Project Notebook - Project: Equilibrium

Julian Geheeb Lucas Leder Yannik Melzer

Master Practical Course Games Engineering: Computer Graphics
and Visualization - SS 2021

Contents

1 Formal game proposal

1.1

1.2
1.3
1.4

1.5

Game Description Lo Lo
1.1.1 Interpreting the Theme
1.1.2 BasiclIdea
1.1.3 Name Design
1.1.4 Player Character Abilities
1.1.5 Graphics, Transition and Sound Design
1.1.6 Further Sketches
Technical Achievement
"Big Idea” Bullseye o
Development Schedule 0oL
1.4.1 Layered Schedule
1.4.2 Timeline.o
1.4.3 Task Overview
Assessment

2 Prototype

2.1
2.2

2.3
2.4

3.1
3.2

3.3

3.4

Prototype Goals
Prototype Description 0oL
221 Overview e
2.2.2 Gameplay
Experiences
Revisions to Game Idea,

Interim Report

Overall Progress
Functional Minimum 0oL
3.2.1 One Enemy Type
3.2.2 Player Character
3.2.3 Game State Switch 0oL
324 Onelevel
Low Target
3.3.1 Additional Enemy Types
3.3.2 Second Player Ability
333 BasicSounds oL
3.3.4 Damage Feedback Effects
3.3.5 Second Level
3.3.6 Level Selection Menu
Desirable Target
3.4.1 Second Input Control Scheme
3.4.2 Settings Menu
3.4.3 Pick-Up Ability
344 OneBoss
345 Third Level

17
17
17
17
18
20
20

3.4.6 UserInterface
3.4.7 Visual Upgrades

3.5 Design Revisions

1 Formal game proposal

The game is being developed for a Master Practical Course which has an un-
derlying theme that the game is supposed to implement. The given theme is
Chaos and Order. In the following sections, the basic game idea is explored.
Furthermore, it is explained how the design principles of the game fit the theme,
which technical achievements can be implemented and the current development
schedule is outlined. The chapter concludes with an assessment of the game
idea.

1.1 Game Description
1.1.1 Interpreting the Theme

Before coming up with ideas of what games can be made regarding the theme,
it is important to understand the theme itself. Usually there are many ways
to interpret such a restriction. In this case, it is easy to associate the Chaos
part with something negative and the Order part with something positive. This
might result in a game where the gameplay is not equally balanced towards both
parts of the theme, e.g. the task of the player is to clean up a chaotic room or
in other words create order in chaos. While this approach is fine, the team’s
interpretation is to have both chaos and order in a balanced state. It also leads
directly to the connections to Yin & Yang, which is a symbolic representation of
a balanced state of two opposites, in our case chaos and order. Furthermore, it
describes the idea of having chaos in order, which is the black dot in the white
area, and order in chaos, which is the white dot in the black area, see Figure 1.
This interpretation will be the underlying idea of the following decisions.

Figure 1: Yin & Yang symbol. Taken from https://en.wikipedia.org/wiki/
Yin_and_yang

1.1.2 Basic Idea

Project: Equilibrium is a 2.5D bullet-hell game ! with a top-down view. The
basic idea of such a game is that the player has to defeat enemy waves by
shooting at them while dodging bullets to be able to reach and defeat the final
boss of a level. This genre already incorporates the theme of Chaos and Order

Ihttps://en.wikipedia.org/wiki/Shoot_’ em_up

https://en.wikipedia.org/wiki/Yin_and_yang
https://en.wikipedia.org/wiki/Yin_and_yang
https://en.wikipedia.org/wiki/Shoot_'em_up

’
\'_1” bl
s E.]

i !;"“l"':

r
-
-
]

i

Figure 2: Screenshot of Perfect Cherry Blossom. Taken from https://en.
wikipedia.org/wiki/Touhou_Project

reasonably well. At first glance, the screen in Figure 2 looks clustered and thus
rather chaotic. However, having a closer look reveals a pattern, which stands in
close relation to order. In a typical bullet-hell game, the actions of the player
mostly consist of shooting, which is an offensive option, and dodging, which is
a defensive option. In a broader sense, this can also be seen as a representation
of chaos and order. The many bullets on the screen cause chaos, while dodging
the patterns brings order into the chaos.

