
SMOL
Cyberspace Liberation - Computer-Network-Takeover-Operator delivers Net Neutrality
Triankolos Edition

Alpha Release
14.06.2021

Mehmet Dereli

Felix Kosian

Julius Krüger

Louis Hötzl



1

Since the interim demo, we came up with a proper title for our game and managed to
implement complete a lot of the missing functionality that we had planned for our game.
We finally completed the missing features of our functional minimum. Namely, we finished
the UI and added a tutorial level. We also added a boss enemy and implemented the rest of
the abilities that we had planned. This completes the low target as well. As stated in our
desirable target we extended the UI, the procedural level generation always results in
playable levels, and we added a trap. We also added an additional enemy, which gets us to
a total of two enemies (boss not included) as opposed to our target of three total enemies.
We did not have time, however, to integrate sound effects and music, as well as visuals for
some of the abilities. In summary, we hit most of our goals for the desirable target. From
our high target, we only got started on the progression system, but ultimately we did not
have enough time to integrate the feature. In its current state, the game is also rather
unbalanced, but we will tackle that during playtesting.

Game Loop
The Game Loop was changed to allow opening the door after a level is cleared, detect the
player walking through the door and loading the correct scenes. To allow this more fine
tuned Game Loop, we implemented a state machine which decides the correct behaviour.



2

Level Generation
The procedural Level Generation is one of the more important aspects of the game as it
directly influences the player experience. Ever since the Interim Demo, we have made a few
changes to the Level Design, including a rescaling of the tile and total level size.

One of the major changes was the thinning of the walls. During the ID (Interims Demo), we
felt that having thick walls would make the player feel as if he were in a more enclosed
space and strengthen the idea of an enclosed room. During the early stages of
development, we discovered, contrary to our first beliefs, that it feels very uncomfortable
to have the player move in such a closed room and that the player can vanish behind the
thick walls. We initially did not think that it would feel that comfortable, because the player
is always around the center of the screen, but it turned out to be a bigger problem. We
therefore thinned the walls to counter those two inconveniences.

Another big change was the decision to break out of our grid structure. During our tests,
we discovered that the levels did not feel as natural and comfortable to play as we
expected. One of the major reasons was the inorganic spread of obstacles. We initially
thought that by placing obstacles in an orderly fashion would further strengthen the aspect
of order in contrast to the chaotic enemies. After a revision, we decided to move the
obstacles into the theme of chaos and spread them more randomly. By doing so, we
managed to incorporate both aspects of the theme (Chaos and Order) into the Level
Design.

The next big change that we did was to incorporate 2 different level styles, Vapor Wave and
Outrun. In the beginning we thought that it would be nice to be able to switch between
those 2 styles when the player finished killing all the enemies, to symbolize the swap from
Chaos (Outrun) to Order (Vapor Wave). The Outrun style uses a dark color palette, which is
associated with Chaos and Evil, while Vapor Wave uses a bright color palette, which is
associated with Order and Justice. Our group was rather split about this feature, because
while it is a nice feature, a few of us felt that it would be a waste of assets. While fighting
the enemy is something that takes time, passing through the door to get to the next level
happens rather fast and we wanted to show off both styles as much as possible, to add
more variables to the Procedural Level Generation. The main strength of this type of Level
Generation is to generate as many diverse levels as possible to keep the player engaged
and by adding more color pallets, the effect of diversity is further enhanced. In the end we
went with the later option, but we decided to leave the first option open, in case it felt
awkward in the final game.

The last change that we did was more of an addition than a change. We decided to add a
Tutorial, that consists of a room with different pillars, which allow the player to change his
abilities and which provide a short explanation of the abilities. This was done, so that the



3

player can first familiarize himself with the mechanics. We further added a dummy enemy
that can be used to practice.

Character
Since the last milestone, we managed to implement the rest of the abilities we had planned
for our game. To keep track of channeling times, durations and cooldowns we used
coroutines for all of the following abilities.

We implemented a Teleport that allows the player to teleport to any spot on the map. Once
the player enables the teleport the time at which the game runs is reduced by (currently)
30% and the player no longer controls the player character but instead controls the
camera. The player can then pick any point on the map they which to be moved to and can
confirm or abort the teleport with left or right click, respectively. The location the player is
currently selecting is communicated to the player with a semi-transparent object and we
indicate whether it is a valid teleport by changing the object’s color to blue or red. We
determine whether a teleport is valid or not by checking whether the location is part of the
NavMesh we are using for our AI. Since we used the Unity Standalone Input System we
thought we could simply reuse certain controls by having separate action maps for the
Teleport and the rest of the character controller. This would allow us to, for example, to use
WASD to move the character during most of the gameplay, but also to move the camera
and not the camera while the player is in Teleport mode. For some reason, this did not
work by enabling and disabling the corresponding action maps, however, so we had to add
booleans to check whether the movement or teleport input should currently be used.

