

RogueGen
A PCG ADVENTURE

INTERIM REPORT

Andreas Leitner

Florian Buschek

Jean Paul Vieira Filho

Johannes Runkel

GamesLab WS 17/18

PAGE 1

Artwork and Handmade Map

For there interims report there are currently three

character models, intended for both the player and the

enemies. One more playable character is planned so

every of the four players has his own character.

For the environmental assets there are multiple types

of trees for different biomes. Then there are rocks that

can fit in many biomes, but can also be used to define

cliffs.

For the handmade map multiple simple terrains with only few biomes were generated until

one was found that suited the general idea for his map. For this simple and small map the

idea was to have two separated areas. The bigger one is the starting area, and the smaller

one is a boss area. They are separated by an ice wall. In order to destroy this wall the players

have to find the fire staff.

PAGE 2

The special point of interest in this map is a campfire with two tents and a stack of firewood.

The campfire is surrounded by multiple normal enemies and the fire mage who obviously

drops the fire staff.

In the early prototype stages the lighting will mostly be done with one bright directional

Light (Sun), so that it is possible to see everything, even on laptops. For the final version it

is intended to be darker, and mostly lit by point lights in the environment, and the lamps

the players can carry around. It will probably be necessary to have a brightness slider for

laptops.

PAGE 3

Combat System

The main idea of how we wanted to implement the combat system was to make it as easy

as possible to generate new content for it. Thus, we implemented mostly the systems

behind characters, movement, weapons, skills, and AI. This means, that we don't have that

much content in each category yet, however adding more content in the future should be

easy and fast.

Characters share a common pool of statistics, such as health, resistances against different

types of damage, and their equipment. Characters are moved through a physics based

system, allowing nice interactions with other characters, the environment, and skills.

Each character can equip up to two one-handed weapons or one two-handed weapon.

Each weapon grants the wielder up to two (or four for two-handed) skills.

Characters can activate their equipped skills. These represent some combat action the

character can do in relation to the equipped weapon. Currently, there are 3 different

weapons with one skill each in the game: a sword that can be swung, a throwing knife, and

a staff that shoots a magical fire ball.

These skills are made up of two parts: a skill type and multiple skill effects. The type

determines the general form the skill takes on, such as swinging the weapon or creating a

projectile. Once the weapon or projectile hits it's target, all skill effects are applied. These

receive various information about the owner, target and skill. So far, skills can apply

damage, but other effects, such as changing resistances, can easily be implemented. They

can also check if the target reached a certain health threshold and then decide whether to

PAGE 4

apply the damage or not. With

conditional effects like that, skills

can be build in a tree structure

allowing complex interactions.

Skills also have various attributes,

such as the time it takes to

activate, the time it takes until the

skill can be used again, and an

animation that plays while

activating. Here we had some

problems at first getting the

animation properly mirrored for

the other hand due to some

problems with the original

rotation. In the end, we decided to

rework the animations we had done from the ground.

There is also a functioning resource system called energy, however it is not used for the

demo yet.

For the AI of enemies we decided to implement a utility based system, where each

potential action is evaluated based on various considerations and then the best is chosen.

The possible actions of an enemy are to activate a skill and to decide how they want to

move. For this, each enemy has a list of movement patterns, functions that evaluate how

the character moves, and one is always active. Currently, enemies can move to or away

from the player, stand still and look at the player, or do nothing. Which movement

pattern the enemy uses is decided in fixed time intervals.

PAGE 5

To decide which skill or movement pattern to use,

each skill and movement pattern is assigned a list

of considerations. Each consideration takes a

single value as input that is evaluated with a

linear, logistic, or polynomial function. The result

of that function is always between zero and one.

Then, the results of all considerations are

multiplied with it's base score and a

compensation for the number of multiplications

is added. Considerations that require a target, for

example the player, are evaluated for every

legitimate target and the best is chosen. Then, the

skill or movement pattern with the highest score

is chosen and activated.

Currently, the only consideration fully

implemented is the distance between the enemy

and the players. This is used for a melee enemy

that walks towards the player and attacks if close

enough, as well as a ranged enemy that starts attacking as soon as the player is in range,

and will try to escape should the player get too close.

We also made a simple GUI in the form of a health bar floating over the characters.

PAGE 6

Terrain Structure

As a starting point, the biome system was modelled. We wanted to create a system where

each biome would influence the landscape in our game. At first, we tried to use a Delaunay

triangulation between the biomes to create an overlay mesh and use barycentric

interpolation.

However, the performance was not optimal,

and we changed the system to use Voronoi

diagrams. Each Voronoi cell influences the

region it covers. The Delaunay triangulation

was kept to know the neighbors of a biome.

To create a map, a list of biomes is given to the

map generator. Each biome contains

information about Perlin noise parameters,

ground texture, conditions (humidity and

temperature) and neighbor blending

parameters.

At first, the biomes are randomly distributed

through the map and pushed away from each

other with some iterations of Lloyd relaxation.

The border biomes are set to water.

Afterwards, a heightmap is created and the values are sampled from the biome cells based

on their position plus some uniform noise, which gives more detail in the borders between

biomes. The same process is repeated for the texturing part.

Voronoi Diagram Delaunay Triangulation

Textured and filled heightmap

PAGE 7

To achieve a better visual quality and prevent texture stretching in great height differences,

we also implemented a triplanar shader for our terrain.

Lastly, the biome polygons are extracted and filled using Poisson Disc Sampling. This last

part is not permanent since it doesn’t add any extra detail to our world other than “filling”.

But the function to fill a 2D polygon with samples is certainly going to be used later on.

The final result looks good but it is still lacking interesting elements such as grass, roads,

structures, etc..

This is what our terrain generator is currently capable of:

