
Full Report: Gemji

Team DreiKopf :

Felix Brendel

Jonas Helms

Van Minh Pham

July 2021

Contents

1 Game Idea 3

1.1 Game Description . 3
1.1.1 Game Design . 3
1.1.2 Example e�ects for the Gems . 3
1.1.3 Visual Clarity . 3
1.1.4 Campaign & Level Design . 3
1.1.5 Order & Chaos . 4

1.2 Technical Achievement . 4
1.2.1 Introduction . 4
1.2.2 Motivation . 4
1.2.3 Game Engine . 4

1.3 Big Idea Bullseye . 6
1.4 Development Schedule . 6

1.4.1 Layers of Development . 6
1.4.2 Tasks . 7

1.5 Assessment . 8

2 Prototype 8

2.1 Prototype . 8
2.1.1 Prototype Setup . 9
2.1.2 Example Levels . 10

2.2 Rules & Turn structure . 10
2.2.1 Player Turn . 11
2.2.2 Rule set . 11

2.3 Observations & Revisions . 12
2.3.1 Game Mechanics . 12
2.3.2 Emergent E�ects . 12
2.3.3 Tool-assisted level generation . 12

3 Interim Demo 13

3.1 Tool assisted level generation . 13
3.1.1 Random Generation . 13
3.1.2 Level solver . 13
3.1.3 Heuristic for generated Levels . 16
3.1.4 Campaign & Level Design . 17

3.2 Game Progress . 17
3.2.1 Console Game Loop . 17
3.2.2 Test Cases . 17
3.2.3 Repurposing the old Game Engine . 18
3.2.4 Hit Scanning . 18

4 Alpha Release 19

4.1 Game Logic Implementation . 19
4.2 Transition to 3D . 19

4.2.1 Gem Movement Along The Cursor . 19
4.2.2 Animations . 20

1

4.2.3 Scheduler . 20
4.2.4 Grid Creation . 21
4.2.5 Tooltips & Textures . 21

4.3 Sound E�ects & Music . 22
4.3.1 Sound e�ects . 22
4.3.2 Music . 22

4.4 First Campaign Levels . 22

5 Playtesting 22

5.1 Playtesting Sessions . 22
5.1.1 Playtesting version of Gemji . 23
5.1.2 Procedure . 23
5.1.3 Questions . 23

5.2 Results . 24
5.2.1 Demographic questions . 24
5.2.2 Gem Properties . 24
5.2.3 Impressions . 31

5.3 Conclusion . 36
5.3.1 Intro to basic game mechanics . 36
5.3.2 Clearer Tooltips . 36
5.3.3 Better level structure . 37
5.3.4 Gem activation and chain reactions . 37
5.3.5 Improved VFX . 37

6 Final Release 37

6.1 Final Version . 37
6.1.1 Movement . 37
6.1.2 Improved Visuals . 38
6.1.3 Menus . 42
6.1.4 Endless Mode . 43

6.2 Experiences . 43
6.2.1 Di�culties . 43
6.2.2 Working with the theme . 43
6.2.3 Greatest success . 43
6.2.4 Overall sentiment . 44

2

1 Game Idea

1.1 Game Description

Gemji is a single player puzzle game. The goal of each level is to maneuver a set of Gems across a
two dimensional board to speci�c �nish tiles. The level is considered complete when all �nish tiles are
occupied by the correct Gems at the same time.

1.1.1 Game Design

The game features di�erent types of Gems with di�erent e�ects that activate after a Gem is moved.
These e�ects can for example cause speci�c movements of adjacent Gems. The strength of these e�ects
varies, e.g the number of tiles a Gem is moved. As e�ects trigger on movement, a chain reaction of
di�erent e�ects can be triggered. Depending on the level we also intend to assign e�ects to speci�c tiles
on the board in a similar fashion.

We created a quick example animation of the gameplay we have in mind, which you can watch on
the following page: https://wiki.tum.de/display/gameslab2021summer/Team+DreiKopf

1.1.2 Example e�ects for the Gems

� Black: Purely an obstacle. Cannot be moved by the player or other Gems.

� White: Cannot be moved by the player, only due to the e�ects of other Gems.

� Red: Pushes away other Gems that are next to it after being activated.

� Blue: Will always move back to its original position after being moved by another Gem e�ect.
When it is moved by the player it will stay in the position.

� Green: Pulls Gems that are positioned next to it towards itself after being activated.

� Orange: Pushes itself from other Gems or the level boundary if it was activated.

1.1.3 Visual Clarity

As players should be able to think ahead more easily, we want to ensure that e�ects attached to the
Gems can be identi�ed instantly. For that reason we plan to add speci�c visual e�ects that represent a
certain class of Gem ability. Furthermore we are thinking about adding tooltips to the Gems, that show
up when moving the mouse over them, which are not invasive to the gameplay but still help the player
to learn the Gem mechanics.

1.1.4 Campaign & Level Design

The levels themselves will be designed by hand to ensure a suitable di�culty curve for the players as they
learn the game concepts. The levels will be structured in a campaign that will introduce new Gem types
and the dynamic map e�ects in a step by step fashion. We further plan as one of our high-goals to have
levels procedurally generated thus creating an endless play mode that can be played after �nishing the
campaign.

3

https://wiki.tum.de/display/gameslab2021summer/Team+DreiKopf

1.1.5 Order & Chaos

The way we want to incorporate the theme of Order & Chaos is in relation to the gameplay mechanics.
One movement of a Gem can easily cause a chain reaction that may seem chaotic initially but the
e�ects are deterministic and the Gems clearly indicate which exact e�ect is assigned to them. A light-up
indicator also highlights the order of execution of the e�ects. Therefore Gemji is a game which has the
goal to �nd the correct order, so occupying the �nish tiles with the correct Gems but may be perceived
as chaotic in the execution of the

1.2 Technical Achievement

1.2.1 Introduction

The central secondary big bullseye idea for our project is to develop our game idea in our own engine.
Our group always wanted to build their own game engine from scratch and we thought that this practical
provided the perfect opportunity to put this into reality. We already started working on this engine in
the winter semester practical and developed a puzzle game from scratch. We want to use this practical
course to further expand on the engine and see how well we can readapt it to our new game.

1.2.2 Motivation

The main motivation to build our own engine stems from the fact that we believe that we can reduce the
overhead and therefore provide better optimization for our games on all levels of the engine, from the
graphics pipeline to resource allocation and automatic memory management. Furthermore we believe
that building a game engine from the ground up presents a perfect learning opportunity, especially when
trying to �nd suitable optimizations that �t our design philosophy.

1.2.3 Game Engine

In the following sections we will provide a small overview of the components of the game engine that
we want to develop for this semesters project and how we try to optimize these. Furthermore we will go
over the features of the game engine that we will most likely tackle in the follow-up project and how we
solve the interim solutions for this semesters game.

1. Graphics pipeline

The game engine will use the Vulkan Graphics API to implement a rendering pipeline. Vulkan is
a relatively new API developed by the Khronos Group (maintainer of OpenGL) with a focus on
overhead reduction and was released in 2016. Vulkan provides a low-level control over the rendering
process when compared to other Graphics APIs and has several advantages that also align with
our overall philosophy in the design of the engine:

� The ability to run on all operating systems and devices

� Explicit control over memory management

� Decreased CPU workload due to reduced driver overhead and batching

� Making use of the driver independent Vulkan Loader to access Vulkan API entry points

The Vulkan Loader is responsible for transmitting Vulkan API calls to the appropriate graphics
driver. This means that we just have to connect to the Vulkan loader in our engine and do not
have to worry about drivers. Furthermore we can pre-compile our shaders into the SPIR-V binary

4

format instead of compiling the shaders at runtime. This allows the use of a larger number of
di�erent shaders per scene and reduces application load times.

2. Overhead reduction in the engine

The game engine is developed in the C++ language that all of our team members are familiar
with due to our TUM Bachelor courses such as Game Engine Design. We have also taken further
steps into the direction of our core concept of overhead reduction by omitting parts of the C++
standard library, that perform memory allocations.

