fastfood matrix.

• 2𝑟 · 𝑚𝑎𝑥(𝑛, 𝑑) for Toeplitz-like matrices with low displacement rank 𝑟 .

• 𝑛 + 𝑑 − 1 for Toeplitz matrix.

• 𝑚𝑎𝑥(𝑛, 𝑑) for Circulant matrix.

• 𝑛 for Vandermonde matrix.

3.2 Datasets

I used four datasets in my experiments: California Housing, Pima Indians Diabetes, Forest
Cover Type, and MNIST. California Housing dataset was obtained from StabLib repository1

using the tools provided by sklearn framework. This dataset originates from [13]. According to
the documentation of sklearn, this dataset describes the averaged housing prices in different
districts of California. It contains 20,650 samples with eight numeric features and one target,
which is the averaged house price.

1http://lib.stat.cmu.edu/datasets/

22

3.3 Preprocessing

Pima Indians Diabetes Database (later Diabetes dataset) was downloaded from the Kaggle
website2. According to the website documentation, the dataset originates from National
Institute of Diabetes and Digestive and Kidney Diseases, and [19] were among the first
researchers who used this dataset in Machine Learning and published their results. The
dataset contains 768 instances that consist of eight numeric features and one target, which is
either a positive or a negative outcome of diabetes diagnosis. 500 of 768 samples (≈ 65, 1%)
belong to the class with negative outcome.

Forest Cover Type Dataset (later Forest dataset) was also downloaded from the Kaggle
website3. However, the dataset’s original source is Machine Learning Repository4 of Center
for Machine Learning and Intelligent System in the University of California. According to the
website, the dataset contains observations of trees within a 30×30 𝑚 cell in Roosevelt Na-
tional Forest in Colorado. The dataset includes 518,012 samples with 54 numerous features
and one target, the cover type, an integer number ranging from 1 to 10. In the experiments, I
tried to predict wether the sample belongs to the second cover type, which 283,031 samples
(≈ 54%) belong to.

MNIST5 is a frequently used dataset in Machine Learning that originates from [15]. The
database contains 70,000 black-white pictures of handwritten digits with 28×28 pixels. Con-
sequently, each instance consists of 784 features in the range between 0 and 255 and one
output target, which is the resulting digit. The MNIST dataset is divided into the 60,000 training
and 10,000 test samples. In my experiments, to simplify the classification problem, I tried to
predict only two classes: first class is number nine, the second is other numbers. Approxi-
mately 9,95% of all samples are pictures of nine.

3.3 Preprocessing

Firstly, the data had to be divided into training and test sets. As was mentioned in the previous
section, MNIST database was already divided. In other datasets, the test-training used by [10]
were used:

• California Housing: 8,000 training and 12,640 test samples.

• Diabetes dataset: 576 training and 193 test samples.

• Forest dataset: 100,000 training and 481,012 test samples.

The samples were shuffled before dividing.

2https://www.kaggle.com/uciml/pima-indians-diabetes-database
3https://www.kaggle.com/uciml/forest-cover-type-dataset
4https://archive.ics.uci.edu/ml/datasets/Covertype
5http://yann.lecun.com/exdb/mnist/

23

3 Design of Experiments

0 50 100 150 200 250
Pixel Value

0
10
20
30
40
50
60
70
80

Pe
rc
en
ta
ge
 o
f P

ix
el
s (
%
)

MNIST Pixels

Figure 3.1: Histogram with pixel values.

Before the experiments were conducted, input data was normalized to zero mean and
unit variance for all datasets except MNIST. In MNIST, the input was normalized to the
range between 0 and 1. The reason for that is the unusual distribution of input features: as
illustrated in figure 3.1, the distribution is very skewed to the left. Additionally, ≈ 80, 86% of
all pixels have the exact value of zero, and ≈ 7, 3% of pixels have values between 250-255.
Therefore, an ordinary scaling with 1

255 seems to be a decent idea.

In classifications problems, i.e., in all datasets except California Housing, -1 and 1 were
assigned to different output labels. In California Housing, the output was normalized to zero
mean and unit variance.

3.4 Hyperparameters

Three hyperparameters were to be chosen: activation function, distributions of weights and
biases, and regularizations values of linear regression.

3.4.1 Activation Function

Sigmoid activation function was used in all experiments, because it is one of the most common
activation functions in ELM [1]. Moreover, this function was used in the experiments of [10],
which were taken as reference for design of my experiments on the California, Diabetes and
Forest datasets. Furthermore, HP-ELM - ELM implementation created by [1], which was used
in my experiments as reference ELM - was optimized for sigmoid activation function [1]. The
sigmoid function was plotted in figure (3.2) and the equation given in the caption.

24

3.4 Hyperparameters

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

0.00

0.25

0.50

0.75

1.00
f(x

)
Sigmoid Function

Figure 3.2: Sigmoid function 𝑓 (𝑥) = 1
1+𝑒−𝑥 .

3.4.2 Distributions of Weights and Biases

The weights of non-structured matrices and the free parameters of structured matrices were
drawn from N(0, 1√

𝑑
) where 𝑑 is a number of inputs. Biases were drawn from N(0, 1).

