Verbindlich ist allein die amtlich veröffentlichte Version

Fachprüfungs- und Studienordnung für den Masterstudiengang Maschinenwesen an der Technischen Universität München vom 26. Juni 2008

Lesbare Fassung in der Fassung der Änderungssatzung vom 15. März 2013

Auf Grund von Art. 13 Abs. 1 Satz 2 in Verbindung mit Art. 58 Abs. 1 Satz 1, Art. 61 Abs. 2 Satz 1 sowie Art. 43 Abs. 5 des Bayerischen Hochschulgesetzes (BayHSchG) erlässt die Technische Universität München folgende Satzung:

Vorbemerkung zum Sprachgebrauch

Nach Art. 3 Abs. 2 des Grundgesetzes sind Frauen und Männer gleichberechtigt. Alle maskulinen Personen- und Funktionsbezeichnungen in dieser Satzung gelten für Frauen und Männer in gleicher Weise.

Inhaltsverzeichnis:

§ 34	Geltungsbereich, akademischer Grad
§ 35	Studienbeginn, Regelstudienzeit, ECTS
§ 36	Qualifikationsvoraussetzungen, Industriepraktikum
§ 37	Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen,
	Unterrichtssprache
§ 37a	·
§ 38	Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis
§ 39	Prüfungsausschuss
§ 40	Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen
§ 41	Studienbegleitendes Prüfungsverfahren
§ 42	Anmeldung und Zulassung zur Masterprüfung
§ 43	Umfang der Masterprüfung
§ 44	Wiederholung, Nichtbestehen von Prüfungen
	Studienleistungen
§ 45a	Multiple-Choice-Verfahren
§ 46	Master's Thesis
§ 47	Bestehen und Bewertung der Masterprüfung
§ 48	Zeugnis, Urkunde, Diploma Supplement
§ 49	In-Kraft-Treten

Anlage 1: Prüfungsmodule
Anlage 2: Eignungsverfahren
Anlage 3: Studienplan

§ 34 Geltungsbereich, akademischer Grad

- (1) ¹Die Fachprüfungs- und Studienordnung für den Masterstudiengang Maschinenwesen (FPSO) ergänzt die Allgemeine Prüfungs- und Studienordnung für Bachelor- und Masterstudiengänge an der Technischen Universität München (APSO) in der jeweils geltenden Fassung. ²Die APSO hat Vorrang.
- ¹Aufgrund der bestandenen Masterprüfung wird der akademische Grad "Master of Science" ("M.Sc.") verliehen. ²Dieser akademische Grad kann mit dem Hochschulzusatz "(TUM)" geführt werden.

§ 35 Studienbeginn, Regelstudienzeit, ECTS

- (1) Eine Aufnahme des Masterstudiengangs Maschinenwesen an der Technischen Universität München ist sowohl im Wintersemester als auch im Sommersemester möglich.
- (2) ¹Der Umfang der für die Erlangung des Mastergrades erforderlichen Lehrveranstaltungen im Wahlpflicht- und Wahlbereich beträgt 79 Credits (mindestens 48 Semesterwochenstunden), verteilt auf drei Semester. ²Hinzu kommen maximal sechs Monate für die Durchführung der Master's Thesis gemäß § 46 sowie 11 Credits für die Semesterarbeit. ³Der Umfang der zu erbringenden Studien- und Prüfungsleistungen im Wahlpflicht- und Wahlbereich gemäß Anlage 1 im Masterstudiengang Maschinenwesen beträgt damit mindestens 120 Credits. ⁴Die Regelstudienzeit für das Masterstudium beträgt insgesamt vier Semester. ⁵Sofern im Erststudium nicht eine mindestens achtwöchige Industriepraxis nachgewiesen wurde, sind im Masterstudium zusätzlich acht Wochen Industriepraxis abzuleisten.

§ 36 Qualifikationsvoraussetzungen

- (1) Die Qualifikation für den Masterstudiengang Maschinenwesen wird nachgewiesen durch:
 - 1. nachstehende Hochschulabschlüsse:
 - a) einen an einer inländischen Universität erworbenen qualifizierten Bachelorabschluss im Studiengang Maschinenwesen oder vergleichbaren Studiengängen oder
 - b) einen an einer ausländischen Universität erworbenen international anerkannten qualifizierten Bachelorabschluss in den unter Buchst. a) genannten Studiengängen oder
 - c) einen an einer inländischen Fachhochschule erworbenen, qualifizierten Diplom-, Bachelor- oder Masterabschluss in den unter Buchst. a) genannten Studiengängen oder
 - d) einen an einer inländischen Universität erworbenen Diplom-, Magister-, Staatsexamens- oder Masterabschluss in den unter Buchst. a) genannten Studiengängen oder
 - e) einen an einer ausländischen Hochschule erworbenen Abschluss, der den unter Buchst. c) und d) genannten Abschlüssen gleichwertig ist oder
 - f) einen Diplomabschluss in den unter a) genannten Studiengängen, der an einer inländischen Berufsakademie erworben wurde, die den Kriterien des KMK-Beschlusses vom 29. September 1995 entspricht, oder

Seite 3

- g) einen an einer inländischen Berufsakademie erworbenen Abschluss in einem akkreditierten Bachelor- oder Masterstudiengang in den unter a) genannten Studiengängen;
- 2. das Bestehen des Eignungsverfahrens gemäß Anlage 2
- 3. den Nachweis einer Industriepraxis im Umfang von mindestens acht Wochen; kann diese nicht nachgewiesen werden, gilt § 35 Abs. 2 Satz 5.
- (2) Ein im Sinne von Abs. 1 qualifizierter Hochschulabschluss liegt vor, wenn dieser die Ablegung von Prüfungsleistungen umfasst, die Prüfungsleistungen in dem wissenschaftlich orientierten einschlägigen, in Abs. 1 Nr. 1 genannten Bachelorstudiengang Maschinenwesen der Technischen Universität München gleichwertig sind und die den fachlichen Anforderungen des Masterstudienganges Maschinenwesen entsprechen.
- (3) Zur Feststellung nach Abs. 2 wird im Rahmen der ersten Stufe des Eignungs-verfahrens der Modulkatalog des Bachelorstudienganges Maschinenwesen herangezogen.
- (4) Über die Vergleichbarkeit des Studiengangs, über die Feststellung der speziellen fachlichen Eignung sowie über die Gleichwertigkeit der an ausländischen Hochschulen erworbenen Hochschulabschlüsse entscheidet der Prüfungsausschuss unter Beachtung des Art. 63 Bayerisches Hochschul-gesetz.
- (5) ¹Abweichend von Abs. 1 Nr. 1 können Studierende, die in einem in Abs. 1 Nr. 1 genannten Bachelorstudiengang immatrikuliert sind, auf begründeten Antrag zum Masterstudium zugelassen werden. ²Der Antrag darf nur gestellt werden, wenn mindestens 140 Credits bei einem sechssemestrigen, 170 Credits bei einem siebensemestrigen und 200 Credits bei einem achtsemestrigen Bachelor erreicht worden sind. ³Der Nachweis über den bestandenen Bachelorabschluss ist innerhalb eines Jahres nach Aufnahme des Masterstudiums nachzuweisen."