3. Resource Loading & Automatic Memory Management

To increase the performance of the engine we want to make sure that the loading of resources
such as a texture map or a mesh is never done redundantly, which is likely the case in a puzzle
game as key components are similar between di�erent scenes. In order to implement this we
allocate bu�ers upfront to store all our resources and a hashmap that maps the �le paths of the
loaded resources to their pointers in memory. If a resource becomes necessary in a scene, we can
cross check whether the �le path has already been loaded and then reuse the already loaded �le
instead of reloading it. This means that we will only load the di�erence between two levels which
will reduce load times and create a smoother gameplay experience for the player. The hashmaps
also provide further advantage for the memory management as we can free the memory and GPU
memory for the texture resources by iterating over the hashmap and can incorporate this in the
scene load/unloading process.

4. Sound System

Sound is very important to our design goal of creating a puzzle game as we believe that it has a
relaxing or even focusing e�ect on the player. We will use the already existing sound system from
last semester that is developed with the help of the IrrKlang library. We want to further expand
on our already implemented functions to play sound e�ects and looping background music to also
enable smooth fading between tracks and triggering a natural change for the music in response to
speci�c game events.

5. Physics System

The current point of view in our team is that we will not implement a physics engine as part of
this semesters project as it would exceed the scope of the engine building aspect. We will instead
use keyframe animations and bake the limited number of physics interactions directly into the
animations or generate them procedurally. This also comes with the advantage of having a tighter
control over the Gems. The interactions of the Gems should not be simulated in a physics based
fashion but rather deterministically executed.

6. Animation system

The animation system will be a very important part of the engine as it will substitute our physics
interactions and help to increase the graphical �delity of the game. Implementation of the animation
system will start very early on and the core functionality of keyframe animation will be �nished for
the interim demo. We aim to implement a system where actions and animations can be scheduled
in advance to be able to deterministically describe the Gems movements.

7. Particle System

We feel like a particle system and thus interesting e�ects can add to the correct vibe of the game,
especially in puzzle games in which you can easily get lost in the mathematics and logic of the

5

problems instead of the game world. At the same time we have to be careful that these e�ects
do not feel overbearing and contribute to the overall feel of the game. Sadly we were not able
to implement a particle system for last semester's project which is the reason why we want to
increase our focus on this aspect for this practical course and have already alotted time for it in
the schedule.

1.3 Big Idea Bullseye

1.4 Development Schedule

1.4.1 Layers of Development

1. Functional Minimum:

� One simple level

� Basic selection and movement of a Gem

� Finish condition for a level

� One sample Gem e�ect

2. Low Target:

� E�ect(s) for Gem types

� One level designed for each type

� Sound e�ects & Music

� One sample map e�ect

3. Desirable Target:

� Visual clarity for e�ects & tooltips

� Visually appealing particles

6

� Dynamic board e�ects

� Full campaign progressively introducing game concepts

4. High Target:

� Procedurally generated levels

5. Extras:

� Mobile platform

1.4.2 Tasks

1. Functional Minimum: a. First simple level

� No "obstacles"

� Easy �nish tiles/conditions

� Only a few Gem types

b. Basic selection and movement of a Gem

� Multiple Gems instead of one (qubi)

� Targeting positions on the board

� Targeting other Gems

� Movement as a doslide for 1 �eld?

c. Finish condition for a level

� Structure of game state considering

� Multiple Gems

� Dynamic Gem & map e�ects

d. One sample Gem & map e�ect

� Set up game logic for e�ects

� Already implement the logic considering that e�ects may change during a level

2. Low Target:

� E�ects for di�erent Gem types

� Design and test e�ects with physical prototype

� Implement the e�ects

� One level designed for each type

� Design levels

� Sound e�ects & Music

� Write �rst track for the game

� Implement seamless change of tracks with IrrKlang

� Look for �tting SFX or create own

7

3. Desirable Target: a. Visual clarity for e�ects & tooltips

� Speci�c shaders to highlight turn order of Gems

� ImGUI pop-up tooltips at Gem locations

b. Visually appealing particles

� Particle spawner

c. Dynamic board e�ects

� Design board e�ects that would enhance the current set of e�ects

d. Full campaign progressively introducing game concepts

4. High Target:

� Procedurally generated levels

5. Extras:

� Mobile platform

1.5 Assessment

The goal we set for ourselves with this project is creating a game that is easy to get started with, which
can be played whenever the players want to relax in a casual setting. A game that is intriguing by its
simplicity but at the same time complex on a level that requires tactical thinking and decision making to
succeed. This is our interpretation of "order and chaos" � restoring order in a system that is de�ned my
simple rules that spiral out into chaos. It's a game that gives the players the space and time they need, it
is not about solving a level as quickly as possible, rather it is about letting the players feel accomplished
when they solve a level. The focus is more on creating an environment in which the players feel relaxed
and maybe even cozy when they play our game.

With these goals we are confronted with a few design issues that we need to solve. With a puzzle
game that is intended to be learned by the players without invasive tutorials, players can easily feel lost,
or get the feeling, that they do not yet have all the necessary knowledge to solve a puzzle and get
frustrated. We will have to �nd a way to keep any frustration to a minimum. With the game design
we intend, it would be possible for a level to become unsolvable after a wrong move. We will therefore
introduce a undo and restart feature, that lets the players restart the level or undo the last move they
made. Making mistakes is part of solving a puzzle and we do not want to punish the players; they should
be able to try out their ideas and if they want to go back, they can.

2 Prototype

2.1 Prototype

With Gemji being a tile-based puzzle game we decided to build a real life approximation of what we had in
mind for the game. The physical prototype stage was also something we were looking forward to, in order
to re�ne as well as test mechanics and rules that we had in mind. The gameplay concept we envision
for our game is highly �tting for a phyiscal prototype which gave us ample opportunity to follow-through
with this approach. For simple levels one player was usually enough to enforce the rules and play the

8

level at the same time. This encompasses the player move, activating the e�ects and considering the
correct order of the chain reactions. Later on when we were testing more complex levels, one member
was playing the level while the other team member was double-checking that the rules were implemented
in the correct way. This allowed us to test several con�gurations for Gem e�ects and rule sets. In the
following section we present the tools and materials we used as well as the levels we experimented with.

2.1.1 Prototype Setup

For the prototypes we used a Go board as basis. Additionally we had a variety of game tokens from
other board games at our disposal which we used as Gems in our levels. To represent the �nish tiles we
cut out some paper and foam markers. Using the colors of the gems/stones we experimented with the
following types:

� Red gems: push back adjacent gems by 1 tile

� Yellow gems: pull in gems that are at most 2 tiles away

� Blue gems: teleport back to the original position if the position remains free

� Purple gems:

� if moved by an e�ect: swap position with the gem whose e�ect moved it

� if moved by the player: swap position with the closest gem in clockwise order

� White stones:

� cannot be moved by the player but by other e�ects

� do not trigger other e�ects

� Grey gems: same as white gems but trigger other e�ects

� Black stones: serve as obstacles

9

2.1.2 Example Levels

2.2 Rules & Turn structure

To create consistent gameplay we had to agree on a deterministic set of rules that �t the gameplay we
envisioned for Gemji. One of our goals for Gemji was to create unexpected gameplay realised by the
the complexity of the chain reactions. At the same time we identi�ed early on that we have to limit the

10

length of the chain reactions as in�nite loops of reactions would otherwise occur. To limit the number
of chain reactions we �rst had to de�ne what a player's turn is in Gemji.

2.2.1 Player Turn

1. The player's turn starts when the chain reactions & e�ects of the previous turn are done resolving

2. The player then selects a Gem that can be moved

3. After the selection the player moves the Gem to one adjacent �eld on the board along the paths
on the board

4. The �rst e�ect to activate is the e�ect of the Gem that the player moved after it has reached the
new position

5. By resolving the e�ect of this �rst Gem the positions of the other Gems on the map (usually the
neighbors) are in�uenced

6. All the in�uenced Gems are then primed to activate their own e�ects and are put into the resolve
queue in a breadth-�rst order

7. This continues until the queue is empty and all e�ects in the queue have �nished resolving

2.2.2 Rule set

When testing the prototype we realized that the speci�cation for the order of the player's turn is not
enough and we need further rules to create consistent gameplay. The main issues that had to be solved
are explained in the following section.