MNIST database was an exception: here, weights and free parameters were drawn from
N(0, 6√

𝑑
), which is rationalized among other decisions in this subsection. Additionally,

after the weights were initalized, they were rescaled with 𝜎𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝜎𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

where 𝜎 denotes the
standard deviations, so that the final deviation is exactly equal to the desired deviation. The
desired variation is the variation used for initialization. In the following, it is explained why
these distributions were chosen and why the weights were rescaled after initialization.

Since the input weights and hidden layers’ biases are not adjusted in ELM, the choice of
the right distribution can be crucial for the results. As explained by [1], if the variance of
the weights is too high, then the activation function’s inputs will also have a high variance;
therefore, the output of the sigmoid function would be mostly 0 or 1. From another point
of view, if the weights’ variance is too low, the input of the activation functions will change
within an extremely small range. Thus, the sigmoid function would work similarly to the linear
function.

Therefore, it is important to ensure that the input of the sigmoid activation function is
mostly in the appropriate interval. This input can be calculated using the formula 𝑖𝑛𝑝𝑢𝑡 =∑𝑑

𝑖=0 𝑥𝑖𝑤𝑖 + 𝑏 where 𝑑 is a number of inputs, 𝑤 and 𝑥 are weight and input vectors respec-
tively, and 𝑏 is a bias. To avoid misunderstandings, I referred to the variance of the 𝑖𝑛𝑝𝑢𝑡
in the previous equation as ’pre-nonlinearity activation variance’. If one assumes that the
components 𝑥𝑖𝑤𝑖 of this summation term are statistically independent of each other, 𝑥 was
normalized to zero mean and unit variance, and 𝑤 has zero mean, one can calculate the

25

3 Design of Experiments

1 2 3 4 5 6 7 8 9 10 11 12
s

0.974

0.975

0.976

0.977

0.978

0.979
Ac
cu
ra
cy
 sc

or
e

MNIST Accuracy Score for 1000 Neurons in Hidden Layer
Testing
Training

Figure 3.3: Comparison of different 𝑠 on the MNIST dataset. The weights were drawn fromN(0, 𝑠√
𝑑
)

where 𝑑 is an input dimension. The averaged accuracy score and standard deviation after 50 trials
are shown.

pre-nonlinearity activation variance as [1]:

𝑣𝑎𝑟 (
𝑑∑
𝑖=0

𝑤𝑖𝑥𝑖 + 𝑏) =
𝑑∑
𝑖=0

𝑣𝑎𝑟 (𝑤𝑖𝑥𝑖 + 𝑏) =
𝑑∑
𝑖=0

𝑤2
𝑖 = 𝑑 𝑣𝑎𝑟 (𝑤) (3.2)

Hence, [1] recommends to use the following parameters for initialization of weights and
biases: zero mean for both weights and biases, weights’ variation equal to 𝑠√

(𝑑)
where 𝑠 is

near 1, and biases’ variation equal to 1. That was also shown in the experiments done by
[1]. However, in MNIST, the input data was not centered and normalized to unit variance.
Because of this, different 𝑠 parameters were tested, and based on the result 𝑠 = 6 was
chosen (figure 3.3).

Another question could be why Gaussian distribution was chosen, and not uniform dis-
tribution. There are three main reasons for that: firstly, normal distribution seems to be
common for ELMs and was used by [1], whose recommendations I followed. Secondly,
normal distribution showed slightly better results in my experiments, see figure 3.4. Finally,
for Fastfood Transformation and Toeplitz-like matrices, only normally distributed weights were
possible; thus, in order to make the comparison fair, all matrices were initialized using normal
distribution.

However, while for almost all structured matrices, initialization of free parameters using
normal distribution leads to weights being normally distributed, it is not the case for Toeplitz-
like matrices. According to the equation (2.34), in this case, the weights of the Toeplitz-like
matrices belong to the distribution of the sum of products of two centered independent normal
random variables. These distributions were plotted in figure 3.5. However, the distribution
already becomes very close to the Gaussian distribution in the case of only nine inputs.

26

3.4 Hyperparameters

Norm. Weights
 Norm. Bias

Norm. Weights
 Unif. Bias

Unif. Weights
 Norm. Bias

Unif. Weights
 Unif. Bias

0.138

0.140

0.142

0.144
RM

SE
(n
or
m
al
ize

d)
California Results for 30 Neurons in Hidden Layer
Testing
Training

Figure 3.4: Comparison between initialization using normal (’Norm.’) and uniform (’Unif.’) distributions
on the California Dataset. The averaged normalized RMSE and standard deviation after 50 trials are
shown. In all four cases, the same variance and mean were used.

Therefore, free parameters of Toeplitz-like matrices were also initialized using the Gaussian
distribution.

The last question is why the weights were rescaled after the initialization. The primary
cause is that the weights’ variance of Toeplitz-like matrices increases quadratically with a
linear increase of free parameters’ variation because of the equation (2.35). Therefore, the
weights were rescaled after initialization, which led to better results than in other ELMs. Hence,
to make the comparison fair, weights were rescaled in all ELMs.