Project: Equilibrium tries to further emphasize and balance those proper-
ties by dividing the game world into two states, representing chaos and order
respectively. Within a level, the world state constantly switches back and forth.
In each state, the behavior of the enemies, as well as the interactions and abili-
ties of the enemies and the player character change. When the world is in the
chaos-state, enemy abilities also represent chaos by utilizing offensive options
like shooting bullets. The player character represents order within chaos, there-
fore the player character’s abilities are of defensive nature. However, the player
should still be able to defeat enemies, e.g. by reflecting their attacks or baiting
them into shooting each other. When the world is in the order-state, the roles
are reversed. The player character is able to attack by shooting bullets and
other offensive abilities. Enemies have defensive abilities with a strong empha-
sis on patterns. Likewise in this case, the enemies should be able to damage the
player, by applying the same principles as in the chaos-state with the player,
e.g. they can reflect the player characters attack. An example of this interaction
can be seen in Figure 3.

https://en.wikipedia.org/wiki/Touhou_Project
https://en.wikipedia.org/wiki/Touhou_Project

Chaos sle,
By Dulled P(qyer

N

¥)
3 > [=s])
Ee U/

/ \
/ N e !—{uah’- she .4

/.
Dogs .ﬁb]— / I ridwf Mcwfh)r
™ G\C,H me(51\;1{-‘) . [
= PL&V“ g,d'(‘)\“"”‘J"y\ \ U;LuaL cle (sLaM(Z)
(o< Ac b a 56
(a) Example interaction of player and enemy in chaos-state.
Oches skaker
v T
{ %) S,
7
€ thmin Okdm‘ e [q},u Lo Q,\,
s 70
/ \
/ \ | V‘Sb\&k AQ%E\?L
v ~J (_/ (e
\7”./;11 - v). Dy .
1% O {2m2)
EMUZ} L]»!

) GM Ewéw\
>} Uy gl J\almgza\ d\eMJL“eL% Playeer J,QLS quwzjrt)\

(b) Example interaction of player and enemy in order-state.

Figure 3: Sketch of a storyboard of one scenario in two different states.

1.1.3 Name Design

Finding a fitting name for a product is a very an important task. The name is
often the first contact consumers have with the product, so conveying the right
image can help to increase the customer count. The name Project: Equilibrium
consists of two parts, each of them giving a different but important hint to
the overall theme and feeling of the game. Equilibrium describes the balance
between chaos and order. The Project part comes from one of the more popular
series of the genre, Touhou Project, so there is a connection to the potential
target group. Upon hearing the name, an assumed reaction could be: ”Project?
Reminds me of Touhou. Also what is this part about equilibrium/balance?
Sounds interesting, I should look into it.”

1.1.4 Player Character Abilities

At the time of writing this, the player character is planned to have three abilities
per world state available, making it six different abilities overall.

The first ability is shooting bullets in the order state and shielding in the
chaos state. The bullets travel a straight line in the direction the player character
was facing at the moment of shooting. The shield is also bound to the direction
of the player character and covers a set area in front of the player. Hitting an
enemy with a bullet results in damage, so does shielding an enemy attack in the
right moment.

The second ability is chargeable. The higher the charge, the further away
from the player character the ability effect activates. In the order state, it is a
small AOE damage ability that does not have any travel time, meaning it can
ignore enemies and possible shields between the area of effect and the player
character to deal damage. In the chaos state, the player can teleport to the
designated area while having a small shield. This can be used to bait enemies
into shooting each other by dodging as well as shielding many bullets at once
when teleporting to the right area. A sketch of both variations of this ability
can be seen in Figure 4.

The third action is only available to the player as an item pick-up. By
making it a pick-up, it is possible to add many different abilities without giving
the player too many options at a time. Since those abilities exhaust after using
them once, they are usually more powerful than the other two abilities of the
player character. One example is an AOE damage skill in a large circle around
the player in the chaos state and a large shield all around the player in the order
state, both with a reasonably long duration.

i \M }//
= / =
) / \(') aryed /‘ \\
gl abil */ rosst :L‘\// $
PODAY
(g N
_ (— J»/J
- vou 74 /
Lay s \/
Explosion Ability
(a) Ability in the order state. (b) Ability in the chaos state.

Figure 4: Sketches of the second player character ability.