1. Order of activation

When a Gem is resolving it's e�ect it can usually in�uence several other neighbouring Gems at
the same time. Due to the underlying deterministic nature that we want to achieve for our game
we needed to agree on a rule that determines in which order new e�ects are added to the resolve
queue, which were triggered by the same e�ect. After our playtesting session we decided that a
clockwise order would �t the game the best and also felt the most natural. Changing this rule
could have consquences down to road in the way levels have to be by the players.

2. In�nite chain reactions

The problem of in�nite chain reactions was an aspect that we were already aware of when we �rst
thought up the base concept of the game. The two main ways we discussed to tackle this problem
were either limiting the total amount of e�ects that could be activated per turn or limiting the
e�ect activation for each Gem in each turn. After playtesting the physical prototype we decided
on the latter option for now, by letting each Gem have it's e�ects only activated once per player
turn. By limting the amount of e�ects in this way we realized that the game felt much more like
a puzzle game. Additionally the order you chose to move the Gem was now much more signi�cant
and that the players would try to avoid the chaos of chain reactions by activating Gems in an order

that minimizes interference.

3. Pattern of in�uence & neighbours

One important question we had to decide on, was the degree of freedom on which the Gems interact
with each other. The physical prototype was played on a Go-board which has a regular pattern of

11

nodes which each connect to four neighbouring nodes in horizontal and vertical directions. This was
helpful when trying out the physical prototype as it clearly showed which Gems are neighbouring
each other. After testing some levels of the prototype we decided that we want to stick to the four
directions of interaction that the Go-board provided for both the movement and the consideration
of what a neighbour constitutes and not allow for e�ects in�uencing Gems in diagonal directions..
This limitation again had implications for the gameplay that we enjoyed during the testing session.
One example of this were emerging gameplay patterns that allow the player to aptly move Gems
around a corner and thereby not in�uencing other Gems.
Changing the layout of the map to allow an increased number of directions is something that could
provide extra depth for the game in the 'Extra' Layer of development.

4. Move & Activate e�ect

During the testing of the game we realized that there are di�erences for an e�ect activated by a
player move and a chain reaction Gem. This is mainly due to the fact that we want to incorporate
Gems that a�ect another speci�c Gem, mainly the one that it was triggered from. This also means
that we have to di�erentiate the e�ect for the player move and the chain reaction activation,
when only the target that is designated. At the same time this could lead to interesting gameplay
decisions for further Gem designs that we want to explore in the later parts of the project.

2.3 Observations & Revisions

2.3.1 Game Mechanics

When playing the game on a physical board we noticed that the game encourages the players to think
about their moves rather than trying random things. This is due to the chaotic behavior of the Gems.
Trying out random moves without thinking through the chains of actions that will happen, will result in
an unexpected result most of the time.

In the levels we created until now, we further noticed, that the solutions avoid the chaotic e�ects
by trying to move the Gems apart from each other so no unwanted chain reactions are set o�. While
this is already a challenging game mechanic, in the future we also want to create levels, that use chain
reactions to solve the levels, instead of just trying to avoid them.

2.3.2 Emergent E�ects

A valuable outcome of this physical prototype was the knowledge that we gained about some emergent
e�ects of the Gems. These are e�ects, that a constellation of speci�c Gems has that we initially did not
think of. For example a chain of yellow Gems in a line can form a train, when one end of it is moved
along the line that the Gems form. We also realized, we can build simple logic gates using the Gems
such as and-gates and or-gates, that transfer signals in the form of Gem activation impulses through a
network of Gems. This can then be used as the key idea in a level. The player would have to notice the
e�ect or meaning of the given constellation to solve the level.

2.3.3 Tool-assisted level generation

The levels we created for this prototype are quite simple. For most of them, there is a simple mechanic
underlying the level design. It turned out to be very hard to create levels that are possible but at the
same time challenging to solve. While this might be due to our own lack of knowledge of emergent
e�ects between Gems, we decided to try an tool-assisted approach at level design.

12

We want to be able to quickly generate a large number of solvable levels, which we as a team
can study together with the computer-suggested solutions, to get a better feeling about how Gems can
interact with each other to solve levels.

Maybe some of these generated levels will �nd a place in the campaign of our game, but even if they
do not, we still hope we will get valuable insight about level design in Gemji.

3 Interim Demo

3.1 Tool assisted level generation

After the prototyping process we decided to create a level generation tool to assist us in �nding interesting
Gem con�gurations. In the following we present the components of our level generation tool that creates
random levels with speci�c restrictions that are guaranteed to be solvable in a certain amount of moves.

3.1.1 Random Generation

As a basis we want to randomize speci�c aspects of a level. These aspects include the board size, the
number, type and position of Gems and the number and types of �nishes. To prevent an unsolvable level
we ensured that the number of �nishes do not exceed the number of Gems. The generator further does
not place new Gems and �nishes at tiles that are already occupied. For the randomization we made use
of the C++ standard libraries. The generator then passes the generated playing �eld to the solver to
ensure that the level is indeed solvable and to assure that the count of the necessary turns are in the
desired bounds.

3.1.2 Level solver

Since it is important to us to know the minimum number of turns to solve a level, the solver should
always �nd a solution, to which no shorter solution exist. Still, there could be multiple solutions with the
same move count; in that case it should �nd one of them. For this we use iterative deepening (depth
�rst) search. We gather all possible moves in a certain board position and try them out recursively until
we reach the maximum search depth. Since this algorithm follows a brute force attempt, the search
domain grows exponentially. Still there are some easy ways to speed up the solver a lot.

1. The naive way of implementing this kind of search would copy the board to each recursive function
call for it to try out a certain move. Because if you do not do that, you would modify the old
board and if the move did not work out at the end you would have to have a way to "undo" a
move with all the chain reactions that it caused. The easiest way to archive that is by making
a copy of the board and passing it to the recursive call. We noticed, that doing these kind of
memory allocations on the heap via new or malloc slows down the solve. Even with a moderate
level malloc would be called 20.000 times, which is unacceptable (even though it solved the level
in less than a second). Instead we opted for stack allocatations, which proved to be much faster.
The general problem that we encountered and the reason why we did not just use stack variables
(with implicit stack allocations by the compiler) is that boards can be arbitrarily large. Instead we
used alloca to allocate memory for the function on the stack.

2. Much more impactful than the memory optimizations was the simple observation that we do not
have to continue down a search path, if the board con�guration in question has already been
processed. This helps in two ways:

13

a. Avoiding loops; Avoiding game positions that were processed in this current path from the start
position. Reasoning: Going to the exact same game con�guration as on a previous search depth
will never �nd the shortest solution. Two example con�gurations where circles can be avoided are
shown in �gure 1. b. Avoiding dead ends; Avoiding game positions that were processed before,

Figure 1: Board positions that were encountered during a search path, will not be considered for the
search as they cannot possibly lead to the shortest solution

but in another path (and maybe even with a di�erent maximum number of moves) from the start
position, from which we know that a solution could not be found from them. An example can be
seen in �gure 2.

Figure 2: After all possible solutions (max moves = 4) starting with B1 have been checked, later solutions
do not need to consider moving to B1 because it is a dead end.

Just because a board position from a previous search path did not lead to a solution however,
does not necessary mean, that there is no path that �nds the target position that visits the board
position in question. This is illustrated in �gure 3.

Figure 3: Even though the board position (max moves = 3) after [3] on the left has seen before, it does
not necessarily mean that it is a dead end, it could be on the path to the �nish, just not on the shortest
one

Solution: if the solver with n moves left, visits a board position with was found before with m
moves left and m > n then the solver can be absolutely sure that it will not �nd the solution from
trying the move in question and can therefore avoid dead ends.