§ 37 Modularisierung, Modulprüfung, Lehrveranstaltungen, Studienrichtungen, Unterrichtssprache

- (1) ¹Generelle Regelungen zu Modulen und Lehrveranstaltungen sind in den §§ 6 und 8 APSO getroffen. ²Bei Abweichungen zu Modulfestlegungen gilt § 12 Abs. 8 APSO.
- (2) Der Studienplan ist in Anlage 3 aufgeführt.
- (3) ¹Im Rahmen des Masterstudiums wählt der Studierende aus dem Wahlpflichtbereich sein Studienprogramm aus, indem er mindestens 60 Credits gemäß den Vorgaben in Anlage 1 nachweist. ²Es sind als Studienleistung Wahlmodule im Umfang von 9 Credits aus dem Bereich "Ergänzungen" nachzuweisen und mindestens 2 Credits als Studienleistungen aus dem Bereich "Soft Skills" zu erbringen. ³Daneben sind aus dem Katalog "Hochschulpraktika" 8 Credits nachzuweisen, welche Studienleistungen darstellen. ⁴Ferner muss eine Semesterarbeit im Umfang von 11 Credits angefertigt werden. ⁵Im vierten Semester soll im Modul Master's Thesis neben der Erstellung der Wissenschaftlichen Ausarbeitung (Thesis) parallel die Studienleistung "Anleitung zum Wissenschaftlichen Arbeiten" nachgewiesen werden.
- (4) ¹In der Regel ist im Masterstudiengang Maschinenwesen die Unterrichtssprache deutsch. Lehrveranstaltungen in einzelnen Modulen k\u00f6nnen in englischer Sprache abgehalten werden. ²Soweit einzelne Module in englischer Sprache abgehalten werden, ist dies in Anlage 1 gekennzeichnet.

§ 37 a Industriepraktikum

- (1) Sollte im Erststudium noch kein Industriepraktikum abgeleistet worden sein, so ist eine berufspraktische Ausbildung abzuleisten. Ihre Dauer beträgt acht Wochen. Sie muss bis zum Beginn der Master's Thesis abgeschlossen sein. Die erfolgreiche Teilnahme wird von den Betrieben und Behörden bestätigt, in denen die Ausbildung stattgefunden hat, und durch Praktikumsberichte nachgewiesen. Der Nachweis der vollständigen Ableistung des Industriepraktikums sowie die Anerkennung durch den Prüfungsausschuss sind Voraussetzung für den Beginn der Master's Thesis.
- (2) Über die Anerkennung einer erfolgreich abgeschlossenen Berufsausbildung oder einer gleichwertigen Leistung als berufspraktische Ausbildung entscheidet der Prüfungsausschuss.

§ 38 Prüfungsfristen, Studienfortschrittskontrolle, Fristversäumnis

- (1) Prüfungsfristen, Studienfortschrittskontrolle und Fristversäumnis sind in § 10 APSO geregelt.
- (2) Mindestens eine der in der Anlage 1 aufgeführten Modulprüfungen aus den Wahlpflichtbereichen muss bis zum Ende des zweiten Semesters erfolgreich abgelegt werden. Bei Fristüberschreitung gilt § 10 Abs. 5 APSO.

§ 39 Prüfungsausschuss

Die für Entscheidungen in Prüfungsangelegenheiten zuständige Stelle gemäß § 29 APSO ist der Masterprüfungsausschuss der Fakultät für Maschinenwesen.

§ 40 Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen

Die Anrechnung von Studienzeiten, Studien- und Prüfungsleistungen regelt § 16 APSO.

§ 41 Studienbegleitendes Prüfungsverfahren

- (1) Die Modulprüfungen werden in der Regel studienbegleitend abgelegt. Art und Dauer einer Modulprüfung gehen aus Anlage 1 hervor. Bei Abweichungen von diesen Festlegungen ist § 12 Abs. 8 APSO zu beachten. Für die Bewertung der Modulprüfung gilt § 17 APSO.
- (2) Auf Antrag des Studierenden und mit Zustimmung der Prüfenden können bei deutschsprachigen Lehrveranstaltungen Prüfungen in englischer Sprache abgelegt werden.

§ 42 Anmeldung und Zulassung zur Masterprüfung

(1) Mit der Immatrikulation in den Masterstudiengang Maschinenwesen gilt ein Studierender zu den Modulprüfungen der Masterprüfung als zugelassen.

Wurde gemäß Anlage 2 Nr. 5.1.2 beziehungsweise Nr. 5.2.2 das Ablegen von Prüfungen zur Auflage gemacht, so ist dem Studierenden vom Prüfungsausschuss schriftlich mitzuteilen, zu welcher Modulprüfung abweichend von Satz 1 der Nachweis des Bestehens der Prüfungen Zulassungsvoraussetzung ist.

(2) ¹Die Anmeldung zu einer Modulprüfung im Pflicht-, Wahlpflicht- und Wahlbereich regelt § 15 Abs. 1 APSO. ²Die Anmeldung zu einer entsprechenden Wiederholungsprüfung in einem nicht bestandenen Pflicht-/Wahlpflichtmodul regelt § 15 Abs. 2 APSO.

§ 43 Umfang der Masterprüfung

- (1) Die Masterprüfung umfasst:
 - 1. die Modulprüfungen in den entsprechenden Modulen gemäß Abs. 2,
 - 2. die Semesterarbeit,
 - 3. die Master's Thesis gemäß § 46.
- (2) ¹Die Modulprüfungen sind in der Anlage 1 aufgelistet. ²Es sind mindestens 60 Credits in den Wahlpflichtmodulen nachzuweisen. ³Bei der Wahl der Module ist § 8 Abs. 2 APSO zu beachten.

§ 44 Wiederholung, Nichtbestehen von Prüfungen

- (1) Die Wiederholung von Prüfungen ist im § 24 APSO geregelt.
- (2) Das Nichtbestehen von Prüfungen regelt § 23 APSO.

§ 45 Studienleistungen

Neben den in § 43 Abs. 1 genannten Modulprüfungen ist die erfolgreiche Ablegung von Studienleistungen in den Modulen gemäß Anlage 1 im Umfang von 22 Credits nachzuweisen.

§ 45 a Multiple-Choice- Verfahren

Die Durchführung von Multiple-Choice-Verfahren ist in § 12a APSO geregelt.

§ 46 Master's Thesis

(1) ¹Gemäß § 18 APSO hat jeder Studierende im Rahmen der Masterprüfung eine Master's Thesis anzufertigen. ²Die Master's Thesis kann von jedem fachkundigen Prüfenden der Fakultät Maschinenwesen der Technischen Universität München ausgegeben und betreut werden (Themensteller). ³Fachkundig Prüfende sind die Hochschullehrer der Fakultät, Junior-Fellows der Fakultät sowie Lehrbeauftragte oder Hochschullehrer anderer Fakultäten, die in dem Studiengang Maschinenwesen lehren.