3.4.3 Regularizations Values

To find the proper regularization values, I ran several tests with different regularization values
on classical ELM. In result, the following values were chosen:

• California Housing dataset: 𝑟𝑐𝑜𝑛𝑑 = 10−6 for least square method provided by
NumPy. According to the NumPy documentation, 𝑟𝑐𝑜𝑛𝑑 is ”cutoff for small singu-
lar values.” That means that the singular values that are smaller than the maximum
value times 10−6 were removed after singular value decomposition.

• Diabetes and Forest datasets: Ridge parameter was set to 10−9 (𝛼 in equation (2.12)).

• MNIST: Ridge parameter was set to 10−11.

3.4.4 High-Performance Extreme Learning Machines

In order to have some reference, another implementation of ELM was included in the exper-
iments. The name of this implementation is ’High-Performance Extreme Learning Machines’

27

3 Design of Experiments

−6 −4 −2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Density Plot

X∼(0, 1)
X1 ⋅X2

1
3

9
∑
i=1

Xi ⋅Xi+9

Figure 3.5: Density plots of standard normal variable, product of two standard normal independent
random variables, and sum of 9 such products divided by 3. Indexes were used to emphasize that
variables are independent.

(HP-ELM). HP-ELM was developed by [1]. I used the same hyperparameters for HP-ELM as
for other ELMs except for regularization values and weights and biases distributions, because
both aspects are regulated internally by HP-ELM and are not supposed to be changed by the
user, i.e., there is no interface for these hyperparameters. The regularization of HP-ELM is
comprehensively described in [1], and the weights and biases distributions areN(0, 2√

𝑑
) and

N(0, 1) respectively.

28

4 Results and Discussion

In this section, firstly, the accuracy performance of implemented ELMs on every dataset is
presented. Then, the number of required free parameters for different input weight matrices
are shown, and finally, the results are discussed.

4.1 Results

In this section, results on four datasets are presented: California Housing dataset, Pima Indian
Diabetes dataset, Forest Cover Type dataset, and MNIST dataset.

4.1.1 California Housing Dataset

The results of the experiments on the California Housing dataset are shown in Figure 4.1. The
Low-Rank and Vandermonde ELMs had relatively high normalized RMSE (later just RMSE)
values and therefore are not included in this Figure. Instead, the results of these ELMs are
illustrated in Table 4.1. The ranks of two Low-Rank ELMs were chosen to be 7 and 4. These
numbers are equal to 7

8 and 1
2 of the inputs number respectively.

As one can see in Figure 4.1, all implemented ELMs, except for Low Rank and Vander-
monde ELMs, have similar accuracy values. Only the RMSE values of Low-Rank and Van-
dermonde ELMs are higher and have greater standard deviation, i.e., these ELMs are less
stable. Another interesting observation is that Low-Rank matrices have an atypically high
training RMSE deviation, and the Vandermonde ELM has a very low generalization property,
i.e., the difference between training and testing results is significant.

Name
RMSE Mean RMSE Dev.

Training Testing Training Testing
Classical 0.1296 0.1340 0.0010 0.0015
Circulant 0.1297 0.1341 0.0010 0.0014
Low-Rank with 𝑅𝑎𝑛𝑘 = 7 0.1369 0.1435 0.0069 0.0070
Low-Rank with 𝑅𝑎𝑛𝑘 = 4 0.1653 0.1748 0.0160 0.0192
Vandermonde 0.1450 0.2207 0.0016 0.0933

Table 4.1: Results on the California Housing dataset for 75 neurons in hidden layer. The averaged
normalized RMSE and standard deviation (RMSE Dev.) after 50 trials is shown.

29

4 Results and Discussion

20 25 30 35 40 45 50 55 60 65 70 75
Number of Neurons in Hidden Layer

0.135

0.140

0.145

0.150
RM

SE
(n
or
m
al
ize

d)

California Housing Test Results
Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

20 25 30 35 40 45 50 55 60 65 70 75
Number of Neurons in Hidden Layer

0.130

0.135

0.140

0.145

0.150

RM
SE
(n
or
m
al
ize

d)

California Housing Training Results
Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

HP-ELM Classical Fastfood Toeplitz-like
 D. Rank 2

Toeplitz Circulant

ELM Types

0.128

0.130

0.132

0.134

0.136

RM
SE
(n
or
m
al
ize

d)

California Housing Results for 75 Neurons in Hidden Layer
Testing
Training

Figure 4.1: Test and training scores of different ELMs on the California Housing dataset. The aver-
aged normalized RMSE and standard deviation of 50 trials is shown. The Toeplitz-like matrix has a
displacement rank (’D. Rank’) equal 2.

30

4.1 Results

4.1.2 Pima Indian Diabetes Dataset

The results of the experiments on the Pima Indian Diabetes dataset are shown in Figures
4.2 and 4.3. Because the Vandermonde and Low-Rank matrices had relatively low prediction
accuracies, they are not included in the first two subfigures. Instead, their results are illus-
trated in the last subfigure. The ranks of two Low-Rank ELMs were chosen to be 7 and 4. As
in the previous section, these numbers are equal to 7

8 and 1
2 of the inputs number respectively.