14

With these two mechanisms many possible search paths are pruned without changing the solution,
only avoiding redundant computations. However we are then faced with another problem. How can you
e�ciently determine if a board position was seen before and also as (b) requires, at what search depth it
was seen? The natural way to solve this problem is by using a hash table that maps the board positions
to the minimum depth of the search tree where it was encountered. Still, a hash table would do a quality
comparison if the hash value matches, but we really wanted to avoid full board comparisons.

Internally the 2D board is represented by a �at array of integers, that store the index into another
array that stores the Gems itself. Internally it does not su�ce to only store the Gem type at each position,
as we need additional information per Gem, for example, if the e�ect was executed this turn, or by which
other gem it was activated. Further two board positions A and B between moves (meaning no pending
e�ects) are considered equal, if (and only if) they have the same gem types at the same positions.

So to check if a board position was already encountered using a hash table as described above,
we should �nd a hash function for a board con�guration. Additionally we want to avoid full board
comparisons. To solve both problems at the same time we use integer factorization, which proves that
the product of primes to integer powers produce unique integer results. We then assigned each grid cell
of the board a prime number and use the enumerated gem types as exponent. An illustration is shown
in �gure 4.

Figure 4: The construction scheme to generate an integer from a board con�guration using integer
factorization; each position on the board is assigned a prime number while the gem types are the
enumerated exponents.

With this we found a method to uniquely represent board positions as integers. By prime decompos-
ition it would also be possible to reconstruct the board from the resulting integer, although we currently
do not make use of that. We use unsigned 128-bit integers to represent the boards in that fashion. How-
ever we have to note that with huge boards, integer over�ow could happen. In that case a reconstruction
seems impossible. More importantly, in an unlucky case two board con�gurations could produce the
same hash value. This would have the e�ect that board positions are considered dead-ends even though
they were never encountered before which in the worst case could lead the solver to not be able to �nd
a solution even though it exists. To solve this problem a big number representation would be necessary,
which would address both problems. But since this only a�ects much larger boards, we ignore this e�ect
and assume the integer representation is unique. As a result we were able to e�ciently implement the
hash table mapping from unsigned 128-bit integers �representing the board� to integers �representing
the minimum tree depth they were found at.

Another concern that should be addressed, is using a search heuristic to �nd solutions quicker. At
each board position when we gather all possible moves, we could order them in such a way that the most
promising ones are processed �rst. A simple heuristic would compute the sum of all the manhattan-

15

distances from each gem to its �nish position. This would not change the result, as still all possible
solutions would be checked, just in a di�erent order. Another consideration would be to move away from
iterative deepening and use another heuristic search, like A*. We are however unsure if our heuristic
would satisfy the conditions for A* to �nd the shortest solution.

3.1.3 Heuristic for generated Levels

The aforementioned aspects for the random generation are not all elements that we use to control the
generated boards with. Deciding to use randomly generated levels from the get go is something that
introduces its own type of issues, mainly that we cannot directly control and determine how fun or
interesting one of the generated levels will be. To combat this problem we thought about creating a
heuristic that would somewhat incorporate aspects that we think will make a level fun to play. First
of all we divided the aspects that in�uence this heuristic into elements that are used directly in the
generation of the board and solution and secondly elements that are determined afterwards depending
on the solution.

1. Pre-conditions (the inputs)

� Board size

� Gem count/density

� Min/Max move count

The pre-conditions are used as input for the level generator but also in�uence the heuristic.

1. Post-conditions (check the interestingness of a level)

� Was every gem moved atleast once?

� Are you mostly moving a single gem?

� How many e�ects were activated?

The post-conditions are determined once a solution for a newly generated board, depending on the
pre-conditions, was found. In order to do this the board is cloned and the solution played through the
board while these metrics are recorded. For now the heuristic is mostly considering the number of turns,
how often the same gem is moved, how many e�ects are activated for the solution and how many gems
are present on the board compared to board size. This heuristic is still not �nal as we are still learning
new aspects of our game throughout the process of creating randomly generated levels and will improve
if further. For now it determines a di�culty score ranging from 0 (very easy) to technically in�nite but
in practice 5 (very hard) as we limit the maximal board size. We want to further observe the random
generation and try to �nd aspects that determine a some sort of fun factor for the generated boards.

Figure 5: Di�culty equation

16

3.1.4 Campaign & Level Design

The major aspect we want to use the random level generator for is to allow us to implement an endless
mode for later on but just seeing the possible solvable board states helped us a ton in the start of our
campaign design the we also want to include. The campaign should teach the game mechanics from
very simple moves to more complex emergent play patterns. The �rst levels that we have generated have
already helped us to �nd cool concepts that we de�nitely want to introduce in the campagin as well but
have also shown us that, especially for the early levels, handcrafted design will be the way to go. One
main issue is that we want to introduce the gem e�ects one by one so the player will more easily be able
to remember them and not get frustrated. To generated levels that only use one or two gem types we
will have to further restrict the pre-conditions for the generation by not only restricting the number of
gems but also the number of di�erent types present. One fear is that the thus resulting level will be too
one-dimensional, but this is also an aspect that we might include for our heuristic.

3.2 Game Progress

In terms of game development we have been working on two tasks concurrently. On the one hand we
implemented a full game loop that enables users to move Gems with console inputs. This was based on
the randomized level generation program so we would be able to test the generated levels right away.
It encapsulates the complete game logic that we have planned for this phase of the development and
will most likely serve as the basis for the game logic of the true game. The other aspect we have been
working on is the reusage our game engine from last term's game "qubi".

3.2.1 Console Game Loop

The game loop of Gemji is rather straight forward. The player gets the option to select a gem and then
move the gem to an adjacent tile. Depending on the color of the Gem a certain e�ect is triggered which
will in�uence surrounding Gems which in turn will have their e�ects triggered as well. As of now we have
implemented the following Gem types:

Red These will push surrounding Gems away by one tile.

Yellow They pull Gems in that are two tiles away.

Blue They teleport to their original position back after being moved.

Purple These swap positions with the gem they were triggered by. If these Gems were moved by the
player they swap positions with the nearest Gem in clockwise order.

Additionally Gemji features white and grey Gems that cannot be moved by the player and only move
from other Gem e�ects. Furthermore grey Gems are the only Gems that do not trigger other e�ects
while white Gems do. Finally we included black Gems that serve as immovable obstacles.
Along with the e�ects we have successfully implemented the win conditions for the levels.

3.2.2 Test Cases

Since it is really easy to accidentally introduce errors in the code, we were looking for means to ensure
the e�ects work as expected and all possible moves are determined correctly. To address this, we wrote
a small test suite that can be extended over time to check speci�c test cases. With this in place we can
con�dently refactor the code and run the test suite to make sure no errors were introduced.

17

Figure 6: A successful run of the current test suite

3.2.3 Repurposing the old Game Engine

One goal for our group was to develop Gemji in our own game engine. As we did not want to start from
scratch we wanted to use the game engine from last semesters project as a base and reuse as many parts
as possible. For now wanted to focus on keeping the rendering pipeline and the resource allocation.

1. Vulkan Graphics API

For our game engine we used the Vulkan Graphics API which is very time-intensive to set up due
to the amount of control it provides to the developers which is why we wanted to reuse as many
parts as possible. For now we were able to keep all parts of the complete rendering pipeline from
the Vulkan initialization, bu�er structure and more.

2. Resource Allocation & Management

For the resource allocation & management we were also able to keep all the of the code as was
developed in a general purpose way. It is set up in such a way that we do not have to load the
same assets twice to conserve memory and time.

3. Scheduler

As our last game 'qubi' was also turn based game it was natural to use the scheduler that ran our
events and animations in the background. The scheduler from our old engine is set up to work
well for turn based games and was easily implemented for our new game.

4. Game Logic

The last step was to refactor the logic we developed for the console game into the new Gemji core
with the parts from our old engine. We wanted to do this as as soon as possible so we would not
get con�icting implementations. Right now the console game as well as level generator and the
main game are built automatically from the same source code in the repository thus ensuring their
equivalence. First the console game is built with the aforementioned tests that check whether any
new implementations broke the game logic that we set out to design.