- (2) Zur Master's Thesis wird zugelassen, wer den Nachweis über
 - 1. die Modulprüfungen gemäß § 43 Abs. 1 Nr. 1,
 - 2. die Hochschulpraktika,
 - 3. die Ergänzungen,
 - 4. die Soft-Skills und
 - 5. eine Semesterarbeit erfolgreich erbracht hat.
 - ²Abweichend von Satz 1 kann ein Studierender vorzeitig zur Master's Thesis zugelassen werden, wenn er mindestens 80 Credits erreicht hat.
- (3) Die Zeit von der Ausgabe bis zur Ablieferung der Master's Thesis darf sechs Monate nicht überschreiten. Für das Modul Master's Thesis werden 30 Credits vergeben.

 Die Master's Thesis kann in deutscher oder englischer Sprache angefertigt werden.
- (4) Der Abschluss der Master's Thesis besteht aus einer schriftlichen Ausarbeitung und einem Vortrag über deren Inhalt. Der Vortrag geht nicht in die Benotung ein.
- (5) ¹Falls die Thesis im Modul Master's Thesis nicht mit mindestens "ausreichend" (4,0) bewertet wurde, so kann sie einmal mit neuem Thema wiederholt werden. ²Sie muss spätestens sechs Wochen nach dem Bescheid über das Ergebnis erneut angemeldet werden.

§ 47 Bestehen und Bewertung der Masterprüfung

- (1) Die Masterprüfung ist bestanden, wenn alle im Rahmen der Masterprüfung gemäß § 43 Abs. 1 abzulegenden Prüfungen bestanden sind und ein Punktekontostand von mindestens 120 Credits erreicht ist.
- (2) Modulnoten werden gemäß § 17 APSO errechnet. Die Gesamtnote der Masterprüfung wird als gewichtetes Notenmittel der Module gemäß § 43 Abs. 2, der Semesterarbeit und der Master's Thesis errechnet. Die Notengewichte der einzelnen Module und der Semesterarbeit entsprechen den zugeordneten Credits. Das Gesamturteil wird durch das Prädikat gemäß § 17 APSO ausgedrückt.

§ 48 Zeugnis, Urkunde, Diploma Supplement

- (1) Ist die Masterprüfung bestanden, so sind gemäß § 25 Abs. 1 und § 26 APSO ein Zeugnis, eine Urkunde und ein Diploma Supplement mit einem Transcript of Records auszustellen.
- (2) Als Datum des Zeugnisses ist der Tag anzugeben, an dem alle Prüfungs- und Studienleistungen erfüllt sind.

§ 49 In-Kraft-Treten

- (1) Diese Satzung tritt mit Wirkung vom 1. April 2013 in Kraft.
- (2) Sie gilt für alle Studierenden, die ab dem Wintersemester 2013/14 ihr Fachstudium an der Technischen Universität München aufnehmen.

Anlage 1 : Prüfungsmodule

Es sind insgesamt mindestens 60 Credits aus dem angebotenen Wahlpflichtbereich nachzuweisen.

Nr.	Modulbezeichnung	Lehrform	Zulassungs-	Sem.	SWS	Credits	Prüfungs-	Prüfungs-	Unterrichts-
		SWS	voraussetzg (§ 43 Abs.				art	dauer in	sprache
		V 0 1	(§ 43 Abs. 1)					Minuten	

Wahlpflichtbereich 1: "Kernkompetenzen in Maschinenwesen":

1	Adaptiv – Bionische Lösungsprinzipien für Gebäudehüllen	V/Ü	Nein	SS	3	5	S	90	Deutsch
2	Adaptive Strukturen	V/Ü	Nein	WS	3	5	S	90	Deutsch
3	Advanced Parallel Computing and Solvers for large problems in Engineering	V/Ü	Nein	SS	3	5	S	90	Deutsch
4	Aeroakustik	V/Ü	Nein	WS	3	5	S	90	Deutsch
5	Aerodynamik des Flugzeugs I	V/Ü	Nein	WS	3	5	S	90	Deutsch
6	Aerodynamik des Flugzeugs II	V/Ü	Nein	SS	3	5	S	90	Deutsch
7	Aerodynamische Auslegung von Turbomaschinen	V/Ü	Nein	SS	3	5	S	90	Deutsch
8	Angewandte CFD	V/Ü	Nein	SS	3	5	S	90	Deutsch

9	Angewandte Physik: Polymerphysik I	V/Ü	Nein	WS	3	5	М	25	Englisch
10	Antriebssystemtechnik für Fahrzeuge	V/Ü	Nein	WS	3	5	S	90	Deutsch
11	Applikation von Radioaktivität in Industrie, Forschung und Medizin	V/Ü	Nein	SS	3	5	S	90	Englisch
12	Arbeitswissenschaft	V/Ü	Nein	WS	3	5	S	90	Deutsch
13	Auslegung thermischer Apparate	V/Ü	Nein	SS	3	5	S	90	Deutsch
14	Auslegung und Bauweisen von Composite Strukturen	V/Ü	Nein	WS	3	5	S	90	Deutsch
15	Auslegung und Entwurf von Hubschraubern I	V/Ü	Nein	WS	3	5	S	90	Deutsch
16	Auslegung und Entwurf von Hubschraubern II	V/Ü	Nein	SS	3	5	S	90	Deutsch
17	Auslegung, Herst. u. Prüfung med. Implantate	V/Ü	Nein	WS	2	5	S	60	Deutsch
18	Auslegung von Elektrofahrzeugen	V/Ü	Nein	SS	3	5	S	90	Deutsch
19	Automatisierungstechnik 2	V/Ü	Nein	SS	3	5	S	90	Deutsch
20	Automatisierungstechnik in der Medizin	V/Ü	Nein	SS	3	5	S	90	Deutsch

21	Bemannte Raumfahrt	V/Ü	Nein	WS	3	5	S	90	Deutsch
22	Berufsbildungs- und Arbeitsrecht	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
23	Betrieb und Auslegung chemischer Reaktoren	V/Ü	Nein	SS	3	5	S	90	Deutsch
24	Bewegungssteuerung durch geregelte elektrische Antriebe	V/Ü	Nein	WS	3	3	S	60	Deutsch
25	Bewegungstechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
26	Biofluid Mechanics	V/Ü	Nein	SS	3	5	S	90	Deutsch
27	Biokomp. Werkstoffe 2 u. Interdisz. Seminar	V/Ü	Nein	SS	3	5	М	60	Deutsch
28	Biomechanik - Grundlagen und Modellbildung	V/Ü	Nein	SS	3	5	S	90	Deutsch
29	Biomedical Engineering 1	V/Ü	Nein	WS	3	5	S	90	Deutsch
30	Bioproduktaufarbeitung 1	V/Ü	Nein	WS	3	5	S	90	Deutsch
31	Bioprozesse	V/Ü	Nein	SS	3	5	S	90	Deutsch
32	Bioreaktoren	V/Ü	Nein	WS	3	5	S	90	Deutsch