The results in Figure 4.2 and in the first subfigure of 4.3, especially the training results, can
be divided into two areas or cases: 4-8 neurons and 10-28 neurons. In the second area, all
included ELMs show similar accuracies. In the first area, one can divide included ELMs into
three groups: Classical and Fastfood ELMs with the best accuracies, the Circulant ELM with
the worst accuracy, and other ELMs, which lay between two other groups and are very close
to the first group. However, one should take into account that the number of neurons in the
first area is lower than the number of inputs (which is 8). Therefore, it can be considered as
an extreme case.

In the second subfigure of 4.3, one can see again that Vandermonde and Low-Rank ELMs
show very low accuracy values. Moreover, Low-Rank ELMs also have high standard devia-
tion, which means that they are unstable.

4 6 8 10 12 14 16 18 20 22 24 26 28
Number of Neurons in Hidden Layer

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ac
cu
ra
cy
 S
co
re

Diabetes Test Accuracy Score

Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

Figure 4.2: Test and training accuracy scores of different ELMs on the Diabetes dataset. The mean
and standard deviation of 50 trials is shown. The Toeplitz-like matrix has a displacement rank equal 2.

31

4 Results and Discussion

4 6 8 10 12 14 16 18 20 22 24 26 28
Number of Neurons in Hidden Layer

0.650

0.675

0.700

0.725

0.750

0.775

0.800
Ac

cu
ra

cy
 S

co
re

Diabetes Training Accuracy Score

Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

HP-ELM Classical Fastfood Toeplitz-
-like

 D. Rank 2

Toeplitz Circulant Low-
-Rank

 Rank 7

Low-
-Rank

 Rank 4

Vander-
 monde

ELM Types

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

 S
co

re

Diabetes Dataset Results for 12 and 28 Neurons in Hidden Layer

Testing/28 Neur.
Training/28 Neur.
Testing/12 Neur.
Training/12 Neur.

Figure 4.3: Test and training accuracy scores of different ELMs on the Diabetes dataset. The mean
and standard deviation of 50 trials is shown. The Toeplitz-like matrix has a displacement rank (’D.
Rank’) equal 2.

4.1.3 Forest Cover Type Dataset

The results of the experiments on the Forest Cover Type dataset are shown in Figures 4.4
and 4.5. As in the previous sections, Vandermonde and Low-Rank ELMs are not included
in Figure 4.4. The results of Low-Rank ELMs are illustrated in Figure 4.5. The ranks of
Low-Rank ELMs were chosen to be 45 and 27. These numbers are equal to 5

6 and 1
2 of the

inputs number (54) respectively. The Vandermonde ELM’s results are shown in Table 4.2.

All ELMs showed similar accuracies except for Low-Rank and Vandermonde ELMs. The

32

4.1 Results

800 1000 1200 1400 1600 1800
Number of Neurons in Hidden Layer

0.805

0.810

0.815

0.820

0.825

0.830
Ac

cu
ra

cy
 S

co
re

Forest Dataset Test Accuracy Score
Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

800 1000 1200 1400 1600 1800
Number of Neurons in Hidden Layer

0.810

0.815

0.820

0.825

0.830

0.835

Ac
cu

ra
cy

 S
co

re

Forest Dataset Training Accuracy Score
Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

Figure 4.4: Test and training accuracy scores of different ELMs on the Diabetes dataset. The mean
and standard deviation of 50 trials is shown. The Toeplitz-like matrix has a displacement rank equal 2.

results of the Vandermonde ELM were significantly lower than those of other ELMs. The
Low-Rank ELMs showed slightly worse results than other ELMs. Even the Low-Rank ELM
with the rank 45, which is equal to 5

6 of the inputs number (54), was among the ELMs with
the worst results. The Low-Rank ELM with the rank equal to 27 (1

2 of the inputs number) had
the second worst results after the Vandermonde ELM. One should also take into account that
such high ranks as 27 and 54 do not reduce the memory requirements significantly.

33

4 Results and Discussion

HP-ELM Classical Fastfood Toeplitz-
-like

 D. Rank 2

Toeplitz Circulant Low-
-Rank

 Rank 45

Low-
-Rank

 Rank 27
ELM Types

0.822

0.824

0.826

0.828

0.830

0.832

0.834

0.836
Ac

cu
ra
cy
 S
co

re

Forest Dataset Results for 1800 Neurons in Hidden Layer
Testing
Training

Figure 4.5: Test and training accuracy scores of different ELMs on the Forest dataset. The mean and
standard deviation of 12 trials is shown. The Toeplitz-like matrix has a displacement rank (’D. Rank’)
equal 2.

Name
Acc. Mean Acc. Dev.

Training Testing Training Testing
Classical 0.8316 0.8248 0.00095 0.00084
Toeplitz-like 0.8311 0.8243 0.00130 0.00124
Low-Rank with 𝑅𝑎𝑛𝑘 = 45 0.8309 0.8244 0.00145 0.00118
Low-Rank with 𝑅𝑎𝑛𝑘 = 27 0.8299 0.8230 0.00125 0.00116
Vandermonde 0.7426 0.7390 0.00946 0.00955

Table 4.2: Results on the Forest dataset for 1800 neurons in hidden layer. The averaged accuracy
scores (’Acc. Mean’) and standard deviations (’Acc. Dev.’) after 12 trials are shown. The Toeplitz-like
matrix has a displacement rank equal 2.

