Interim Report

Team Meeple People

Anastasia Pomelova
Eugene Ghanizadeh Khoub
Mert Ulker

Shyam Rangarajan

Master Praktikum SS 2021

Necap

e Digital board game

e Game of chaos and order based on queuing strategy

e Key goals from prototyping:
o Good networking to substitute for social experience
o Click and select UI elements instead of drag and drop

o Split game logic into two parts: perform and check
e Today: Interim report

SS 2021

Master Praktikum

Status Update

Design Approach
Current Status
Challenges

Next Steps

Degign AUpproach

e Splitinto 4 sections
o User Interaction
o Game State
o Game Logic
o Networking

° hy?
Game with a lot of rules requires significant prior planning
Piecewise development
Ability to proceed without dependencies
Independent progress without conflicts

Merge when stable code base ready

ooooog

Design
Summary

Master Praktikum

Cmd Stack
Command
o Game Processor
___ Buttons Manager
& Manager b Translator
‘ Success/Reject
OS:‘?/Z)
B Q :
Ossip ey, - Action
/6//7 Ct/O’?S SR S e
ey - Checker
,0/73

Network

User Interaction

e Interaction with the game board and
overlay Ul elements

e Allvisual components needed to play the
game (perform part)

e Connection between visuals and logic
(check rules part)

e Current State:

Reset Map
Countermand
Reprioritize
Retreat
Recall
Cooperate
o Base field commands
Poach

o Undo commands
o Simplified riot

Villager

Finish Turn

Default

Master Praktikum SS 2021

Game State

e Logical representation of the game board (information separation)

e Observable states (i.e. position or health of a piece, which is then Observed by visual layer)

e Helper functions representing some baseline logical connections (neighboring positions,
injured pieces on the board, conditional board traversal, etc).

private-void-EnableInjuryBased(bool -enableInjured) PEbyase- vkl -EnableR atPashiLise<Tilex parh)

{
K‘ var-last-=-path[path.Count---17].Position;
GameState.Instance.TraverseBoard(p -=>-{

GameState.Instance.TraverseBoard(p -=>-{

var-tile-=-TileByPosition(p); S T R A

if-(enablelInjured)

var -meeple-=-GameState.Instance.AtPosition(p);
{ tile.Interactable =-(

tile.Interactable-=-GameState.Instance.InjuredVillagerAtPosition(p); Last.CanMoveTo(p) - &
(

} meeple-==-null- ||

else q

{ meeple.IsHealthy() &&

| meeple.GetType() - !=-typeof(DKnight)

tile.Interactable GameState.Instance.HealthyMeepleAtPosition(p);

Game Logic

e Adapts the rules of the board game to a code structure
e Rules for each possible action and validity checkers
e Integrates with the game manager
e Current Status:
o Simplification of challenging rules (and corresponding code req.)
o Base rules for actions and resets
public override void Execute() public override void CheckFeasibility()
{ {
base'ExeC“te()i' //TODO Step 1: Start loop from tile 1
var meeple = _tile.RemoveMeeple(); /% Prupdo
// TODO Authorize: store away piece instead of destroy if(piece.exists)
// S.R. Should we use a GameCommand class that contains helper commands {
// TODO: Notes for StoreAway commmand. Will need to redirect piece to correct owner 2 5 3 (piece.injured)
//TempStack.add(meeple)J {
Destroy(meeple.gameObject); injuredPiecesOnRow++;
if(meeple is Child) ;lse
{ r
//TODO: Simplied. If no adult exists in the temp stack 1
//if(TempStack.contains(Knight) || TempStack.contains(Commoner) || TempStack.contains(Elder)) //TODO: i.e. there exists at least one non-injured piece with line of access
//break; this.ActionPossible = true;

//else CurrentPlayer.SelectedWorker.Player.Disgrace(); break;

(S

Game Logic - Rule Changes

e Playtesting feedback:

o FIFO is visually hard to track

o Potential for tactile mistakes when tapping

o Complexity around Authorize action
e Changes:

o Testing a pivot to an externally tracked FIFO system

o Based on piece types instead of tapping

o Authorize specific rules removed, internalized to new FIFO system
e Goal

o Simplify the game rules
o Cleanup exceptions
o Will correspondingly simplify the implementation of the game logic as well

SS 2021

Master Praktikum

Networking

Client-server model realized by employing dedicated server to host the session in the form
of headless server build and multiple players connecting the host as clients.

Server event listener utilized for logging server start and client connection/disconnection

Connection manager implemented to allow connection over local area network, later to be
adjusted for internet connection using a relay server.

Initial communication manager implemented to publish actions through the server to other
clients, utilizing remote procedure calls and executing commands locally on each client.

Challenges

e A game with a lot of rules requires prior planning
o Our approach: Decide architecture first, decouple into modules instead of layers
o Commence playtesting of the rule set early on
o Approach technical achievement of networking early on
e Undo method requirement creates constraints:
o Our approach: Command pattern
e Challenging ruleset
o Our approach: Iteratively cleanup rules to ease cognitive (and code) load

Next Steps

Networking:
o Adjust system for connection over the internet.
o Adjust connection manager and corresponding Ul to support DNS address and/or
server name along with IPv4 address.
o Implement fallback methods to handle potential server connection errors.
Game Logic:
o Verify the modified rules and integrate with code base
Game Manager:
o Overall integration
o Decouple overloaded classes (field, button, action checker)
o Expand logic for worker rules
UL
o Finish connecting to game logic (pay for actions etc.)
o Visual improvements

Questions?

Master Praktikum SS 2021

Moodle Questions

Glory Tracker (Honor/Disgrace):

o Exponential to help set it as a path to victory

o Makes it harder to snowball via negative actions such as riots, in contrast to linear which is a

not a decision point

o Thematically someone builds up trust over time or is a repeat offender

o Easier to get disgrace than honor - Similar to real life too where easy to lose face with people?
Asymmetric abilities?

o Potentially, but hard to balance. Might consider later as extra
Objectives same for all?

o No, hidden objectives per player, so no idea what each person is going for
Long turns/what to do between turns?

o Primary aim of the action/reset turn to reduce downtime

o Involved at least half the time in a 4 player game, or all the time in a 2 player game
Challenging rules to implement?

o Potentially, hence staggered approach via target levels