3.2.4 Hit Scanning

The way we intend the player to select and move Gems is by using mouse inputs. To achieve that we
implemented a basic raycaster into the repurposed engine since it was an aspect that did not use for
our old game. The purpose of this raycaster is to converts the screen space coordinates of the mouse

18

position to a ray in world space and thus a point on our game board or token. We implemented this with
a simple backprojection using the inverse of the view and projections matrix. Since our game is played
on a �at board, we knew the height (z-value) and can solve for the board position without working with
any g-bu�ers or check the geometry of the game objects.

4 Alpha Release

4.1 Game Logic Implementation

We previously had the game logic and the rendered scene implemented separately. The game logic at
the time was running as a console application. While being 100% functional, this is far from the game
we had envisioned. The scene in our engine that was rendered showed the board along with the gems
but player interaction with the scene was missing entirely. Our main focus therefore became to combine
both elements. The center aspect that is used for interaction is our raycaster that was implemented for
the Interim demo. When the player clicks on a spot on the screen with the left mouse key, the raycaster
determines the intersection of the resulting ray with the board (as described in the Interim demo). The
3D �oat coordinates of this intersection are then rounded to obtain the according 2D integer coordinates
on the playing �eld. Since we know where our gems are and how big they are, we can determine whether
or not the player clicked on a gem. To then move this gem the player has to hold the left mouse key
and drag the gem to another location. On the key release the target coordinate on the playing �eld is
determined with the raycaster as well. Should the target position not be viable- because it is more than
one tile away from the original position, already has a gem or is out of bounds- the gem will instantly
snap back to the original position. Having completely incorporated the game logic into our engine the
game now performs the turn including the chain reaction after the player has moved a gem while also
checking that his move is legal. Since the game logic was �nished beforehand, this boiled down to a
single function call.

4.2 Transition to 3D

As well as the game logic works in the engine, providing visuals to the player is vital to ensure a satisfying
and enjoyable playing experience. At any time the player has to see what the current state of the board
is, how moves turn out visually and where they are moving gems. In the following we elaborate on how
we incorporated these visuals for Gemji into our own engine.

4.2.1 Gem Movement Along The Cursor

Gems move by holding down the mouse key and dragging the mouse across the screen which should be
shown visually. To achieve this we have the mesh of the selected gem be the intersection of the mouse
ray and the board while the left mouse key is being held down. It is worth noting that the origins of the
gem meshes are at the very bottom center, so matching the mesh position with the mouse intersection
caused no problems with height. When the player releases the mouse key, the gem mesh snaps to the
selected coordinate on the board. A similar snap motion also occurs when the player moves a gem after
clicking on it. Since the gem will have the origin of its mesh match the projected mouse position on the
board, not clicking on the center of a gem will result in this snapping motion.

This would make sense if the player were to pick up a gem to then move it. But what we had in
mind was for players to drag gems across the board. So in order to make this clear we added a 2D o�set
between the center of a gem mesh and the exact position the player clicked on given that this position
belonged to a tile with this gem. With this addition gem meshes did not snap to the cursor anymore.

19

However we noticed that the meshes were way o� the cursor position at far edges of the screen. So
speci�cally for the meshes we de�ned approximating spheres around them. The 2D o�set thus became
a 3D o�set that was calculated from the mesh center and the intersection of the incoming mouse ray
and the approximating sphere. This new o�set has gem meshes stick closer to the mouse position even
at far edges of the screen.

4.2.2 Animations

Animations are especially important to us, because our game is about understanding the interactions of
the Gems between each other and their temporal order. Each gem e�ect has a di�erent animation:

Blue gems Flicker before they teleport back to their original position

Red gems Explosively push other gems away. Movement starting fast, getting slower

Yellow gems Pull other gems towards them. Movement starting slow, getting faster

Purple gems Switches position with another gem, by letting both gems rotate around their average
position by 180° around the up-axis.

We also use a simple parenting system where each object can have a parent object. This is used
to animate multiple objects together, for example for the purple gem animation. Both gems are �rst
parented to an empty object that lies in the middle between to-be-switched objects. Then the orientation
of the empty is animated to give the e�ect of both objects rotating around each other.

Additionally we use animations for simple camera movements at the start and end of levels as well
as for fading tooltips in and out.

4.2.3 Scheduler

We chose not to apply animations in a simple frame-to-frame fashion. But rather give us higher level
control over them. Therefore we put a lot of e�ort into the animation system which is based on our
work in last semesters practical. We wrote an animation system which we call the scheduler, which can
animate any variable of any size in main memory. We use this to animate simple �oating point values
but also orientations, and positions. To schedule an animation, you provide the scheduler with some
information about it e.g when it should start, when it should be �nished, what should be animated, what
kind of interpolation should be used (linear, ease-in, ease-out, etc). Like this it is really easy to schedule
animations to run at any given time in the future. When the player moves a Gem the whole turn outcome
is computed in the same frame, and alongside of computing the chain reactions, their Gem movement
animations are scheduled.

Additionally to executing animations, the scheduler can also be used to schedule actions. An action
consists of a function pointer and optionally a set of parameters that the function pointer will be called
with � essentially emulating closures1. We use actions when we know that after some time, something

should happen. For example if the player performs the last move, that will set the board into a winning
position, we �rst want the whole animation to play out and only then switch to the next level. So as the
player performs the winning move and the board is simulated, and all the chain reaction animations are
scheduled, we do a check if the board is in a winning position, and if it is, we schedule the action that

1C++ lambdas were not used, to be able to store actions packed next to each other in a �at array. This is not

possible with C++ lambdas, which have di�erent sizes, depending on their parameters. A higher level abstraction such as

std::function would have to be used. We opted to not do this, as std::function can perform heap allocations on its

own.

20

loads the next level. The playing of sound e�ects is also powered by the scheduler to be able to play the
correct sound e�ect at the correct time.

4.2.4 Grid Creation

Originally grids were separate meshes that were built in Blender. As grid sizes vary from level to level,
having to create a separate mesh for di�erent dimensions is way too tedious. Therefore we have shifted
grid creation from blender to our engine. The necessary vertex and index bu�ers are �lled using a function
that takes the grid dimensions as input. So when we create a new level, all we have to do for the grid
mesh is to call the function with the dimensions of the playing �eld as inputs.

4.2.5 Tooltips & Textures

One aspect that we deem very important for puzzle games like Gemji is the explaining of the game
mechanics without resorting purely to text which is boring and tedious to read. This is even more
important as the next milestone is the playtesting stage which will also be the �rst time that people not
on the development team will be playing our game. For this reason one of the goals of the alpha stage
was to design and implement tooltips that explain the behavior of the di�erent gems.

1. Design of the Tooltips

For now We implemented one tooltip for each of the existing gems in the game. For the design of
the tooltips we decided to show a before and after screenshot of the e�ects of the respective gem
in an example game state. Additionally we added a title to each of the tooltips that is also color
coded. Although the title does not deliver crucial information to the players it does help in terms
of making it clear which gem is the focus of each tooltip and will help us for the questionnaire and
talking to our testers in the playtesting stage.

2. Implementation of tooltips

For the implementation of the tooltips we used the ImGUI library which we have integrated into
our rendering pipeline. The ImGUI provides easy window creation for all UI elements that we want
to use and will be also be helpful when we want to create an Options menu to control elements
like the sound volume of the music/e�ects and rendering options. The tooltips are shown in
the bottom right corner of the screen when the player hovers over a gem using the glfw mouse
position callback. When the player stops hovering over any gem the tooltip will fade out after 3
seconds. Additionally the tooltip will stay active when the player holds the gem activly with the
mouse before making a new move. The animations for the tooltip fading are implemented by our
scheduler animation system.

3. Finish tiles

The goal for a round of Gemji is to move gems to their respective colored �nish tile. Up until this
milestone we did not have a representation of the �nish tiles and even the command-line version
did not mark the �nish on the ASCII boards. This crucial aspect was very important to �nish
otherwise it would be very di�cult to explain to the play testers what the actual goal of Gemji

is. Additionally the design of the �nish tile textures in�uences the perceived game setting for the
players. For now the �nish textures were designed as magical circles but could be subject to change
in the future. Furthermore the game objects will get automatically created and place to the correct
locations depending on the informtion in the "playing�eld" struct when a level is loaded.