33	Chemische Reaktortechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
34	Computational Intelligence	V/Ü	Nein	WS	3	5	S	90	Deutsch
35	Controlling	V/Ü	Nein	WS	2	3	S	60	Deutsch
36	Corporate Finance	V/Ü	Nein	SS	4	6	S	120	Deutsch
37	Desalination	V/Ü	Nein	WS	3	5	S	90	Deutsch
38	Dynamik der Straßenfahrzeuge	V/Ü	Nein	SS	3	5	S	90	Deutsch
39	Dynamische Systeme (vormals: Regelungs- und Steuerungstechnik II)	V/Ü	Nein	WS	4	6	S	90	Deutsch
40	Echtzeitsysteme	V/Ü	Nein	WS	3	6	S	90	Deutsch
41	Einführung in die Kernenergie	V/Ü	Nein	WS	3	5	S	90	Englisch
42	Elektrische Aktoren und Sensoren in geregelten Antrieben	V/Ü	Nein	WS	4	3	S	90	Deutsch
43	Energetische Nutzung von Biomasse und Reststoffen	V/Ü	Nein	SS	3	5	S	90	Deutsch
44	Energiesysteme II	V/Ü	Nein	SS	3	5	S	90	Deutsch

45	Entwicklung intelligenter verteilter eingebetteter Systeme in der Mechatronik	V/Ü	Nein	SS	3	5	S	90	Deutsch
46	Entwicklung von Flugregelungssystemen	V/Ü	Nein	WS	3	5	М	25	Deutsch
47	Entwicklungsmanagement	V/Ü	Nein	WS	3	5	S	90	Deutsch
48	Experimentalphysik III	V/Ü	Nein	WS	6	8	S	90	Deutsch
49	Experimentelle Schwingungsanalyse	V/Ü	Nein	WS	3	5	S	90	Deutsch
50	Experimentelle Techniken zur Charakteisierung von Biomaterialien	V/Ü	Nein	WS	3	5	S	90	Deutsch
51	Fabrikplanung	V/Ü	Nein	SS	3	5	S	90	Deutsch
52	Fahrzeugkonzepte: Entwicklung und Simulation	V/Ü	Nein	WS	3	5	S	90	Deutsch
53	Faser-, Matrix-, und Verbundwerkstoffe mit ihren Eigenschaften	V/Ü	Nein	WS	3	5	S	90	Deutsch
54	Faserverbundwerkstoffe	V/Ü	Nein	WS	3	5	S	90	Deutsch
55	Fertigungstechnologien	V/Ü	Nein	SS	3	5	S	90	Deutsch
56	Fertigungsverfahren für Composite-Bauteile	V/Ü	Nein	SS	3	5	S	90	Deutsch

57	Finite Elemente	V/Ü	Nein	WS	3	5	S	90	Deutsch
58	Finite Elemente in der Fluidmechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
59	Finite Elemente in der Werkstoffmechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
60	Flugantriebe I und Gasturbinen	V/Ü	Nein	WS	3	5	S	90	Deutsch
61	Flugantriebe II	V/Ü	Nein	SS	3	5	S	90	Deutsch
62	Flugphysik der Hubschrauber I	V/Ü	Nein	WS	3	5	S	90	Deutsch
63	Flugphysik der Hubschrauber II	V/Ü	Nein	SS	3	5	S	90	Deutsch
64	Flugregelung I	V/Ü	Nein	WS	3	5	S	90	Deutsch
65	Flugregelung II	V/Ü	Nein	SS	3	5	S	90	Deutsch
66	Flugsystemdynamik I	V/Ü	Nein	WS	3	5	S	90	Deutsch
67	Flugsystemdynamik II	V/Ü	Nein	SS	3	5	S	90	Deutsch
68	Flugzeugentwurf	V/Ü	Nein	SS	3	5	S	90	Deutsch

69	Förder- und Materialflusstechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
70	Fügetechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
71	Fundamentals of Aircraft Operations	V/Ü	Nein	SS	3	5	S	90	Englisch
72	Gasdynamik	V/Ü	Nein	SS	3	5	S	90	Deutsch
73	Gesellschaftsrecht/Arbeitsrecht	V/Ü	Nein	SS	4	5	S	60	Deutsch
74	Gießereitechnik und Rapid Prototyping	V/Ü	Nein	SS	3	5	S	90	Deutsch
75	Grenzflächen und Partikeltechnologie	V/Ü	Nein	SS	3	5	S	90	Deutsch
76	Grenzschichttheorie	V/Ü	Nein	WS	3	5	S	90	Deutsch
77	Grundlagen der Biophysik	V/Ü	Nein	WS	4	5	M	25	Deutsch
78	Grundlagen der Mehrphasenströmungen	V/Ü	Nein	WS	3	5	S	90	Deutsch
79	Grundlagen der modernen Flugführung	V/Ü	Nein	WS	3	5	S	90	Englisch
80	Grundlagen der Nukleartechnik	V/Ü	Nein	SS	3	5	S	90	Englisch

81	Grundlagen der Thermal-Hydraulik in Nuklearsystemen	V/Ü	Nein	WS	3	5	S	90	Englisch
82	Grundlagen elektrischer Maschinen	V/Ü	Nein	WS	3	3	S	90	Deutsch
83	Grundlagen Medizintechnik: Biokompatible Werkstoffe 1	V/Ü	Nein	WS	3	5	М	60	Deutsch
84	Kommunikationssysteme in der Automatisierung	V/Ü	Nein	WS	3	5	S	90	Deutsch
85	Komplexitätsmanagement für die industrielle Praxis	V/Ü	Nein	SS	3	5	S	90	Deutsch
86	Kostenmanagement in der Produktentwicklung	V/Ü	Nein	WS	3	5	S	90	Deutsch
87	Kunststoffe und Kunststofftechnik 1	V/Ü	Nein	WS	3	5	S	90	Deutsch
88	Kunststoffe und Kunststofftechnik 2	V/Ü	Nein	SS	3	5	S	90	Deutsch
89	Lasertechnik	V/Ü	Nein	WS	3	5	S	90	Deutsch
90	Luft- und Raumfahrtstrukturen	V/Ü	Nein	SS	3	5	S	90	Deutsch
91	Management Science und Produktionsmanagement	V/Ü	Nein	WS	2	6	S	120	Deutsch
92	Marketing und Innovation	V/Ü	Nein	SS	4	6	S	120	Deutsch