1.1.5 Graphics, Transition and Sound Design

The following decisions are tightly connected and therefore influence each other,
which is why they are part of the same section. In order to make the whole pic-
ture of many enemies, bullets and the transition not too visually overwhelming,
the game is planned to have simplistic 3D graphics that represent geometrical
shapes and few to no other colors besides black and white. Examples can be
seen in Figure 5. Basic shapes allow for easy recognition even when the screen
is clustered. Additionally, they work with a black and white color scheme which
helps to integrate the notion of Yin and Yang. Depending on the world state,
the colors get inverted, representing their current behavior and state as well. To
differentiate the objects from the background, the wireframe is outline by the
help of edge shaders.

The transition between the two world states is a core feature of the game
and therefore needs to be discussed and defined in detail. It is triggered when
a gauge is full, but it does not happen everywhere in the game world at the
same time. Rather, it starts from a single point or line and spreads throughout
the level, swallowing objects, enemies and the player bit by bit. The changes
happen per entity, giving the player another strategic element to play with, e.g.
dodging the transition as long as possible for certain advantages. An example
of desired graphics together with the state transition can be seen in Figure 6.
For boss fights or special enemies, the plan is to have the model change while
transitioning between states, so they have one model per state.

(a) Example 1 (b) Example 2

Figure 5: Example geometric shapes for potential characters.

(a) Example spread of the chaos state from (b) Example spread of the order state from
the middle of the play area. the middle of the play area.

Figure 6: Mock-ups of the word-state transition.

To put an emphasis on the difference between the two world states, the team
is trying to create a noticeable change in music/sound effects when the player
transitions between the states. As transition for the objects have a progression
depending on how much of the body is covered in the transition, the musical
change can progress by the same amount, making it seem like the player is
swallowed by the new state. This might be achieved by fading between music
or using reverb zones to alter the base music.

1.1.6 Further Sketches

Figure 7: Example boss fight.

10

(b) Example step 2

Figure 8: Example of how the player can bait enemies in the chaos state.

11

1.2 Technical Achievement

As described in 1.1.5, the world state transition has many layers. Implement-
ing a smooth transition for gameplay, visuals and sound while maintaining a
playable experience for the player is crucial. The team’s technical achievement
is therefore the transition itself with all its sub-components. The most impor-
tant ones are listed here:

e Visuals: Transition shader and object shaders in two different versions,
one per world state

e Audio: Smooth noticeable change in music based on the player characters
transition progress

e Game logic: Change in player character behavior, enemy AI behavior,
interactions between player and enemies

1.3 ”Big Idea” Bullseye

[
Dynamically changing
world state

Yin & Yang bullet-hell

Figure 9: The game’s ”Big Idea” Bullseye.

12

1.4 Development Schedule
1.4.1 Layered Schedule

1. Functional minimum

e One enemy type

— Basic model

— Behavior

— One ability per world state: shooting/shielding
e Player character

— Basic model

— Basic input

— One ability per world state: shooting/shielding
e Switch between game states

— Basic shader

— Change of game logic
e One level

— Set amount of enemy waves

— Game over: win/lose condition

2. Low target

e 2-3 enemy types
— Models
— Design
— Behavior
— One ability per world state

Player character: Second ability per world state

Basic sounds

— Bullet sounds
— Hit sounds
— BGM

Menu: Level selection

Second level: Making use of new enemy type

Damage feedback, e.g. bullets, parries, ...

3. Desirable target

Input: Second control scheme

Menu: Settings

One pick-up ability: One effect per world state

One boss

— Design

13

— Two models, one per world state
e Third level: Making use of boss and pick-up
o Ul
— Gauge/Timer for world transition
— Boss Ul
e Visuals
— Bullet shader
— Better shader for transition
— Substitution of potential placeholder models

4. High target

e Input
— Controller support
— Custom control scheme

Sound design: Sound transition with world state

Score system

Story/Dialogue

e More ability pick-ups
More boss fights
More levels

— Making use of new bosses and pick-ups
— Tutorial

5. Extras

e Endless mode

e Different player characters
e Local multiplayer

e Level editor

1.4.2 Timeline

mmmmmm

Figure 10: The estimated timeline and task distribution for this project.
A clearer/bigger version can be seen at https://wiki.tum.de/display/
gameslab2021summer/Team+Equilibrium.

14

https://wiki.tum.de/display/gameslab2021summer/Team+Equilibrium
https://wiki.tum.de/display/gameslab2021summer/Team+Equilibrium

1.4.3 Task Overview

In the context of the following table, p is short for person, e.g. 1h/p stands for
one hour per person.