21

4.3 Sound E�ects & Music

Puzzle Games usually do not have a good way to immerse the player in a narrative. This is especially
true for Gemji as it is a very abstract puzzle game. Immersing the player in the game world has to be
achieved by other elements such as SFX, music and particle e�ects.

4.3.1 Sound e�ects

Finding �tting sound e�ects for Gemji was de�nitly a challenge not only because of the search process
but also due to the relation to the "game world". Just as with the �nish tiles we decided to go into
the direction of mystical/magical SFX that relate to the e�ect of the respective gem. In the following
section we describe the SFX as they relate to the gem e�ects:

Red gems Pushing - Magical shockwave

Yellow gems Pulling - Slow starting but abrupt ending wooshing

Blue gems Back teleportation - Channelled teleport sound

Purple gems Swapping gem - Magical rotation

4.3.2 Music

Just as the SFX the music has a major role in the players immersion of the world. For now we wrote a
simple asian-style mandoline melody for Gemji as we feel like we could go into asian-in�uenced theme.
This inspiration also came from the game board of the physical prototype where we used a Go-board
which we now also use as representation of our board in game.

4.4 First Campaign Levels

From last semesters project we gathered additional experience how we want to setup the level structure.
The level structure is the biggest in�uence on the learnability of our game. The levels have to be
structured in such a way that they not only introduce the basic game mechancis in a sensible matter that
allow for good undestandability and a smooth learning curve but also slowly teach what we call emergent
e�ects. Emergent e�ects are the resulting game patterns that depend on the interaction of the di�erent
game mechanics working in combination. This mainly includes the di�erent gem e�ects interacting with
each other but for example also in which order the e�ects are triggered. The level structure and the
learning curve is also something that we want to closely analyze for the playtest.

5 Playtesting

5.1 Playtesting Sessions

As the core of this milestone there are the playtests. After having found participants we sent them a .zip
�le containing the game. In the following sections we present the contents of the demo, the procedure
of the playtesting sessions as well as the questions in our questionnaire.

22

5.1.1 Playtesting version of Gemji

The demo version of Gemji that we used for the playtest included 19 levels with increasing di�culty. This
number of levels might seem too high but in reality most levels were quite short due to the introductionary
aspect they had to ful�ll. The demo version includes all 7 gem types and e�ects which we �rst had to
teach the players one after the other. Each of the gem types has its own set of levels for this purpose,
starting with a very simple intro level that displays the mechanic and then additional levels that try to
show the player what they have to watch out for when using that particular gem. The latter levels in
the playtest were a little bit more di�cult as they included several di�erent gem types and were more
focused on the emergent e�ects of gem combinations. Most of the levels were handmade but two were
automatically generated using the bruce-force algorithm.

5.1.2 Procedure

After welcoming our testers we had them casually play the game. We left it up to them whether they to
wanted to �nish all levels or opt to drop out in the middle of the session. Since we included a few levels
and most were rather short, all participants were able to successfully �nish the demo. We further did
not give them hints how the mechanics work and instead had them �gure out the mechanics by playing
the game and the in-game tooltips.

5.1.3 Questions

After �nishing the demo the testers were asked to �ll out a Google Forms questionnaire to judge the
general sentiment of the gamne among other aspects. Compared to last semesters project we decided
to use a �xed questionnaire instead of a free form interview which made the data collection process
much easier. We added a free comment and suggestion box at the of the questionnaire to keep similar
opportunities that an interview o�ers. Some testers also o�ered to play the demo on stream which
allowed us to gain additional insight on how they approached the levels.

1. Demographic questions

Starting of the questionnaire are two demographic questions regarding the age of the participant
and their average weekly time spent playing video games.

2. Gem e�ect questions

Going into the playtest we knew that we not only wanted capture a general sentiment about our
game but also test whether the level structure and design combined with the tooltips would be
enough to convey the game mechancis in a reasonable manner. For this reason the �rst part of
the questionnaire was only focused on the participants understanding of the gem e�ects. For each
of the gems we had a mutliple choice question on the gem behavior and how con�dent the tester
was in his judgement of that particular gem.

3. Impressions questions

For the �rst impression of our game we mainly asked about the Sound e�ects, graphics and
animations. Additionally we asked about the di�culty and whether our game is frustrating to play.
At the end we also asked broader questions about the game itself. If it was fun, or ful�lling or
maybe frustrating.

23

5.2 Results

After playing through the demo the testers got �lled out the questionnaire. In the following we present
the results.

5.2.1 Demographic questions

While with few outliers the age range of our testers was rather compact, the di�erences in how many
hours the testers play video games vary considerably.

Figure 7: Most testers were in the 20 to 30 age range.

Figure 8: The majority of testers is very familiar with video games.

5.2.2 Gem Properties

The questionaire results for the gems are really diverse. Some gems were understood really well. Testers
could choose the correct e�ects belonging to a certain gem and additionally reported that they are

24

con�dent in their answer. On the other hand some gem e�ects seem to be harder to grasp. The majority
of the testers could always identify the correct e�ects of a given gem, however for some gems, the
number of wrongly picked e�ects was higher. The property of a gem to be able to be moved by the
player could also be identi�ed by the testers most of the time. However about half of the testers had
trouble identifying most gems' ability to activate the e�ect of other gems. The only exceptions are
the grey and black gems that do not activate other gems. Notable exceptions to these trends are also
mentionned in the following sections.

1. Red gems

The pushing e�ect of the red gems was recognized well by the testers. We attribute this to a few
cicumstances. Mainly the red gems were introduced �rst to the player. The �rst few levels only
contained the red gems, so the player had a lot of time to familiarize themselves with their e�ect.
Furthermore the pushing e�ect is quite apparent and easy to remember.

Figure 9: The e�ect of the red gems could be identi�ed by almost all testers.

Figure 10: Most testers felt con�dent in their understanding of the red gems.

2. Yellow gems

25

Yellow gems were introduced after the red gems. Their pulling e�ect could be identi�ed by most
of the testers, however some confused it with the pushing e�ect. The testers had an even higher
con�dence in their pick than for the red gems. Overall the con�dence of the understanding of the
yellow gem was the highest considering the results of the questions on the gems.

Figure 11: Some people wrongfully attributed the pushing e�ect to the yellow gems but the majority
could identify the pulling correctly.

Figure 12: The con�dence over the understanding of the yellow gem was higher than for all other gems.

3. Blue gems

Blue gems teleport back to their starting position of the turn, as long as it is still free at the
time of the action, which adds a bit of complexity to the e�ect. The players could identify the
teleportation. However the e�ects of other gems were also wrongfully identi�ed to the blue gems.
Interestingly for blue gems most testers identi�ed their ability to activate other gems. This is
probably because its e�ect was used many times in the testing levels to activate other e�ects.

26

Figure 13: While the teleportatiopn could be identi�ed, other e�ects were also attributed to the blue
gems.

Figure 14: People felt more unsure about the blue e�ects compared to the previously introduced ones.

4. Purple gems

Purple gems swap positions with the gem that activated it or � if it was moved by the player �
try to �nd a neighboring gem to swap positions with them. The search happens in clockwise order
starting from the neighboring �eld just north of the purple gem. This makes the purple e�ect
harder to understand fully but there are also only few occurences of this rule in the testing levels.
Overall the e�ect could be correctly identi�ed. Similar with the results of the blue gem e�ect,
e�ects purple gems were similarly confused with blue gems. We attribute the confusion between
the blue and purple gem e�ects to the fact that they together have an emergent e�ect that is used
throughout some levels.

27

Figure 15: The swapping e�ect of the purple gems could mostly be identi�ed correctly.

Figure 16: Most testers also feel con�dent in their understanding of the purple gems.

5. Grey gems

Grey gems do not have any e�ect and cannot be moved by the player. They can only be moved
by e�ects of other gems. The vast majority understood this correctly however they did not feel
con�dent to have really understood the properties correctly.

28

Figure 17: The testers did not have any di�culty to understand the properties of the grey gems.