93	Maschinensystemtechnik	V/Ü	Nein	WS	3	5	S	90	Deutsch
94	Mechatronische Gerätetechnik (Feingerätebau)	V/Ü	Nein	WS	3	5	S	90	Deutsch
95	Menschliche Zuverlässigkeit	V/Ü	Nein	SS	3	5	S	90	Deutsch
96	Messsystem- und Sensortechnik	V/Ü	Nein	SS	3	5	S	120	Deutsch
97	Methoden der Produktentwicklung	V/Ü	Nein	WS	3	5	S	90	Deutsch
98	Methoden in der Motorapplikation	V/Ü	Nein	WS	3	5	S	90	Deutsch
99	Mikroelektronik in der Mechatronik	V/Ü	Nein	SS	3	6	S	60	Deutsch
100	Mikroskopische Biomechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
101	Mikrotechnische Sensoren/Aktoren	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
102	Modellierung mikrostrukturierter Bauelemente und Systeme 1	V/Ü	Nein	WS	3	3	S	90	Deutsch
103	Modellierung mikrostrukturierter Bauelemente und Systeme 2	V/Ü	Nein	SS	3	3	S	90	Deutsch
104	Modellierung zellulärer Systeme	V/Ü	Nein	WS	3	5	S	90	Deutsch

105	Moderne Methoden in der Regelungstechnik 1	V/Ü	Nein	SS	3	5	S	90	Deutsch
106	Moderne Methoden in der Regelungstechnik 2	V/Ü	Nein	WS	3	5	S	90	Deutsch
107	Moderne Methoden in der Regelungstechnik 3	V/Ü	Nein	SS	3	5	S	90	Deutsch
108	Montage, Handhabung und Industrieroboter	V/Ü	Nein	WS	3	5	S	90	Deutsch
109	Motormechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
110	Motorthermodynamik und Brennverfahren	V/Ü	Nein	SS	3	5	S	90	Deutsch
111	Multidisciplinary Design Optimization	V/Ü	Nein	SS	3	5	S	90	Deutsch
112	Neuroprothetik	V/Ü	Nein	WS/SS	3	6	S	30 ⁱ	Deutsch
113	Nichtlineare Finite-Element-Methoden	V/Ü	Nein	SS	3	5	S	90	Deutsch
114	Nichtlineare Kontinuumsmechanik	V/Ü	Nein	WS	3	5	S	90	Deutsch
115	Numerische Methoden für Umformtechnik und Gießereiwesen	V/Ü	Nein	SS	3	5	S	90	Deutsch
116	Oberflächentechnologie	V/Ü	Nein	SS	3	5	S	90	Deutsch

117	Objektorientierte Modellierung mechatronischer Systeme	V/Ü	Nein	WS	2	3	S	60	Deutsch
118	Optimierungsverfahren in der Automatisierungstechnik	V/Ü	Nein	SS	3	6	S	75	Deutsch
119	Optomechatronische Messsysteme	V/Ü	Nein	WS	3	6	S	60	Deutsch
120	Orbit- und Flugmechanik	V/Ü	Nein	SS	3	5	S	90	Deutsch
121	Organisation und Personalmanagement	V/Ü	Nein	SS	4	6	S	120	Deutsch
122	Parallele Programmierung und Hochleistungsrechnen	V/Ü	Nein	SS	3	4	S	90	Deutsch
123	Physical Electronics	V/Ü	Nein	SS	3	3	S	60	Deutsch
124	Physiologie	V/Ü	Nein	SS	3	5	S	90	Deutsch
125	Planung technischer Logistiksysteme	V/Ü	Nein	SS	3	5	S	90	Deutsch
126	Planung thermischer Prozesse	V/Ü	Nein	WS/SS	3	5	M	30	Deutsch
127	Produktergonomie	V/Ü	Nein	SS	3	5	S	90	Deutsch
128	Produktionsergonomie	V/Ü	Nein	WS	3	5	S	90	Deutsch

129	Projektorganisation und Management in der Software Entwicklung	V/Ü	Nein	SS	4	5	S	75-125	Deutsch/ Englisch
130	Prozess- und Anlagentechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
131	Prozesssimulation und Materialmodellierung von Composites	V/Ü	Nein	SS	3	5	S	90	Deutsch
132	Prozesstechnik und Umweltschutz in modernen Kraftwerken	V/Ü	Nein	WS	3	5	S	90	Deutsch
133	Qualitätsmanagement	V/Ü	Nein	WS	3	5	S	90	Deutsch
134	Raumfahrtantriebe 1	V/Ü	Nein	SS	3	5	S	90	Deutsch
135	Raumfahrtantriebe 2	V/Ü	Nein	WS	3	5	S	90	Deutsch
136	Raumfahrzeugentwurf	V/Ü	Nein	SS	3	5	S	90	Deutsch
137	Reaktionsthermodynamische Grundlagen für Energiesysteme	V/Ü	Nein	WS	3	5	S	90	Deutsch
138	Reaktorphysik 1 und Anwendungen der Kerntechnik	V/Ü	Nein	WS	4	5	M	25	Deutsch
139	Reaktorphysik 2 und neue Konzepte in der Kerntechnik	V/Ü	Nein	SS	4	5	М	25	Deutsch
140	Rechnerintegrierte Produktion	V/Ü	Nein	SS	3	5	S	90	Deutsch

141	Roboterdynamik	V/Ü	Nein	SS	3	5	S	90	Deutsch
142	Robotik	V/Ü	Nein	WS	5	6	S/M	90/20 ⁱⁱ	Englisch
143	Satellite Navigation I (SatNav)	V/Ü	Nein	WS	4	6	S	90	Deutsch
144	Simulation in SIMULINK/MATLAB	V/Ü	Nein	WS	3	5	S	90	Deutsch
145	Software Engineering 1 (Software Technik 1)	V/Ü	Nein	WS	5	6	S	90-150	Deutsch/ Englisch
146	Softwareentwicklung für Ingenieure 2	V/Ü	Nein	WS	3	5	S	90	Deutsch
147	Software-Ergonomie	V/Ü	Nein	WS	3	5	S	90	Deutsch
148	Solarthermische Kraftwerke	V/Ü	Nein	SS	3	5	S	90	Deutsch
149	Sonderkapitel Maschinenelemente - Wälzpaarungen	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch
150	Spanende Werkzeugmaschinen	V/Ü	Nein	WS	3	5	S	90	Deutsch
151	Strahlung und Strahlenschutz	V/Ü	Nein	WS	3	5	S	90	Deutsch
152	Synchronisierungen und Lamellenkupplungen	V/Ü	Nein	WS/SS	3	5	S	90	Deutsch

153	Systems Engineering	V/Ü	Nein	SS	3	5	S	90	Deutsch
154	Technische Dynamik	V/Ü	Nein	WS	3	5	S	90	Deutsch
155	Thermische Turbomaschinen	V/Ü	Nein	WS	3	5	S	90	Deutsch
156	Thermische Verfahrenstechnik II	V/Ü	Nein	WS	3	5	S	90	Deutsch
157	Turbulente Strömungen	V/Ü	Nein	SS	3	5	S	90	Deutsch
158	Umformende Werkzeugmaschinen	V/Ü	Nein	SS	3	5	S	90	Deutsch
159	Umwelt-Bioverfahrenstechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch
160	Verbrennung	V/Ü	Nein	SS	3	5	S	90	Deutsch
161	Vernetzte Regelungssysteme	V/Ü	Nein	SS	3	5	S	75	Deutsch
162	Volkswirtschaftslehre I	V/Ü	Nein	WS	3	5	S	120	Deutsch
163	Wärme- und Stoffübertragung	V/Ü	Nein	WS	3	5	S	90	Deutsch
164	Werkstofftechnik	V/Ü	Nein	SS	3	5	S	90	Deutsch