Task Description Assigned Estimated
people time
Documentation | Writing, sketching, | All 50h/p
mock-ups, brainstorm-
ing ideas, ...
Presentations Preparation, discussion, | All 4h/p per pre-
sentation
Trailer Editing, storyboarding, | All 10h
Prototype Design, creating, ... All 9h/p
Character Design, art, animation, | Lucas, Yan- | 4h/p
nik
Level Design Waves, transitions, ... Lucas 16h
Gameplay De- | Weapon design, enemy | All 12h/p
sign types, ...
Audio SFX 4 BGM, imple- | Julian 12h
mentation
Visuals Bullet shaders, particle | Yannik 20h
effects, ...
Transition Game Logic Lucas 20h
Transition Shader Yannik 24h
Transition Sound Julian 16h
Enemies First enemy Julian 8h
Enemies Second to forth enemy | Lucas 16h
Enemies First boss Yannik 12h
Enemies Additional enemies and | All 6h per enemy
bosses
Player Input, abilities, ... Julian 28h
Player First pick-ups Lucas 8h
Menu Level selection Yannik 4h
Menu Settings Julian 8h
Ul Design, art All 4h/p
Ul Implementation Julian 4h
Tutorial Dedicated level, paus- | Lucas 12h
ing for explanation
Story Writing dialogues, im- | Yannik 12h
plementing
Playtesting Implementation of feed- | All ooh/p
back from playtesting
sessions

15

1.5 Assessment

The main strength of Project: Equilibrium is the fast and engaging but simplistic
gameplay. Furthermore, it stands out from traditional bullet-hell games because
of the state transition, which makes it rather unique. The state transitions are
also the most interesting part of the game, specifically the interactions between
enemies and the player character during them. If done correctly, the players
can have different tactics like delaying or forcing a transition because of certain
advantages, which gives the simple gameplay another level of depth for those
who are a more serious gamer type. However, getting this transition right is
crucial to the success of the idea.

The target audience are mostly fans of shoot’em ups or bullet-hell games.
Nevertheless, Project: Equilibrium still offers incentives for those who are not
typically fans of that genre due to its uniqueness. The players kill enemies while
avoiding their own death by constantly managing the different abilities that are
at their disposal at the current time. Players who want to take the game more
seriously can try to aim for optimization of state transitions and increasing
their high-score. The virtual world is rather abstract due to its simple art style,
which leads to the story and lore being a secondary contributor to the world.
The most important criteria for success is a fluent state transition that maintains
immersion and game feeling. Furthermore, the game should be fun to play for
bullet-hell fans and beginners alike.

16

2 Prototype

2.1 Prototype Goals

The prototype’s goals are to demonstrate and test the core game mechanics, like
shooting, shielding and the transition between world states. It should become
clear if the game principle has the potential to be fun or if major changes to the
game idea have to be made. It should also help to make rough estimates with
regard to balancing things like player, enemy and projectile speed, how fast the
transition spreads and so on. Furthermore, the prototype should serve to figure
out reasonable behavior for the enemy Al and composition of waves.

2.2 Prototype Description
2.2.1 Overview

The prototype is made in Tabletop Simulator?. The units move on a grid
consisting of hexagonal tiles. These can be flipped to represent the transition
between world states. The prototype is played as a turn-based board game.
Turns are executed in the following order:

Transition spreading — Spawn waves — Bullets — Player — Enemies.

In the order state enemies have a shield, which occupies two adjacent tiles
and moves clockwise around the enemy unit each turn. As can be seen in
Figure 11, they move one tile each turn in a predefined pattern. Meanwhile,
the player can move one tile every turn, but does not have to move. They can
shoot at enemies with bullets, which move two tiles per turn in a straight line.

&, 3

(a) Turn 1 (b) Turn 2 (c) Turn 3

Figure 11: Movement pattern of enemies in the order state.