Figure 18: Even though the grey gems do not have any e�ect, the testers felt unsure about them.

6. White gems

White gems behave identically to grey gems with the only exception, that when activated it will also
activate the e�ect of all its neighbors. Interestingly the e�ects of other gems were also identi�ed
with this gem, maybe because the white gem activates the other gems. Regardless, the majority
correctly identi�ed the absence of any e�ect but only half realized that the white gem also activates
other gems. Notably the majority of testers was unsure about the properties of the white gems.

29

Figure 19: Only around 29% of the testers realized that while gems can activate other gems.

Figure 20: Most people felt really incon�dent about their knowledge of the white gems.

7. Black gems

Black gems do not have any e�ect and can neither be moved by the player nor by other gem
e�ects. E�ectively they are obstacles on the playing �eld. We attribute the simple properties to
the clear result.

30

Figure 21: All testers could correctly identify the properties of black gems.

Figure 22: Most people felt really con�dent in their understanding while a small percentage was not too
sure.

5.2.3 Impressions

The animations and sound e�ects were received rather well. As 'small' as they are, they did not get in
the way of the testers' thinking process while playing.

31

In regards to the play matrix the results re�ected how we envisioned Gemji to be: A skill-based puzzle
game that requires mental energy to beat.

32

In terms of accessibility the game seemed to do well as both �nish conditions and controls were received
as fairly comprehensible and intuitive.

Gemji further came across as fairly fun by everyone. A reason for that may be the di�culty that was
regarded as not too easy or too hard. This indicates that we are on the right path in terms of level
design.

33

Ful�llment was something that was present across all testers. Especially in more convoluted levels this
ful�llment after �nishing the level seems to go hand in hand with a certain degree of frustration, albeit
to a lesser extend.

34

The majority of participants also resorted to trial and error at some point. Since a considerable amount
of participants reported unexpected gem interactions -although they are completely deterministic-, our
integration of the theme "chaos and order" seems to be a success.

Graphics were regarded as �tting. This is a �eld we de�nitely need to work on. We therefore did not
expect the graphics to be a highlight of our game.

35

Observing testers a trend that further became apparent was that there was nothing conveying to players
that gems can only be moved one tile at a time.
Finally addressing comments and suggestions the ones that stood out referred to the instructions of the
mechanics that we provide in form of images. Testers suggested to be more speci�c with explanation
especially in regards to gem interactions. Since we want want to keep instructions to an absolute
minimum, we will have to strike a balance.

5.3 Conclusion

In this section we will discuss the main conclusions we have taken away from both the questionnaire and
watching the testers play the demo. Furthermore we will suggest solutions to problems we encountered
during the playtest.

5.3.1 Intro to basic game mechanics

One thing that was very apparent from the start was that we have to do a better job in explaining the
base mechanics of the game, namely: How gems move along the grid and that they can only move one
space per turn. For this reason we want to implement additional one line tooltips in the �rst few levels
that explain how the gems can be moved along the grid. Additionally when watching some of our testers
play we realized that they often tried to move gems over other gems or into an already occupied space.
To prevent this we want to use point lights that shimmer in the possible spaces a picked up gem can be
moved to. We hope that this and the textures make the movement clearer for the players, especially in
the �rst few levels.

5.3.2 Clearer Tooltips

Some playtesters critiqued that a few of the tooltips explaining the gem e�ects were not clearly formulated
and could even be confusing. This was especially true when the tooltips included gems that were not
already introduced. The original plan was to implement a Picture-in-picture clip that displays the gem
e�ect on an example board. Although this is important we want to develop other aspects of our engine
�rst which means that we might not have enough time to implement the pip-tooltips. Depending on the
remaining time we might update the existing tooltips or implement the picture-in-picture functionality.

36

5.3.3 Better level structure

We were overall content with the level structure of the demo and it was also not negatively mentioned in
the quesionnaire but when watching the testers play through the demo we realized that the level structure
could use some small improvements and that some levels should probably be placed a little bit further
back. We came to this conclusion as some levels were clearly more di�cult than we �rst anticipated.
Included in this small restructure will be additional intro levels for all gem types and emergent e�ects.

5.3.4 Gem activation and chain reactions

The aspect that was critiqued the most in our playtest was the clarity of the e�ect outcomes. This
problem was mentioned both in free the comment section and deduced from the score judging the
unexpectedness of the gem interactions. We assume that the main reason for this is unclarity is that the
player does not know the order the gems activate in and thus can not calculate the e�ect combinations
that occur of several e�ects chaining together. We want to improve on this problem by implementing
point lights that are created in gem once it is triggered and the rest of the animations are playing out.
We hope that this will be enough of an indication to the players that the order of e�ects matters and
that they are working according to a set of rules. Realizing that there are underlying rules that govern
all of the gems behavior is something we assume to be a fun part of puzzles games but can only really
be observed over a longer playing session.

5.3.5 Improved VFX

The most lacking aspect of our game right now are the graphics and the overall setting. This was not
only mentioned by some testers in the questionnaire but is also something that we were aware of before
going into the playtest. One comment mentioned that they were expecting much more exciting e�ects
of the gems moving which we did not implement yet because we are still working on the particle system.
We also think that we can improve the current "world setting" of our game as it is very dry for now with
only the grid showing. We want to add atleast one fully �eshed out level with details around the game
board that give it the necessary �air it deserves. Point lights and the particle system will be a great
starting point to achieve this goal.

6 Final Release

6.1 Final Version

Since the alpha release of Gemji several additions have been made. Starting with processing feedback
from the playtests, we further added features we felt would enhance the experience of the game. In the
following we present these features.

6.1.1 Movement

Previously the player would have to click on a gem, then drag it to the new position. A considerable
amount of playtesters found this input method cumbersome. Sometimes the gem would not move to
the desired spot because the mouse position was slightly outside of the boundaries of the spot. So we
made the following change: When holding a gem now, the game calculates and shows the nearest viable
position the selected gem could go to (including the original position) in form of a ghost gem. Should
the player now release the mouse key, the gem will snap to that shown location. We believe this input
method is an upgrade to the old one as players do not have to drag the gem from spot to spot completely

37

accurately anymore. The exact mouse position on release does not matter as much anymore, the right
direction su�ces now. This should help players concentrate more on the puzzles without the controls
getting in the way anymore.

Figure 23: Here a gem is being held here. Should the player now release the mouse button, the gem will
snap to the location shown by the ghost gem

6.1.2 Improved Visuals

The most critized aspect from our playtesters as well as from ourselves after the alpha stage were the
visuals of the game. This is why we heavily focused on improving the visual �delity of our game for the
�nal release in several di�erent ways.

1. Particle E�ects

One of the �rst things that we wanted to implement for improved visuals were particle e�ects.
Most of the gems in our game have magical e�ects that interact with each other but the way they
interact was not automatically clear just from their animations. For this reason all gem e�ects
also trigger a type dependent particle e�ect when they trigger their e�ect. We think that the
implemented particle e�ects are a great way to visualize the e�ects of the gems and will help our
players to understand the game more easily. The particles additionally add more �avor to our world
and make the game more fun to play in general. We also added a visual e�ect when the player
is clicking the cursor similar to e�ects in games like Hearthstone. We think that these kind of
e�ects add a feedback to the player that triggers the same sensory areas in the brain as haptic
feedback does and are a great addition to turn-based games like board, card and puzzle games.
The particles in our game are implemented as game objects with textures that are rendered on
a CPU side quad mesh (just like all other game objects). A wrapper function �lls a particle info
struct which is then used as the argument to a spawner function which creates the particle game
object, animates it and frees said particle from the information stored within the info. The VFX
that are used in our game right now are hand crafted and animated but we also implemented some
functions for general VFX.

2. Point Lights

To add more atmosphere to the game we implemented point lights and put a colored point light in
every colored gem so that it would shine in its own color. While the gems are animated, the lights
will follow the gems' position. Point lights consist of a position, color, radius and intensity where

38

Figure 24: Yellow particle e�ect

Figure 25: Purple particle e�ect

39

the light falls of non-linearly. We experimented with point lights that "emit" negative light, so
basically steal light around them for an e�ect for the black gems, but ultimately decided against it
because we wanted to keep the graphics style bright and happy. You can see the e�ect of negative
lighting in Figure 27. Additionally we also animated the light intensity depending on if a gem is
triggered or not. However we also noticed that this would make the game harder to understand
for beginners and also decided against using it in the �nal game.