165	Wirtschaftsprivatrecht I (Grundlagenrecht)	V/Ü	Nein	WS	4	6	S	60	Deutsch
166	Zulassung von Medizingeräten	V/Ü	Nein	WS	3	5	S	90	Deutsch

Wahlmodule "**Ergänzungen**": Aus folgender Liste sind **9 Credits** als Studienleistung zu erbringen. Diese Liste hat nur Beispielcharakter. Die vollständige und aktualisierte Liste ist jeweils sechs Wochen vor Vorlesungsbeginn im Internet unter <u>www.mw.tum.de</u> in der Rubrik "Studium", am Aushang des Masterprüfungsausschusses bzw. in TUMonline einzusehen.

1	Baumaschinen	V	Nein	2	3	S	60	Deutsch
2	Dampfturbinen	V	Nein	2	3	S	60	Deutsch
3	Einspritztechnik für Verbrennungskraftmaschinen	V	Nein	2	3	S	60	Deutsch
4	Instationäre Aerodynamik II	V	Nein	2	3	S	60	Deutsch
5								

Wahlmodule "Hochschulpraktika": Aus folgender Liste sind 8 Credits als Studienleistungen zu erbringen. Diese Liste hat nur Beispielcharakter. Die vollständige und aktualisierte Liste ist jeweils sechs Wochen vor Vorlesungsbeginn im Internet unter www.mw.tum.de in der Rubrik "Studium", am Aushang des Masterprüfungsausschusses bzw. in TUMonline einzusehen. Zur Prüfungsdauer können keine expliziten Angaben gemacht werden, da bei Praktika in der Regel mündliche Fragen zu den Versuchen sowie schriftliche Ausarbeitungen der durchgeführten Versuche eine reguläre Prüfung ersetzen.

1	CAD im Flugzeugbau	Р	Nein	4	4	D
2	Flugführung	Р	Nein	4	4	D
3	Logistik	Р	Nein	4	4	D
4	Flugverkehrsszenarien	Р	Nein	4	4	D
5						

Wahlpflichtmodul Semesterarbeit (11 Credits):

Die Semesterarbeit im Umfang von 11 Credits wird von einem Hochschullehrer der Fakultät für Maschinenwesen der Technischen Universität München als fachkundigem Prüfenden im Sinne der APSO ausgegeben und betreut (Themensteller).

Bereich "Soft Skills": Es ist ein Modul mit insgesamt mindestens 2 Credits als Studienleistung zu erbringen.

Die ausgewählte Veranstaltungsart muss einen Seminar-/ Workshopcharakter aufweisen (Gruppengröße max. 20 Teilnehmer) und aktivierende Lehr-/und Lernmethoden beinhalten. Das Ziel der Studienleistung ist es, die sozialen, persönlichen und methodischen Kompetenzen der Studierenden zu stärken bzw. zu erweitern. Die konzeptionelle Grundlage besteht darin, Fachwissen mit sozialen Kompetenzen durch Projektarbeit im Team zu verknüpfen. Diese Veranstaltungen sind aus dem Angebot der Fakultät für Maschinenwesen (Zentrum für Sozialkompetenz- und Managementtrainings www.zsk.mw.tum.de) auszuwählen.

Master's Thesis:

"Wissenschaftliche Ausarbeitung (Thesis)" und "Anleitung zum Wissenschaftlichen Arbeiten"
Innerhalb des Moduls Master's Thesis im Gesamtumfang von **30 Credits** hat der Studierende neben der Erstellung der "wissenschaftlichen Ausarbeitung (Thesis)" die Studienleistung "Anleitung zum Wissenschaftlichen Arbeiten" nachzuweisen. Neben einer zentralen Veranstaltung, welche vom Zentrum für Sozialkompetenz- und Managementtrainings angeboten wird, werden die Teilnehmer weiter von den jeweiligen Lehrstühlen betreut, an welchen sie ihre Thesis zeitgleich anfertigen. Das Modul Master's Thesis ist erst bestanden, wenn die Thesis mit "mindestens ausreichend" bewertet wurde und die Studienleistung "Anleitung zum Wissenschaftlichen Arbeiten" mit Erfolg abgelegt wurde.

Der Prüfungsausschuss aktualisiert fortlaufend den Fächerkatalog der Wahlpflicht- und Wahlmodule. Änderungen werden spätestens sechs Wochen vor Beginn der Vorlesungen auf den Internetseiten des Prüfungsausschusses bekannt gegeben.

Erläuterungen:

Sem. = Semester; SWS = Semesterwochenstunden; V = Vorlesung; Ü = Übung; P = Praktikum.

In der Spalte Prüfungsdauer ist bei schriftlichen Prüfungen die Prüfungsdauer in Minuten aufgeführt. Bei mündlichen Prüfungen ist dort "M" eingetragen.

ANLAGE 2: Eignungsverfahren

Eignungsverfahren für den Masterstudiengang Maschinenwesen an der Technischen Universität München

1. Zweck des Verfahrens

¹Die Qualifikation für den Masterstudiengang Maschinenwesen setzt neben den Voraussetzungen des § 36 Abs. 1 Nrn. 1 und 3 den Nachweis der Eignung gemäß § 36 Abs. 1 Nr. 2 nach Maßgabe der folgenden Regelungen voraus. ²Die besonderen Qualifikationen und Fähigkeiten der Bewerber sollen dem Berufsfeld eines Ingenieurs der angestrebten Ausrichtung entsprechen. ³Einzelne Eignungsparameter sind:

- 1.1 vorhandene Fachkenntnisse aus dem Erststudium auf dem Gebiet des Maschinenbaus in Anlehnung an den Bachelorstudiengang Maschinenwesen der Technischen Universität München,
- 1.2 Fähigkeit zu wissenschaftlicher bzw. grundlagen- und methodenorientierter Arbeitsweise.

2. Verfahren zur Prüfung der Eignung

- 2.1 Das Verfahren zur Prüfung der Eignung wird halbjährlich durch die Fakultät für Maschinenwesen durchgeführt.
- 2.2 Der Antrag auf Zulassung zum Verfahren ist zusammen mit den Unterlagen nach 2.3.1 bis einschließlich 2.3.4 für das Wintersemester bis zum 31. Mai und für das Sommersemester bis zum 31. Dezember an die Technische Universität München zu stellen (Ausschlussfristen).