In the chaos state the roles of player and enemies are reversed. An example
of this state can be seen in Figure 12. The latter can now shoot at the player
and has no shield anymore. They also move randomly every turn now. How
they move is decided by two rolls of a six-sided dice. The first roll determines
the direction in which the enemy unit moves, the second determines how far

2https://www.tabletopsimulator.com/

17

https://www.tabletopsimulator.com/

it will walk in this direction. This process can also be seen in Figure 13. En-
emies can still move only one tile per turn, hence they will move in the same
direction in consequent turns until they reach their target tile. The player can-
not shoot anymore in this state, but can activate a shield instead. This shield
lasts for one turn and has a cooldown of 2 turns. In contrast to the enemies’
shields, the player’s does not move around him, but is instead three tiles wide
to accommodate to this difference. Furthermore, it only stays for one turn.

i

OoECEENE

(a) Step 0 (b) Step 1: Direction roll (c) Step 2: Distance roll

Figure 13: Random movement decision process.

As can be seen in Figure 14, both player and enemies can shoot in twelve
directions. This means that they can not only shoot in direction of adjacent
tiles but also along the edges between these tiles. Since bullets move two tiles
per turn, this is possible without creating unusual edge cases.

In both states hitting a shield with a bullet triggers a parry action, reflecting
the damage by the bullet to the unit which shot it.

2.2.2 Gameplay

The goal of the player is to eliminate all enemy units without dying. To make
this easier and not too frustrating for them, the player has three lives. The
transition starts after five turns are completed and the first wave of enemies

18

Figure 14: Picture of possible shooting directions.

spawns in the first turn. Since no transition has started and no bullets are
present yet, the player begins turn one. If they do not destroy an enemy before
it reaches the end of the board, the enemy loops back to the opposite end of
the board and continues its pattern. At the beginning of the sixth turn the
transition into the chaos state starts. First, only the middle tile is flipped. In
the following turns the chaos state spreads two tiles per turn in all directions
until the playing field is completely transitioned. The game stays in the chaos
state for five turns again, afterwards the order state transition starts, again
starting from the middle tile.

(a) Transition turn 2 (b) Transition turn 3

Figure 15: Transition into the chaos state.

After a certain amount of turns the next wave spawns, regardless of whether
the player has cleared the current wave.

19

2.3 Experiences

During creation and playing of the prototype several experiences were made.
The realization of how difficult it is to design a fair behavior of enemies and
balanced waves is the most notable one. Several edge cases and game mechanics
were explored and refined while playing the prototype. For example a decision
had to be made of what happens when enemies reach the end of the playing
area. It was tested whether enemies should just despawn, start moving in the
opposite direction or loop back to the opposite end and continue moving as
before. In the end the decision was made to do the latter. It was also decided to
let shields parry incoming damage to give the player the option to defend himself
more aggressively during the chaos state and make the order state slightly more
difficult. Additionally, the speed of enemies, bullets and transition had to be
balanced. While the speed of these things in this prototype cannot be directly
compared to the speed in the digital game, it will at least give an estimate for
initial values to test in the game.

2.4 Revisions to Game Idea

At the time of writing, no major revisions to the game idea where made due to
the prototype. Nevertheless, several open questions which we could not find a
satisfying solution for before playing the prototype were answered, and many
game mechanics were refined. In summary, designing and playing this prototype
already helped a lot with the development of the final game, and it probably
will continue to do so.

20

3 Interim Report

3.1 Overall Progress

The goal of this part of the development process was the creation of the first
playable version of the game, which means reaching at least the low target of
the game, or preferably the desired features. During this time a lot of progress
was made.

In summary, most goals were achieved, while some others are still being
worked on.

3.2 Functional Minimum

The functional minimum goal of the game included:
e One enemy type
e Player character
e Game state switch

e One level

3.2.1 One Enemy Type

A bullet-hell game requires, by definition, enemies that attack and/or damage
the player. To setup a simple framework and data structure that would easily
allow the implementation of multiple enemy types, an enemy with basic shooting
and shielding mechanics was devised. While in the order state, this Bullet Shield
Enemy - as it is called - is capable of projecting a shield that blocks player
bullets. In the chaos state, however, this enemy type shoots simplistic bullets
that fly in a straight line towards the player. More about the state switch in a
later section.

The aforementioned data structure was created by heavy compartmentaliza-
tion of the different parts of the enemies’ behavior into separate components:
The Health System, the Enemy Entity script which is different for all enemy
types, but always inherits from the Enemy Entity parent class, and a movement
script which is added at run-time and directly dependent on the settings of the
currently approaching enemy wave. The level design will also be described in
detail at a later point.