Figure 26: Every gem emits light in its own color

Figure 27: An experimental e�ect of black gems that did not make it into the �nal game

3. Animated cursors & new textures

As we were looking for a general game setting for our game world and scenery, we also decided to
upgrade the cursors to better re�ect that setting. The new cursors are in form of a marble hand
and an hourglass. The new cursors also change depending on the object they are hovering over.
There are six di�erent cursors that indicate the following states:

� Normal: The default state

� Can Grab: Additional green ring around the cursor when the hovered gem can be grabbed

� Grabbing: A cursor showing that the player is holding a gem

40

� Cannot Grab: The normal cursor wih a red cross-out showing a non-movable gem

� Placement Forbidden: The same cross-out without the hand when a placement of a gem
would be forbidden

� Hourglass: A hourglass showing during loading and when e�ect animations are playing

Figure 28: Gemji cursors

4. Scenery

Since the game did not have a setting yet, we decided to put the playing�eld in a 3d environment.
We went for the asthetics of a man-sized chess board in the couryard of a building. And since
our game drew some inspiration from the ancient chinese board game of Go, we decided on a east
asian mood for the surroundings. The models for the scenery was done by us ourselves, except the
tree and the textures, which we obtained from the internet. We used Blender for the 3d modelling
and texture painting to draw some of the textures on some meshes.

5. Transparency

To be able to render the ghost gems as an indicator where a gem will be moved to we also had to
implement transparency. If a fully opaque gem would be rendered there it would be confusing for
the player to see which gem is the preview gem and which gem is the "real" gem. The transparency
was implemented using standard alpha blending. We thus also made sure to render the gems in
the correct order so that the trancparency was rendered correctly.

41

6.1.3 Menus

The bring more structure into the game we added menus. When starting up the game, the player is
greeted by a main menu (after the initial loading screen). From there they can either go to the campaign
menu to play a level we designed, play a randomly generated level in the endless mode or quit the game.

Figure 29: This menu opens at the start of the game and after the player presses escape. The campaign,
the endless mode and the quit option are accessible from here.

In the campaign menu players choose between the levels they wish to play. It is important to note
that players have to unlock later levels by beating previous ones. From the beginning the very �rst level
is available. To achieve this availability feature we implemented a simple save system. When �nishing a
level, the game now saves the latest beaten level index in a .txt �le. This way we can always convey the
players' progress to them. Furthermore when pressing escape the main menu opens up o�ering �exible
transitions between the options. The interesting aspects of our menus is that they themselves are levels.
To navigate through them players have to move a gem across a board with the options being �nish tiles.
In the campaign menu the �nish tiles leading to locked levels are sealed o� with a black gem on them.
This makes locked levels unreachable until they are unlocked.

Figure 30: Levels are accessed via the campaign overview. Here the �rst 9 levels are unlocked. The rest
are closed o� with black gems.

42

6.1.4 Endless Mode

Apart from the main campaign with its 24 levels we implemented an endless mode. This mode proced-
urally generates new levels for the player to play for as long as the player wants to. To achieve this we
integrated our generator from the Interim demo that we had lovingly called Bruce. The details of the
implementation of Bruce are located in the report of the Interim demo. As the player solves the levels,
the di�culty should gradually increase. So we had parameters for level generation change depending on
the di�culty level ranging from 1 to 10. With each beaten level the grid size, number of gems and gem
density of the level increases. Since the generator also returns a suggested solution for a generated level,
we can also increase the number of steps that this solution needs to raise the di�culty.
Even though we have implemented a clear di�culty curve in the endless mode, we still encourage players
to play through the campaign levels �rst and then move on the endless mode.

6.2 Experiences

Looking back on this term's project we have certainly gained a lot of experience in game development.
These experiences including di�culties, successes and our experience with the theme are illustrated in
the following.

6.2.1 Di�culties

Projects almost always come with a heap of di�culties, usually attributed to synergies within the group,
technical nature or from setting the expectations too high from the beginning. This semesters projects
di�culties were almost exclusively from a technical nature and something that comes from trying to write
a game from the ground up without using a ready to use engine. These are factors the we had already
anticipated and were used to due to last semester's project. This means that there is barely anything to
mention in terms of di�culties except for the technical challenges we brought upon ourselves. One thing
can be said for certain: Even though we took the challenge to not use an engine and managed to power
through the issues: Developing everything on your own is very di�cult and should not be taken lightly.

6.2.2 Working with the theme

When we �rst heard about this semester's theme we were really glad as we thought that this is something
we could easily work with. After starting to iterate through ideas that could �t the theme we quickly
realized that it might not be as easy as we initially thought it would be. We therefore took an extended
period thinking about our initial idea that �ts within our perception of Order and Chaos and were quite
happy with what we came up with. During the other milestones our con�dence in the idea started slowly
to fade as the game is essentially not chaotic at all but after the playtest we were again reassured when
we realized that for new players it does quite feel like a chaotic game.

6.2.3 Greatest success

The greatest success for this project was the implementation of the endless mode which was met with a
lot of doubt initially. One aspect that we are especially proud of is that we are able to generate these levels
in a reasonable amount of time so that there is no real interruption in the �ow of the endless mode. This
quick calculation of new and solveable levels is realized using a handful of mathematical/optimization
tricks implemented by Felix Brendel who deserves recognition for this accomplishment. If you want more
information on how he did it you can read it again in the Interim project report. Additionally we think
that we were able to create a very fun and chill but at the same time deep puzzle game that relies on

43

very basic mechanics. Considering that there are only 4 active gem e�ects for now we can see that the
possibilities for this game are nowhere near exhausted. We are further very proud that we were able to
add several new features to the already existing skeleton engine that we used in last semester's project.
These features include:

� Scheduler instantiation

� Raycast mouse interaction

� Better tooltips and interface fading

� Particle System

� Point Lights

� Transparency

6.2.4 Overall sentiment

We are very happy with the �nal version of our game and are proud that we were able to implement
everything we set out to do. One factor that was de�nitely in�uential for this aspect was that we had
already taken part in last semester's GamesLab and were used to the report and development schedule.
We additionally noticed that the work�ow within our group has improved tremendously and that we were
much better equipped to split up and manage the workload.

44

	Game Idea
	Game Description
	Game Design
	Example effects for the Gems
	Visual Clarity
	Campaign & Level Design
	Order & Chaos

	Technical Achievement
	Introduction
	Motivation
	Game Engine

	Big Idea Bullseye
	Development Schedule
	Layers of Development
	Tasks

	Assessment

	Prototype
	Prototype
	Prototype Setup
	Example Levels

	Rules & Turn structure
	Player Turn
	Rule set

	Observations & Revisions
	Game Mechanics
	Emergent Effects
	Tool-assisted level generation

	Interim Demo
	Tool assisted level generation
	Random Generation
	Level solver
	Heuristic for generated Levels
	Campaign & Level Design

	Game Progress
	Console Game Loop
	Test Cases
	Repurposing the old Game Engine
	Hit Scanning

	Alpha Release
	Game Logic Implementation
	Transition to 3D
	Gem Movement Along The Cursor
	Animations
	Scheduler
	Grid Creation
	Tooltips & Textures

	Sound Effects & Music
	Sound effects
	Music

	First Campaign Levels

	Playtesting
	Playtesting Sessions
	Playtesting version of Gemji
	Procedure
	Questions

	Results
	Demographic questions
	Gem Properties
	Impressions

	Conclusion
	Intro to basic game mechanics
	Clearer Tooltips
	Better level structure
	Gem activation and chain reactions
	Improved VFX

	Final Release
	Final Version
	Movement
	Improved Visuals
	Menus
	Endless Mode

	Experiences
	Difficulties
	Working with the theme
	Greatest success
	Overall sentiment