2.3 Dem Antrag sind beizufügen:

- 2.3.1 a) ein Nachweis über einen Hochschulabschluss gemäß § 36 einschließlich eines vollständigen Nachweises aller Studien- und Prüfungsleistungen im Erststudium (Transcript of Records) in amtlich beglaubigter Kopie; einer Beglaubigung bedarf es nicht.
 - wenn die Prüfungen an der Technischen Universität München abgelegt wurden,
 - b) liegt der Hochschulabschluss gemäß § 36 zum Zeitpunkt der Antragstellung noch nicht vor, muss ein vollständiger, vom Prüfungsamt bestätigter Nachweis aller bisher erbrachten Studien- und Prüfungsleistungen im Erststudium (z.B. Leistungsnachweis) vorgelegt werden; einer Beglaubigung bedarf es nicht, wenn die Prüfungen an der Technischen Universität München abgelegt wurden.; daneben ist ein begründeter Antrag auf vorzeitige Zulassung unter Berücksichtigung von § 36 Abs. 5 beizufügen,
- 2.3.2 ein tabellarischer Lebenslauf,
- 2.3.3 das dem Hochschulabschluss zugrunde liegende Curriculum, aus dem die jeweiligen Modulinhalte und die vermittelten Kompetenzen hervorgehen müssen (z. B. Modulhandbuch, Modulbeschreibungen) sowie das von der Fakultät für Maschinenwesen vorgegebene Formular, in dem der Bewerber die Noten, Creditpunkte sowie Semesterwochenstunden der Prüfungsleistungen aus den Grundlagengebieten Mathematik, Technische Mechanik, Maschinenelemente, Werkstoffkunde, Thermodynamik, Fluidmechanik und Wärmetransportphänomene zusammenstellt,

- 2.3.4 eine schriftliche Begründung von maximal 2 DIN-A4 Seiten für die Wahl des Masterstudiengangs Maschinenwesen an der Technischen Universität München, in der der Bewerber darlegt, aufgrund welcher spezifischer Begabungen und Interessen er sich für den angestrebten Studiengang besonders geeignet hält; die besondere Leistungsbereitschaft ist beispielsweise durch Ausführungen zu studiengangspezifischen Berufsausbildungen, Praktika, Auslandsaufenthalten oder über eine erfolgte fachgebundene Weiterbildung im Bachelorstudium, die über Präsenzzeiten und Pflichtveranstaltungen hinaus gegangen ist, zu begründen; dies ist ggf. durch Anlagen zu belegen.
- 2.4 Bewerber, die den Bachelorabschluss an der Fakultät für Maschinenwesen der Technischen Universität München erworben haben, müssen dem Antrag die Unterlagen nach Nr. 2.3.3 nicht beifügen.

3. Kommission zum Eignungsverfahren

- 3.1 ¹Das Eignungsverfahren wird von einer Kommission durchgeführt, der in der Regel der für den Masterstudiengang Maschinenwesen zuständige Studiendekan, mindestens zwei Hochschullehrer und mindestens ein wissenschaftlicher Mitarbeiter angehören. ²Mindestens die Hälfte der Kommissionsmitglieder müssen Hochschullehrer sein. ³Ein studentischer Vertreter wirkt in der Kommission beratend mit.
- 3.2 ¹Die Bestellung der Mitglieder erfolgt durch den Fakultätsrat im Benehmen mit dem Studiendekan. ²Mindestens ein Hochschullehrer wird als stellvertretendes Mitglied der Kommission bestellt. ³Den Vorsitz der Kommission führt in der Regel der Studiendekan. ⁴Für den Geschäftsgang gilt Art. 41 BayHSchG in der jeweils geltenden Fassung.

4. Zulassung zum Eignungsverfahren

- 4.1 Die Zulassung zum Eignungsverfahren setzt voraus, dass die in Nr. 2.3 genannten Unterlagen fristgerecht und vollständig vorliegen.
- 4.2 Mit den Bewerbern, die die erforderlichen Voraussetzungen erfüllen, wird das Eignungsverfahren gemäß Nr. 5 durchgeführt.
- 4.3 ¹Bewerber, die nicht zugelassen werden, erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden.

5. Durchführung des Eignungsverfahrens

- 5.1 Erste Stufe der Durchführung des Eignungsverfahrens
 - 5.1.1. ¹Die Kommission beurteilt anhand der gemäß Nr. 2.3 geforderten schriftlichen Bewerbungsunterlagen, ob ein Bewerber die Eignung zum Studium gemäß Nr. 1 besitzt (erste Stufe der Durchführung des Eignungsverfahrens). ²Die Kommission hat die eingereichten Unterlagen auf einer Skala von 0 bis 100 Punkten zu bewerten, wobei 0 das schlechteste und 100 das beste zu erzielende Ergebnis ist.

³Folgende Bewertungskriterien gehen ein:

1. Fachliche Qualifikation

¹Die curriculare Analyse erfolgt dabei nicht durch schematischen Abgleich der Module, sondern auf der Basis von Kompetenzen. ²Sie orientiert sich an den in der folgenden Tabelle aufgelisteten elementaren Fächergruppen des Bachelorstudiengangs Maschinenwesen der Technischen Universität München.

Fächergruppe	Credits TUM
Mathematik	
Mathematik I	7
Mathematik II	6
Mathematik III	4
Technische Mechanik	
Technische Mechanik I	6
Technische Mechanik II	6
Technische Mechanik III	7
Maschinenelemente	
Maschinenelemente I	6
Maschinenelemente II	9
Werkstoffkunde	
Werkstoffkunde I	5
Werkstoffkunde II	5
Thermodynamik	6

³Die Punkte werden durch Aufsummieren der Credits gemäß obiger Tabelle ermittelt. ⁴Dabei gehen maximal 60 Punkte in das Eignungsverfahren ein. ⁵Ein Credit entspricht dabei einem Punkt im Eignungsverfahren.

2. Note

¹Die für die fachliche Qualifikation gemäß 5.1.1.1 von der Prüfungskommission berücksichtigten Module werden wie folgt zur Bildung einer creditgewichteten Durchschnittsnote herangezogen:

$$\frac{\Sigma \text{ (Note x Credits)}}{\Sigma \text{ Credits}}$$

²Dabei werden maximal die in der Tabelle 5.1.1.1 genannten Credits zugrunde gelegt. ³Bei der Notenermittlung wird eine Stelle nach dem Komma berücksichtigt, alle weiteren Stellen werden ohne Rundung gestrichen.

⁴Für jede Zehntelnote, die die so errechnete Durchschnittsnote besser als 3,0 ist, erhält der Bewerber einen Punkt. ⁵Die Maximalpunktzahl beträgt 20. ⁶Negative Punkte werden nicht vergeben. ⁷Bei ausländischen Abschlüssen wird die über die bayerische Formel umgerechnete Note herangezogen.