4.1.4 MNIST Dataset

The results of the experiments on the MNIST dataset are shown in Figure 4.6. Two ex-
periments were conducted: in the first experiment, pixels were not shuffled. In the second
experiment, the pixels of all samples were shuffled using the same permutation matrix. The
second experiment was conducted to prove the assumption that the locality or order of fea-
tures can have an impact on the accuracy of the Circulant, Toeplitz and Toeplitz-like ELMs.
This assumption is explained with an example of Circulant matrix in the ’Discussion’ section.

As in the previous sections, Vandermonde and Low-Rank ELMs are not included in Figure
4.6 and in the fist two subfigures of Figure 4.7. The ranks of Low-Rank ELMs were chosen
to be 686 and 392. These numbers are equal to 7

8 and 1
2 of the inputs number (784) re-

34

4.1 Results

4000 6000 8000 10000 12000
Number of Neurons in Hidden Layer

0.985

0.986

0.987

0.988

0.989

0.990

0.991
Ac

cu
ra
cy
 S
co

re
MNIST Dataset Test Accuracy Score

Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

4000 6000 8000 10000 12000
Number of Neurons in Hidden Layer

0.988

0.990

0.992

0.994

0.996

Ac
cu

ra
cy

 S
co

re

MNIST Dataset Training Accuracy Score

Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

Figure 4.6: Test and training accuracy scores of different ELMs on the MNIST dataset. The means
and standard deviations of 6 trials are shown. The Toeplitz-like matrix has a displacement rank equal
2.

spectively. The Low-Rank ELMs’ results are illustrated in the last subfigure of Figure 4.6, the
Vandermonde ELM’s results in Table 4.3.

For the MNIST Dataset, in the first experiment (Figure 4.6), one can divide the included
ELMs into two groups: Classical and Fastfood ELMs with the best results and other ELMs,
which have slightly worse results. However, the difference between test accuracy values of
these groups is only ≈ 0.2% for 4000 neurons and ≈ 0.1% for 12000 neurons. Further-
more, after the pixels were shuffled (Figure 4.7), all ELMs - except for Vandermonde and
Low-Rank ELMs - showed similar results. As with the previous datasets, the Low-Rank and
Vandermonde ELMs showed lower accuracies than other ELMs.

35

4 Results and Discussion

In order to examine the impact of the free parameters number on the accuracy performance,
the Toeplitz-like ELMs with different low displacement ranks were tested, and the results are
illustrated in Figure 4.8. According to this figure, it seems that low displacement rank and
therefore the number of free parameters has a negligible impact on the accuracy score.

Name
Acc. Mean Acc. Dev.

Training Testing Training Testing
Classical 0.9898 0.9880 2,83 × 10-4 7,23 × 10-4

Toeplitz-like 0.9895 0.9876 2,83 × 10-4 4.86 × 10-4

Low-Rank with 𝑅𝑎𝑛𝑘 = 686 0.9896 0.9877 1.80 × 10-4 4.91 × 10-4

Low-Rank with 𝑅𝑎𝑛𝑘 = 392 0.9893 0.9875 2.87 × 10-4 2.58 × 10-4

Vandermonde 0.9007 0.8988 2.14 × 10-4 2.79 × 10-4

Table 4.3: Results on the MNIST dataset for 4000 neurons in the hidden layer. The pixels of im-
ages were shuffled for all samples using the same permutation matrix. The averaged accuracy scores
(’Acc.’) and standard deviations (’Acc. Dev.’) after 12 trials are shown. The Toeplitz-like matrix has a
displacement rank equal 2.

36

4.1 Results

4000 6000 8000 10000 12000
Number of Neurons in Hidden Layer

0.987

0.988

0.989

0.990

0.991

0.992
Ac
cu
ra
cy
 S
co
re

MNIST Dataset Test Accuracy Score for Shuffled Pixels

Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

4000 6000 8000 10000 12000
Number of Neurons in Hidden Layer

0.990

0.992

0.994

0.996

Ac
cu
ra
cy
 S
co
re

MNIST Dataset Training Accuracy Score for Shuffled Pixels

Classical ELM
Toeplitz ELM
Circulant ELM
Fastfood ELM
Toeplitz-like ELM
HP-ELM

HP-ELM Classical Fastfood Toeplitz-
-like

 D. Rank 2

Toeplitz Circulant Low-
-Rank

 Rank 686

Low-
-Rank

 Rank 392
ELM Types

0.990

0.992

0.994

0.996

Ac
cu
ra
cy
 S
co
re

MNIST Dataset with Shuffled Pixels for 10000 Neurons in Hidden Layer

Testing
Training

Figure 4.7: Test and training accuracy scores of different ELMs on the MNIST dataset. The pixels of
images were shuffled for all samples using the same permutation matrix. The means and standard
deviations of 6 trials are shown. The Toeplitz-like matrix has a displacement rank equal 2.