3.2.2 Player Character

Of course, a game such as this cannot work without a player character. To focus
on both an easily extendable implementation (for later parts of the development)
and allow better control of the gameplay, the player behavior was, like the
enemy behavior before it, split up into multiple components: The Player Entity
script acts as a central reference keeper to the player itself (as a singleton)

21

and its components. The Player Health System directly inherits from and thus
is based upon the Health System already used for the enemies. This allows
different game factors to effect both players and enemies without having to
access multiple different scripts or even differentiate between both. Lastly, the
Player Controller script manages all things regarding user input and player
abilities. As part of the functional minimum target, only two player abilities
were implemented: A basic shooting ability that spawns bullets and fires them
into the direction the player is looking and a shield ability that generates a small
shield the player can use to block enemy projectiles when in the chaos state.

3.2.3 Game State Switch

As mentioned before, the game state constantly switches between order and
chaos, with the player and enemy taking opposite roles (offensive/defensive and
vice versa) in both states. To make this state transition both smooth and allow
for easy further modification of the process, a heatmap was implemented. This
heatmap is utilized by the State Manager script and the shaders employed in
the project.

Figure 16: Example heatmap utilized for both the first and the showcase levels.
The transition happens from black to red.

3.2.4 One Level

To make level design easy Level Manager was introduced. The Level Manager
contains a variety of functionalities related to levels.

The levels themselves are composed of a simple hierarchy: A level contains
any number of waves, which themselves contain any number packs. A pack only
spawns a single enemy type in a configured pattern with other settings including
the movement pattern of the pack’s enemies, the amount of enemies and the
distance between enemies. There are a variety of other settings, such as the
approaching direction of the pack, which will not be discussed in detail. This

22

data is stored in a Scriptable Object and can easily be referenced by the Level
Manager which then reads it in and spawns the right enemies at the right time.

For the first level, only simple spawning patterns and a straight line move-
ment pattern were used. Due to its easy nature, it serves as a kind of tutorial
level and will be fully refurbished as such in the future.

d ——

(b) The enemy formation created from
that data.

(a) Level data

Figure 17: An example excerpt from a Level Scriptable Object and the enemy
instances that are created from it.

3.3 Low Target
The low target included:

e 2-3 enemy types

Second player ability

Basic sounds

Level selection menu

Second level

Damage feedback effects

3.3.1 Additional Enemy Types

Based on the easily extendable design model, two further enemy types were
added to the game: A basic Runner Enemy that simply moves across the game
field without attacking the player and a Laser Emnemy that, in the offensive

23

mode, charges up a large laser which is then fired at the player after a short grace
period. In the defensive mode, the Laser Enemy simply follows its predefined
pattern for now. Different ideas are still being experimented with for the order
behavior.

3.3.2 Second Player Ability

As part of the Low Target, the player’s capabilities were extended to include a
secondary player ability. Just like the first, this ability changes effects depending
on the player’s state. In the order state, were the player possesses offensive
capabilities, the ability launches an area of effect bomb that detonates at the
target location and gives the player the possibility of attacking high-priority
enemies behind their front lines. In the chaos state, on the other hand, this
ability allows the player to teleport to the target location and shortly become
shielded.

3.3.3 Basic Sounds

To manage basic sounds and background music, an Audio Manager was im-
plemented. This Audio Manager possesses a variety of different capabilities,
such as managing the volumes of the different sounds (categorized into mas-
ter, effect, music and environment volumes), simply playing sounds and even
the possibility to fade between different sounds, which allows for a smoother
gameplay experience.

3.3.4 Damage Feedback Effects

As there are a variety of different abilities in the game and thus a lot of inter-
action methods between the player and the enemies, proper visual feedback is
required to communicate the success of various actions to the player. These are
especially important when it comes to more difficult actions, such as the player
parrying an enemy or getting hit.

Thus two simple visual feedback effects were added, one of which flashes
a red light once the player takes damage, while the other appears as a bright
pinkish light when certain conditions are met. These effects will be adjusted in
the future, but serves their purpose for now.

3.3.5 Second Level

Using the framework implemented for the purpose of creating levels, a new level
instance was created. The second level features more complex spawning and
movement patterns, while also including enemies that have ranged attacks.

3.3.6 Level Selection Menu

This menu contains buttons that allow the player to choose a level which
promptly is loaded and started. Furthermore, it will contain a proper preview

24

image of every level once the project progresses far enough.