- 3. Motivationsschreiben
 - ¹Die schriftliche Begründung des Bewerbers wird auf einer Skala von 0 bis 20 Punkten bewertet. ²Der Inhalt des Motivationsschreibens wird nach folgenden Kriterien mit den in Klammern angegebenen maximal erreichbaren Punkten bewertet:
 - 1. sprachlicher Ausdruck (2 Punkte),
 - 2. logischer Aufbau, klare Struktur (3 Punkte),
 - 3. Begründung für die Wahl des Studiengangs, Interesse (5 Punkte),
 - 4. besondere Leistungsbereitschaft (10 Punkte).
- 5.1.2 Die Gesamtpunktezahl des Bewerbers für die erste Stufe des Eignungsverfahrens ergibt sich aus der Summe der Einzelbewertungen aus 5.1.1.
- 5.1.3 Bewerber, die mindestens 70 Punkte erreicht haben, erhalten eine Bestätigung über das bestandene Eignungsverfahren. ²In Fällen, in denen festgestellt wurde, dass nur einzelne fachliche Voraussetzungen aus dem Erststudium nicht vorliegen, kann die Kommission zum Eignungsverfahren als Auflage fordern, Grundlagenprüfungen aus dem Bachelorstudiengang Maschinenwesen im Ausmaß von maximal 30 Credits abzulegen. ³Diese Grundlagenprüfungen müssen im ersten Studienjahr abgelegt werden. ⁴Nicht bestandene Grundlagenprüfungen dürfen nur einmal zum nächsten Prüfungstermin wiederholt werden. ⁵Der Prüfungsausschuss kann die Zulassung zu einzelnen Modulprüfungen des Masterstudiengangs vom Bestehen der Grundlagenprüfungen abhängig machen.
- 5.1.4 ¹Ungeeignete Bewerber mit einer Gesamtpunktezahl von weniger als 50 Punkten erhalten einen mit Gründen und Rechtsbehelfsbelehrung versehenen Ablehnungsbescheid, der von der Leitung der Hochschule zu unterzeichnen ist. ²Die Unterschriftsbefugnis kann delegiert werden.
- 5.2 Zweite Stufe der Durchführung des Eignungsverfahrens
 - 5.2.1 ¹Die übrigen Bewerber werden zu einem Test (Leistungserhebung in schriftlicher und anonymisierter Form) eingeladen. ²Im Rahmen der zweiten Stufe des Eignungsverfahrens wird die im Erststudium erworbene Qualifikation und das Ergebnis des schriftlichen Tests bewertet, wobei die im Erststudium erworbene Qualifikation mindestens gleichrangig zu berücksichtigen ist.
 - 5.2.2 ¹Zeitfenster für den durchzuführenden Test müssen vor Ablauf der Bewerbungsfrist festgelegt sein. ²Der Termin für den Test wird mindestens eine Woche vorher durch die Kommission bekanntgegeben. ³Der festgesetzte Termin des Tests ist vom Bewerber einzuhalten. ⁴Die Leistungserhebung findet nur einmal pro Bewerbungsphase statt. ⁵Nachtermine sind nicht möglich.
 - ¹Die Leistungserhebung in schriftlicher Form dauert 80 Minuten. ²Der Test soll zeigen, ob der Bewerber über den allgemeinen Wissensstand, der den Grundlagen des Bachelorstudiengangs Maschinenwesen der Technischen Universität München entspricht, verfügt, SO dass ein erfolgreicher Studienabschluss zu erwarten ist. ³Der Inhalt des Tests besteht aus Aufgaben Themenbereichen Mathematik, Technische Mechanik. Maschinenelemente und Werkstoffkunde, die mit jeweils maximal 20 Punkten bewertet werden. ⁴Zur Lösung der Aufgaben werden keine Kenntnisse verlangt, die über das Niveau des Bachelorabschlusses hinausgehen. ⁵Die bei der Leistungserhebung maximal erreichbare Punktzahl beträgt 80.

- 5.2.4 ¹Die Gesamtpunktezahl der zweiten Stufe ergibt sich als Summe der Punkte aus 5.2.3 sowie der Punkte aus 5.1.1.1 (fachliche Qualifikation) und 5.1.1.2 (Note). ²Bewerber, die 110 oder mehr Punkte erreicht haben, werden als geeignet eingestuft.
- 5.2.5 ¹Das Ergebnis des Eignungsverfahrens wird dem Bewerber ggf. unter Beachtung der in Stufe 1 nach Nr. 5.1.3 bereits festgelegten Auflagen schriftlich mitgeteilt. ²Der Bescheid ist von der Leitung der Hochschule zu unterzeichnen. ³Die Unterschriftsbefugnis kann delegiert werden. ⁴Ein Ablehnungsbescheid ist mit Begründung und einer Rechtsbehelfsbelehrung zu versehen.
- 5.2.6 Zulassungen im Masterstudiengang Maschinenwesen gelten bei allen Folgebewerbungen in diesem Studiengang.

6. Niederschrift

Über den Ablauf des Eignungsverfahrens ist eine Niederschrift anzufertigen, aus der Tag, Dauer und Ort des Eignungsverfahrens, die Namen der Kommissionsmitglieder, die Namen der Bewerber und die Beurteilung der Kommissionsmitglieder sowie das Gesamtergebnis ersichtlich sein müssen.

7. Wiederholung

Bewerber, die den Nachweis der Eignung für den Masterstudiengang Maschinenwesen nicht erbracht haben, können sich einmal erneut zum Eignungsverfahren anmelden.

Anlage 3: Studienplan der Masterstudiengänge

1. Semester	ECTS	2. Semester	ECTS
Mastermodul 1	5	Mastermodul 4	5
Mastermodul 2	5	Mastermodul 5	5
Mastermodul 3	5	Mastermodul 6	5
Semesterarbeit	11	Mastermodul 7	5
Hochschulpraktikum 1	4	Hochschulpraktikum 2	4
		Ergänzungsfach 1	3
		Ergänzungsfach 2	3
SUMME ECTS	30	SUMME ECTS	30

3. Semester	ECTS	4. Semester	ECTS
Mastermodul 8	5	Master's Thesis	27
Mastermodul 9	5	Anleitung zum	
Mastermodul 10	5	wissensch. Arbeiten	3
Mastermodul 11	5		
Mastermodul 12	5		
Ergänzungsfach 3	3		
Soft Skills 1	2		
SUMME ECTS	30	SUMME ECTS	30

Zusätzlich freiwillige Übungsaufgaben, um die Note um 0,3 zu verbessern

schriftlich: 90 min oder mündlich: 20 min

Ausgefertigt aufgrund des Beschlusses des Akademischen Senats der Technischen Universität München vom 21. November 2012, des Eilentscheids des Präsidenten der Technischen Universität München vom 25. Februar 2013 sowie der Genehmigung durch den Präsidenten der Technischen Universität München vom 15. März 2013.

München, den 15. März 2013

Technische Universität München

Wolfgang A. Herrmann Präsident

Diese Satzung wurde am 15. März 2013 in der Hochschule niedergelegt; die Niederlegung wurde am 15. März 2013 durch Anschlag in der Hochschule bekannt gemacht. Tag der Bekanntmachung ist daher der 15. März 2013.

ⁱⁱ Prüfungsart ist abhängig von der Teilnehmerzahl und wird bei Veranstaltungsbeginn bekanntgegeben.