
Alpha Release: Gemji

Team DreiKopf :

Felix Brendel

Jonas Helms

Van Minh Pham

June 2021

Contents

1 Game Logic Implementation 2

2 Transition to 3D 2

2.1 Gem Movement Along The Cursor . 2
2.2 Animations . 3
2.3 Scheduler . 3
2.4 Grid Creation . 4
2.5 Tooltips & Textures . 4

2.5.1 Design of the Tooltips . 4
2.5.2 Implementation of tooltips . 4
2.5.3 Finish tiles . 4

3 Sound E�ects & Music 5

3.1 Sound e�ects . 5
3.2 Music . 5

4 First Campaign Levels 5

1

1 Game Logic Implementation

We previously had the game logic and the rendered scene implemented separately. The game logic at
the time was running as a console application. While being 100% functional, this is far from the game
we had envisioned. The scene in our engine that was rendered showed the board along with the gems
but player interaction with the scene was missing entirely. Our main focus therefore became to combine
both elements. The center aspect that is used for interaction is our raycaster that was implemented for
the Interim demo. When the player clicks on a spot on the screen with the left mouse key, the raycaster
determines the intersection of the resulting ray with the board (as described in the Interim demo). The
3D �oat coordinates of this intersection are then rounded to obtain the according 2D integer coordinates
on the playing �eld. Since we know where our gems are and how big they are, we can determine whether
or not the player clicked on a gem. To then move this gem the player has to hold the left mouse key
and drag the gem to another location. On the key release the target coordinate on the playing �eld is
determined with the raycaster as well. Should the target position not be viable- because it is more than
one tile away from the original position, already has a gem or is out of bounds- the gem will instantly
snap back to the original position. Having completely incorporated the game logic into our engine the
game now performs the turn including the chain reaction after the player has moved a gem while also
checking that his move is legal. Since the game logic was �nished beforehand, this boiled down to a
single function call.

2 Transition to 3D

As well as the game logic works in the engine, providing visuals to the player is vital to ensure a satisfying
and enjoyable playing experience. At any time the player has to see what the current state of the board
is, how moves turn out visually and where they are moving gems. In the following we elaborate on how
we incorporated these visuals for Gemji into our own engine.

2.1 Gem Movement Along The Cursor

Gems move by holding down the mouse key and dragging the mouse across the screen which should be
shown visually. To achieve this we have the mesh of the selected gem be the intersection of the mouse
ray and the board while the left mouse key is being held down. It is worth noting that the origins of the
gem meshes are at the very bottom center, so matching the mesh position with the mouse intersection
caused no problems with height. When the player releases the mouse key, the gem mesh snaps to the
selected coordinate on the board. A similar snap motion also occurs when the player moves a gem after
clicking on it. Since the gem will have the origin of its mesh match the projected mouse position on the
board, not clicking on the center of a gem will result in this snapping motion.

This would make sense if the player were to pick up a gem to then move it. But what we had in
mind was for players to drag gems across the board. So in order to make this clear we added a 2D o�set
between the center of a gem mesh and the exact position the player clicked on given that this position
belonged to a tile with this gem. With this addition gem meshes did not snap to the cursor anymore.
However we noticed that the meshes were way o� the cursor position at far edges of the screen. So
speci�cally for the meshes we de�ned approximating spheres around them. The 2D o�set thus became
a 3D o�set that was calculated from the mesh center and the intersection of the incoming mouse ray
and the approximating sphere. This new o�set has gem meshes stick closer to the mouse position even
at far edges of the screen.

2

2.2 Animations

Animations are especially important to us, because our game is about understanding the interactions of
the Gems between each other and their temporal order. Each gem e�ect has a di�erent animation:

Blue gems Flicker before they teleport back to their original position

Red gems Explosively push other gems away. Movement starting fast, getting slower

Yellow gems Pull other gems towards them. Movement starting slow, getting faster

Purple gems Switches position with another gem, by letting both gems rotate around their average
position by 180° around the up-axis.

We also use a simple parenting system where each object can have a parent object. This is used
to animate multiple objects together, for example for the purple gem animation. Both gems are �rst
parented to an empty object that lies in the middle of the to-be-switched objects. Then the orientation
of the empty is animated to give the e�ect of both objects rotating around each other.

Additionally we use animations for simple camera movements at the start and end of levels as well
as for fading tooltips in and out.

2.3 Scheduler

We chose not to apply animations in a simple frame-to-frame fashion. But rather give us higher level
control over them. Therefore we put a lot of e�ort into the animation system, which is based on our
work in last semesters practical. We wrote an animation system which we call the scheduler, which
can animate any variable of any size in main memory. We use this to animate simple �oating point
values but also orientations and positions. To schedule an animation, you provide the scheduler with
some information about it e.g when it should start, when it should be �nished, what should be animated,
what kind of interpolation should be used (linear, ease-in, ease-out, etc). Like this it is really easy to
schedule animations to run at any given time in the future. When the player moves a Gem the whole
turn outcome is computed in the same frame, and alongside of computing the chain reactions, their Gem
movement animations are scheduled.