37

4 Results and Discussion

4000 6000 8000 10000 12000
Number of Neurons in Hidden Layer

0.984

0.985

0.986

0.987

0.988

0.989

0.990

0.991
Ac

cu
ra

cy
 S

co
re

MNIST Test Accuracy Score of Toeplitz-like ELMs
D. Rank 1
D. Rank 2
D. Rank 3
D. Rank 4
D. Rank 5
D. Rank 6

4000 6000 8000 10000 12000
Number of Neurons in Hidden Layer

0.988

0.990

0.992

0.994

0.996

Ac
cu

ra
cy

 S
co

re

MNIST Training Accuracy Score of Toeplitz-like ELMs
D. Rank 1
D. Rank 2
D. Rank 3
D. Rank 4
D. Rank 5
D. Rank 6

Figure 4.8: Test and training accuracy scores of the Toeplitz-like ELM with different low displacement
ranks (’D. Rank’) on the MNIST dataset. The means and standard deviations of 12 trials are shown.

4.2 Number of Required Free Parameters for Input Weight
Matrices

In Table 4.4, the number of free parameters required for constructing the input weight matrices
of the implemented ELMs are shown. These number were obtained through applying the
formulas in section 3.1 and in Table 2.3.7. ⌈·⌉ denotes the ceil function.

38

4.3 Discussion

Dataset Classical Low Rank Fastfood Toeplitz- Toeplitz Circulant &
-like Vandermonde

Cal. 8𝑛 8𝑟 + 𝑟𝑛 4 · ⌈ 𝑛8 ⌉ · 8 4𝑛 𝑛 + 7 𝑛
Diab. 8𝑛 8𝑟 + 𝑟𝑛 4 · ⌈ 𝑛8 ⌉ · 8 4𝑛 𝑛 + 7 𝑛
Forest 54𝑛 54𝑟 + 𝑟𝑛 4 · ⌈ 𝑛

64⌉ · 64 4𝑛 𝑛 + 53 𝑛
MNIST 784𝑛 784𝑟 + 𝑟𝑛 4 · ⌈ 𝑛

1024⌉ · 1024 4𝑛 𝑛 + 783 𝑛

Table 4.4: Number of free parameters required for constructing the input weight matrices depending
on neurons number 𝑛 > 8 in hidden layer. 𝑟 denotes the rank of Low-Rank matrix in Low-Rank ELMs.
Toeplitz-like matrix has a displacement rank equal 2. ’Cal.’ means California Housing Dataset, ’Diab.’
means Diabetes Dataset.

4.3 Discussion

Basing on the results, one can divide the ELMs with structured matrices as input weight
matrices (later ELMs with structured matrices) into three groups. Firstly, the Fastfood ELM
shows the same accuracy performance as classical ELM in all experiments.

The second group is Circulant, Toeplitz, and Toeplitz-like ELMs, which show the same
results as Classical ELM on all datasets except for Diabetes dataset for number of neurons
less than 10 and MNIST dataset if the pixels are not shuffled. However, in the case of MNIST
database, the difference is extremely small, 0.1 − 0.2%, and it can be avoided by shuffling
the features, which is rationalized later. This can be easily achieved by pre-multiplying the
input features with a permutation matrix. The vector-matrix multiplication with the permutation
matrix takes 𝑂 (𝑛) time, and the permutation matrix can be built from 𝑛 parameters, where 𝑛
is the number of features. In the case of Diabetes dataset, the result is different, only if the
number of neurons is less than number of inputs, which seems to be unusual for ELMs.

The reasons for these differences are not absolutely clear. One possible explanation
is based on the observation that multiplication between many permutation matrices and
Hadamard matrices leads, in general, to the matrices with entries that are highly independent
[14]. Hence, Fastfood matrices may have more independent entries than other aforemen-
tioned structured matrices due to usage of permutation and Hadamard matrices. One could
also describe it as better ’mixing’ of free parameters. If the entries of weight matrix are more
independent, this could lead to the outputs of hidden layer neurons being more independent
and therefore more different. Thus, it may be easier for ELM to extract information from these
outputs.

Distinctly, in Circulant matrices, for example, the difference between two subsequent rows
is only that all entries in the first row, except for the last one, are moved by one place to the
right in the next row (equation (2.13)). At the same time, in the case of image recognition,
the pixels that are next to each other have often similar values. Therefore, the hidden layer

39

4 Results and Discussion

neurons that are associated with the subsequent rows may also have similar output values.
Hence, it may be more difficult for Circulant ELM to extract information from these outputs.
This explanation is supported by the fact that after the pixels were shuffled, Circulant ELM
showed the same accuracy as Classical ELM. This may be a good example of how depen-
dencies between the entries of input weights matrices can negatively impact the prediction
performance.

The third group is Vandermonde and Low-Rank ELMs, which showed significantly worse
results than other ELMs. Hence, the corresponding matrices may be considered as examples
of structured matrices that are not very suitable as input weight matrices in ELM. In Van-
dermonde matrix, for free parameters that are smaller than zero, the corresponding weights
become extremely small for high power values. For example, in the case of MNIST dataset
with 784 features, the last entries of the rows carry the power of 783. If the magnitude of
any free parameter is greater than one, the last weights of the corresponding row will have
extremely high values.