The Slow Projectile is similar to the regular projectile. However, it is shot at an angle and
over a fixed distance. Once the projectile collides with any obstacle or the floor it stops
moving and slows down all enemies that are in a fixed area around the projectile by
changing the movement speed of the enemies within its trigger collider. Once an enemy
leaves the area its movement speed is restored. The projectile is destroyed a few seconds
after it hit the floor and a cooldown is started.

We also implemented a Hack ability that allows the player to take control of one enemy for
a short amount of time. We get all enemies within a certain range of the player and then
we change the target of the hacked enemy to the enemy closest to it. After a certain time,
the enemy is released and targets the player again and the ability starts a cooldown. One
restriction of this implementation is that the hacked enemy can only have one target at a
time. However, we assume that players won’t notice this during gameplay and therefore
did not justify the additional workload that would have come with changing our AI system
to allow enemies to have multiple targets.

We implemented a Weapon Boost. After a short duration during which the player cannot
do anything, the fire rate and weapon damage of the player weapon is increased, while its



4

reload time is decreased for some time. Then the ability starts a cooldown. This ability is
mostly tweaking values and starting a couple of coroutines.

The Revive on Death ability is pretty straightforward. When the player character’s health is
reduced to zero we simply check whether this ability is enabled and whether it has charges
left. If yes, the player character’s health is set to a certain amount and we subtract one
charge. Otherwise, the player character dies and the game is over. The ability allows for a
more defensive playstyle for players who want to take it safe.

We also implemented a feature that allows the player to switch between some abilities
in-between levels. The player can now switch between Teleport and Dash, Hack and the
Slow Projectile, and between a Weapon Boost and Reviving on Death.

We also implemented the character model as well as animations. We expected that the
animations would take a lot of work due to past experiences. For the most part, the art
integration was pretty straightforward. One minor hiccup that we had to deal with was that
the shooting animation did not play as fast as the player could shoot without looking
ridiculous. Therefore, we split the shoot animation into three parts and looped the middle
part for as long as the time since the last shot was not above a certain threshold. With this
fix, the animations work reasonably well.

Additionally, we changed our camera behavior to be more dynamic. The camera is now
moved toward the area into which the player is aiming rather than the camera being
always centered on the player character. This turned out to be trickier than expected. The
initial idea was to have the camera follow an invisible game object that follows the player’s
mouse pointer but only up to a fixed distance from the player. However, our camera is
slightly tilted, and therefore objects at the bottom of the screen are closer to the camera’s
near plane than objects at the top. This resulted in the position of the game object being
off and some weird camera behavior. Ultimately, we did not figure out the necessary vector
math for the calculations, but we shot a ray from the mouse position in screen space into
the world and then set the game object’s position accordingly.

We also wrote a bunch of code for a progression system, but ultimately we did not have
time to properly integrate it into the game or set up the necessary UI elements that are
required so the player can actually interact with it.

AI
The AiDirector now manages difficulty and the special boss level. Each enemy can have
multiple stages with difficulty cost tokens. Each level has a predefined amount of difficulty
tokens. With two settings between 0 and 1 giving the mean, we can define the probability
(following a normal distribution) of how many vs better stage and easy vs hard enemies will
be spawned. Each spawned enemy reduces the amount of difficulty tokens left for this



5

level.
For the boss level, the spawn
behaviour gets overridden and
dynamic spawning enemies are
supported.

Improvements to Behaviour Tree
includes many more nodes
(conditional checks, animation
trigger, gameobject controls, …) to
allow much more complex
behaviours.

User Interface
After a major rework, the UI now
covers In-Game, Ability-Select and
Menu. The Menu UI allows
switching to different scenes
(Game, Main Menu, Tutorial,
Credits) and is partially available in all Scenes. The In-Game UI includes health bar, enabled
and available abilities and ammunition count.

Design Revisions
We made the following design revisions:

- Thinning the Walls (see Section Level Generation)
- Rescaling the Tiles
- Breaking out of the grid structure by placing the obstacles more chaotically (see

Section Level Generation)