Additionally to executing animations, the scheduler can also be used to schedule actions. An action
consists of a function pointer and optionally a set of parameters that the function pointer will be called
with � essentially emulating closures1. We use actions when we know that after some time, something

should happen. For example if the player performs the last move, that will set the board into a winning
position, we �rst want the whole animation to play out and only then switch to the next level. So as the
player performs the winning move and the board is simulated, and all the chain reaction animations are
scheduled, we do a check if the board is in a winning position, and if it is, we schedule the action that
loads the next level. The playing of sound e�ects is also powered by the scheduler to be able to play the
correct sound e�ect at the correct time.

1C++ lambdas were not used, to be able to store actions packed next to each other in a �at array. This is not

possible with C++ lambdas, which have di�erent sizes, depending on their parameters. A higher level abstraction such as

std::function would have to be used. We opted to not do this, as std::function can perform heap allocations on its

own.

3

2.4 Grid Creation

Originally grids were separate meshes that were built in Blender. As grid sizes vary from level to level,
having to create a separate mesh for di�erent dimensions is way too tedious. Therefore we have shifted
grid creation from blender to our engine. The necessary vertex and index bu�ers are �lled using a function
that takes the grid dimensions as input. So when we create a new level, all we have to do for the grid
mesh is to call the function with the dimensions of the playing �eld as inputs.

2.5 Tooltips & Textures

One aspect that we deem very important for puzzle games like Gemji is the explanation of the game
mechanics without resorting to pure text which is boring and tedious to read. This is even more important
as the next milestone is the playtesting stage which will also be the �rst time that people not on the
development team will be playing our game. For this reason one of the goals of the alpha stage was to
design and implement tooltips that explain the behavior of the di�erent gems.

2.5.1 Design of the Tooltips

For now we implemented one tooltip for each of the existing gems in the game. For the design of
the tooltips we decided to show a before and after screenshot of the e�ects of the respective gem in
an example game state. Additionally we added a title to each of the tooltips that is also color coded.
Although the title does not deliver crucial information to the players it does help in terms of making it
clear which gem is the focus of each tooltip and will help us for the questionnaire and talking to our
testers in the playtesting stage.

2.5.2 Implementation of tooltips

For the implementation of the tooltips we used the ImGUI library which we have integrated into our
rendering pipeline. The ImGUI provides easy window creation for all UI elements that we want to use
and will be also be helpful when we want to create an Options menu to control elements like the sound
volume of the music/e�ects and rendering options. The tooltips are shown in the bottom right corner
of the screen when the player hovers over a gem using the glfw mouse position callback. When the
player stops hovering over any gem the tooltip will fade out after 3 seconds. Additionally the tooltip
will stay active when the player holds the gem actively with the mouse before making a new move. The
animations for the tooltip fading are implemented by our scheduler animation system.

2.5.3 Finish tiles

The goal for a round of Gemji is to move gems to their respectively colored �nish tile. Up until this
milestone we did not have a representation of the �nish tiles and even the command-line version did not
mark the �nish on the ASCII boards. This crucial aspect was very important to �nish otherwise it would
be very di�cult to explain to the play testers what the actual goal of Gemji is. Additionally the design of
the �nish tile textures in�uences the perceived game setting for the players. For now the �nish textures
were designed as magical circles but could be subject to change in the future. Furthermore the game
objects will be automatically created and placed to the correct locations depending on the information
in the "playing_�eld" struct when a level is loaded.

4

3 Sound E�ects & Music

Puzzle Games usually do not have a good way to immerse the player in a narrative. This is especially
true for Gemji as it is a very abstract puzzle game. Immersing the player in the game world has to be
achieved by other elements such as SFX, music and particle e�ects.

3.1 Sound e�ects

Finding �tting sound e�ects for Gemji was de�nitely a challenge not only because of the search process
but also due to the relation to the "game world". Just as with the �nish tiles we decided to go into
the direction of mystical/magical SFX that relate to the e�ect of the respective gem. In the following
section we describe the SFX as they relate to the gem e�ects:

Red gems Pushing - Magical shockwave

Yellow gems Pulling - Slow starting but abrupt ending wooshing

Blue gems Back teleportation - Channelled teleport sound

Purple gems Swapping gem - Magical rotation

3.2 Music

Just as the SFX the music has a major role in the players immersion of the world. For now we wrote a
simple asian-style mandoline melody for Gemji as we feel like we could go into asian-in�uenced theme.
This inspiration also came from the game board of the physical prototype where we used a Go-board
which we now also use as representation of our board in game.

4 First Campaign Levels

From last semesters project we gathered additional experience how we want to setup the level structure.
The level structure is the biggest in�uence on the learnability of our game. The levels have to be
structured in such a way that they not only introduce the basic game mechanics in a sensible matter that
allow for good understandability and a smooth learning curve but also slowly teach what we call emergent
e�ects. Emergent e�ects are the resulting game patterns that depend on the interaction of the di�erent
game mechanics working in combination. This mainly includes the di�erent gem e�ects interacting with
each other but for example also in which order the e�ects are triggered. The level structure and the
learning curve is also something that we want to closely analyze for the playtest.

5

	Game Logic Implementation
	Transition to 3D
	Gem Movement Along The Cursor
	Animations
	Scheduler
	Grid Creation
	Tooltips & Textures
	Design of the Tooltips
	Implementation of tooltips
	Finish tiles

	Sound Effects & Music
	Sound effects
	Music

	First Campaign Levels