Regarding the Low-Rank ELMs, low prediction values of these ELMs may be explained
as follows: the 𝑛-by-𝑚 Low-Rank matrix with rank 𝑟 < 𝑚𝑎𝑥(𝑛, 𝑚) can be decomposed as
𝑀 = 𝐺𝐻𝑇 where 𝑀 is a Low-Rank matrix, 𝐺 and 𝐻𝑇 are 𝑛-by-𝑟 and 𝑟-by-𝑚 full rank
matrices respectively. Considering the multiplication of Low-Rank matrix with a vector 𝑥 as
𝑀𝑥 = 𝐺𝐻𝑇 𝑥 where 𝑥 ∈ R𝑛, in the first step, which is multiplication 𝐻𝑇 𝑥, the product
has only 𝑟 components in opposite to 𝑛 components in the vector 𝑥. Since 𝑟 < 𝑛, one
can find different vectors that will have the same result after multiplication with 𝐻𝑇 . There-
fore, some information, which was contained in the original vector 𝑥, may be lost after this step.

As an example, one may consider a 100-by-3 Low-Rank matrix 𝑀 with rank 𝑟 = 2 that can
be decomposed as

𝑀 = 𝐺𝐻𝑇 with 𝐺 ∈ R100×2 and 𝐻𝑇 =

[
1 2 3
4 5 6

]
(4.1)

Then, the product of Low-Rank matrix 𝑀 and vectors 𝑥1 =
[
1 1 1

]𝑇 and
[
0 3 0

]𝑇
will be the same

𝑀𝑥1 = 𝑀𝑥2 = 𝐺

[
6
15

]
Hence, in this case, the Low-Rank ELM will be not able to differentiate between these two
vectors . Thus, one can say that the information is lost. In real case scenarios, after multi-
plication with Low-Rank matrix, only fewer samples may have exactly the same results but
many samples may have similar results. The differences within these similar results may be
not distinguishable from noise.

40

4.3 Discussion

Furthermore, Low-Rank matrices, when used as input weight matrices, can lead to more
collinearities in the outputs of the hidden layer, since various samples may have similar
results after multiplication with the input matrix. This is also supported by the observation
that Low-Rank ELMs showed high deviations in accuracy levels for California and Diabetes
datasets. However, for the Forest and MNIST Datasets, which contain more features and
require more neurons, the deviations in accuracy levels of Low-Rank ELMs were similar to
that of other ELMs.

Another observation can be seen from Table 4.4 illustrating that the number of free param-
eters required for structured matrices is significantly less than the ones required for Classical
ELM. The results of all conducted experiments imply that the accuracy performance mostly
does not depend on the number of free parameters. However, it depends on how these free
parameters were used.

41

5 Conclusion

The idea of replacing input weight matrices with structured matrices was proposed in [18].
In this thesis, I explored the possibility of replacing, without weakening the output accuracy,
input weight matrices with structured matrices in ELM.

After applying this idea to ELM, it was found that the following enlisted points, if not consid-
ered while replacing input weight matrices with structured matrices, can affect the accuracy:

• Distributions of weights and free parameters – in previous works, it was concluded
that the distribution of entries in weight matrix have an impact on accuracy of ELM [1].
In this paper, I have shown that the distribution of entries of structured matrices are
not necessarily equal to the distribution of free parameters, as shown in table 2.3.7.
Therefore, the same must be considered while replacing input weight matrices with
structured matrices. For example, the entries of Fastfood transformation matrix belong
always to Gaussian distribution, and the entries of Toeplitz-like matrix have a variance
that is quadratic to the variance of free parameters.

• Choice of suitable structured matrix – not all structured matrices are suitable for re-
placement in input weight matrices. For example - as shown in the experiments done
under this thesis - ELMs with Low-Rank or Vandermonde matrices as input weight ma-
trix have shown low accuracy values. In case of Vandermonde matrix, if it has high
dimensions, it will result in extremely high or low magnitudes; and in case of Low-rank
matrix, some of the information contained in the data samples may be lost after its
multiplication with Low-Rank matrix, as is was shown in chapter 4.

• Dissimilarity in outputs of hidden layer - it may be preferable that the outputs of the
hidden layer are as dissimilar as possible, which can be achieved if the entries of the
weight input matrix are highly independent, as in the case of Fastfood Transformation
matrix. In fact, ELM with Fastfood matrices showed similar accuracy as conventional
ELM have shown in all experiments. However, ELMs with structured matrices having
less independent entries than in Fastfood matrix, such as ELMs with Circulant, Toeplitz
and Toeplitz-like matrices, also achieved the same accuracy as conventional ELMs in
all the experiments except for following cases:

– Experiments on Diabetes Dataset for number of neurons in the hidden layer less
than the input numbers.

– Experiments on MNIST dataset if the pixels are not shuffled.

43

5 Conclusion

However, the first case is highly rare in occurrence, and in the second case, same ac-
curacy as that of conventional ELMs was achieved by shuffling the features of input
data using permutation matrix. In general, one can always consider combining Cir-
culant, Toeplitz and Toeplitz-like matrices with permutation matrix in cases when input
features show high correlations, for example, in MNIST dataset, as explained in chapter
4.

Another important conclusion may be that the accuracy of ELMs with structured matrices
depends on how free parameters are used and are not dependent on their number, which
can be correlated with the third point.