3.4 Desirable Target
The desirable target included:

e Second input control scheme

Settings menu

Pick-up ability

One boss

e Third level

User Interface

e Visual upgrades

3.4.1 Second Input Control Scheme

As the primary input scheme was controlling the player character with the
WASD keys and the mouse, a second input scheme was devised to offer more
variety to the players. Instead of employing the mouse, this control scheme uses
the arrow keys for the player character orientation.

3.4.2 Settings Menu

Next, this menu was created to give the player access to a multitude of config-
uration options. These are:

e Swapping between the mouse and arrow key control schemes

e Configuring volume of the game, split into master, music and effects vol-
ume sliders.

Also, a main menu was created, linking the settings and level selection menus.

3.4.3 Pick-Up Ability

Pick-up abilities are a further expansion of the player character’s weaponry.
They are single-use and have a fixed behavior that does not change based on the
player character’s state. This allows the player to e.g. keep offensive weapons
during the defensive state and vice versa. Pick-up abilities spawn as small items
on floor when certain criteria are met. The most common of these is a small
chance to spawn when an enemy is defeated. The player can always only hold a
single pick-up ability at the same time and fails to collect a new pick-up ability
if the slot is already occupied. For the interim report two different abilities were
implemented:

25

e The Laser ability fires a short laser burst (similar to that of laser enemies)
into the direction of the cursor. This laser penetrates and damages all
enemies in its path. This ability can only spawn during the order mode.

e The Shockwave ability deletes all nearby enemy projectiles and pushes
back enemies, possibly disrupting their movement patterns. This ability
can only spawn during the chaos mode.

(a) The collectable Laser ability. (b) The collectable Shockwave ability.

Figure 18: The existing pick-ups.

3.4.4 One Boss

The boss acts as the final enemy of the third level. During the chaos state, this
enemy shoots multiple bullets in a spread pattern at the player, while showing a
comparatively restrictive strafing movement. While in the order state, the boss
can summon a few other enemies which aid him during the fight.

3.4.5 Third Level

Using the framework implemented for the purpose of creating levels once more,
a third level instance was created. This level features enemies and patterns of
the second level, while also adding the already created laser-firing enemies to
the game. In the final wave the player is put up against the boss detailed in the
previous section.

3.4.6 User Interface

Unfortunately this target could not be satisfied fully within the given time.
Even though a more precise concept was specified, lack of time prevented its
implementation. Instead, a simple UI text was added to show the player which
pick-up ability currently is active. Secondly, a simple win/lose screen was added
which is shown whenever the player wins a level by beating all enemies or dies.

26

EE4YAR
HEEER
HEENER

Figure 19: The current look of the first boss.

3.4.7 Visual Upgrades

This target also could not be met fully due to time constraints, even though
minor improvements were made all-around. However, it will be achieved during
the alpha testing and release.

3.5 Design Revisions

During the implementation of the first few targets, some changes were made to
the fundamental design that was already presented:

e Previously, only four possible directions for enemies were considered. As
a side effect of the implementation eight directions became possible. It
was decided to keep this unintended feature and fully integrate it into the
level design.

e Furthermore, fundamental changes were made to how pick-up abilities
work. Instead of offering two different versions of each ability that swap
state together with the player, it was determined that each ability only
has a single and static functionality across both world states. More infor-
mation about this can be found under subsubsection 3.4.3.

e Additionally, a variety of feedback from course members was implemented.
Most notably, the color scheme was changed slightly to include signal
colors and improve overall visualization.

27

	Formal game proposal
	Game Description
	Interpreting the Theme
	Basic Idea
	Name Design
	Player Character Abilities
	Graphics, Transition and Sound Design
	Further Sketches

	Technical Achievement
	"Big Idea" Bullseye
	Development Schedule
	Layered Schedule
	Timeline
	Task Overview

	Assessment

	Prototype
	Prototype Goals
	Prototype Description
	Overview
	Gameplay

	Experiences
	Revisions to Game Idea

	Interim Report
	Overall Progress
	Functional Minimum
	One Enemy Type
	Player Character
	Game State Switch
	One Level

	Low Target
	Additional Enemy Types
	Second Player Ability
	Basic Sounds
	Damage Feedback Effects
	Second Level
	Level Selection Menu

	Desirable Target
	Second Input Control Scheme
	Settings Menu
	Pick-Up Ability
	One Boss
	Third Level
	User Interface
	Visual Upgrades

	Design Revisions