The replacement of input weights with structured matrices will eventually have the following
benefits for ELM while achieving the same accuracy levels:

• Reduction in the processing time of the ELM algorithm (Table 2.3.7).

• Significant reduction in memory requirements (tables 2.3.7 and 4.4).

Therefore, the replacement of the input weight matrices with structured matrices in ELM
seems to provide a win-win situation for reducing propagation time and reducing memory
requirements without affecting its accuracy.

44

Bibliography

[1] A. Akusok, K.-M. Björk, Y. Miche, and A. Lendasse. “High Performance Extreme Learn-
ing Machines: A Complete Toolbox for Big Data Applications”. In: Access, IEEE PP
(2015).

[2] D. Das, D. Nayak, R. Dash, and B. Majhi. Backward-Forward Algorithm: An Improve-
ment towards Extreme Learning Machine. 2019.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR09. 2009.

[4] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. Freitas. “Predicting Parameters in
Deep Learning”. In: NIPS (June 2013).

[5] S. Ding, N. Zhang, X. Xu, L. Guo, and J. Zhang. “Deep Extreme Learning Machine and
Its Application in EEG Classification”. In: Mathematical Problems in Engineering 2015
(2015), pp. 1–11.

[6] R.M. Gray. “Toeplitz and Circulant Matrices: A Review”. In: Foundations and Trends®
in Communications and Information Theory 2(3) (2006), pp. 155–239.

[7] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 770–778.

[8] G. Huang, G.-B. Huang, S. Song, and K. You. “Trends in extreme learning machines:
A review”. In: Neural Networks 61 (2015), pp. 32–48.

[9] G.-B. Huang. “An Insight into Extreme Learning Machines: Random Neurons, Random
Features and Kernels”. In: Cognitive Computation 6 (2014), pp. 376–390.

[10] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. “Extreme learning machine: A new learning
scheme of feedforward neural networks”. In: vol. 2. 2004, pp. 985–990.

[11] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. “Extreme learning machine: Theory and ap-
plications”. In: Neurocomputing 70(1) (2006), pp. 489–501.

[12] A. K. Jain, J. Mao, and K.M. Mohiuddin. “Artificial neural networks: A tutorial”. In: Com-
puter 29(3) (1996), pp. 31–44.

[13] R. Kelley Pace and R. Barry. “Sparse spatial autoregressions”. In: Statistics & Proba-
bility Letters 33(3) (1997), pp. 291–297.

[14] Q. Le, T. Sarlos, and A. Smola. “Fastfood: Approximate Kernel Expansions in Loglinear
Time”. In: 30th International Conference on Machine Learning, ICML 2013 (2014).

45

Bibliography

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86(11) (1998), pp. 2278–2324.

[16] M. Mcdonnell, M. Tissera, T. Vladusich, A. van Schaik, and J. Tapson. “Fast, Simple and
Accurate Handwritten Digit Classification by Training Shallow Neural Network Classi-
fiers with the ’Extreme LearningMachine’ Algorithm”. In:PloS one 10 (2015), e0134254.

[17] B. Qu, B. Lang, J. Liang, A. Qin, and O. Crisalle. “Two-hidden-layer extreme learning
machine for regression and classification”. In: Neurocomputing 175 (2016), pp. 826–
834.

[18] V. Sindhwani, T. Sainath, and S. Kumar. “Structured Transforms for Small-Footprint
Deep Learning”. In: Advances in Neural Information Processing Systems 28. Curran
Associates, Inc., 2015, pp. 3088–3096.

[19] J.W. Smith, J. E. Everhart, W.C. Dickson, W.C. Knowler, and R. S. Johannes. “Using
the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus”. In: 1988.

[20] D. Svozil, V. Kvasnicka, and J. Pospichal. “Introduction to multi-layer feed-forward
neural networks”. In: Chemometrics and Intelligent Laboratory Systems 39(1) (1997),
pp. 43–62.

[21] D. Xiao, B. Li, and Y.Mao. “AMultiple Hidden Layers Extreme LearningMachineMethod
and Its Application”. In: Mathematical Problems in Engineering 2017 (2017), pp. 1–10.

[22] Z. Yang, M. Moczulski, M. Denil, N. De Freitas, L. Song, and Z. Wang. “Deep Fried
Convnets”. In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015,
pp. 1476–1483.

46

	Abstract
	Introduction
	Motivation
	Goals
	Approach

	Background
	Artificial Neural Network
	Feed-forward Networks
	Training using Backpropagation

	Extreme Learning Machine
	Training using Linear Regression
	Advantages and Disadvantages

	Structured Matrices
	Notations
	Circulant Matrix
	Toeplitz Matrix
	Toeplitz-like Matrix
	Fastfood Transformation Matrix
	Vandermonde Matrix
	Overview

	Design of Experiments
	Replacement of Rectangular Input Weight Matrices
	Datasets
	Preprocessing
	Hyperparameters
	Activation Function
	Distributions of Weights and Biases
	Regularizations Values
	High-Performance Extreme Learning Machines

	Results and Discussion
	Results
	California Housing Dataset
	Pima Indian Diabetes Dataset
	Forest Cover Type Dataset
	MNIST Dataset

	Number of Required Free Parameters for Input Weight Matrices
	Discussion

	Conclusion

