Technische Universität München

Aptitude Test Automatic Control (SAMPLE) – SOLUTION

Examiner: Prof. Dr.-Ing. Florian Holzapfel

2022-12-24

Name	
Application nr.	
Room	ONLINE INFORMATION MATERIAL
Seat	
ID Check (to be filled by staff)	

Task	max. Points	Points
1	7	
2	5	
3	10	
4	3	
5	7	
6	3	
7	5	
8	3	
9	7	
10	5	
11	3	
12	3	
Σ	60	

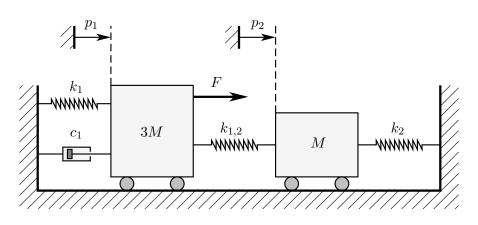
(to be filled by staff)

Exam Editing Time: 1h

Version: unspecified

Good luck!

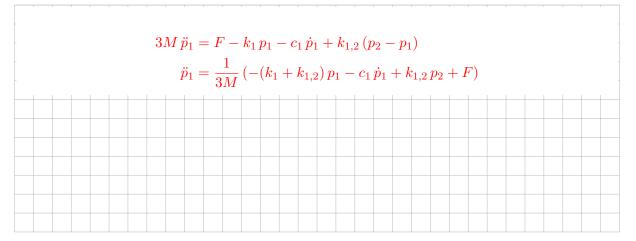
Task 1: Modeling



Consider two frictionless carts with the masses 3M and M. The left cart is connected to the left wall by a spring with the stiffness k_1 and a damper with the damping coefficient c_1 , the right cart is connected to the right wall by a spring with the stiffness k_2 . The left cart is excited by an external force F. Additionally, both carts are coupled with a spring with a stiffness of $k_{1,2}$. In the equilibrium position $p_1 = p_2 = 0$ all springs are tension-free. All springs and dampers are considered massless.

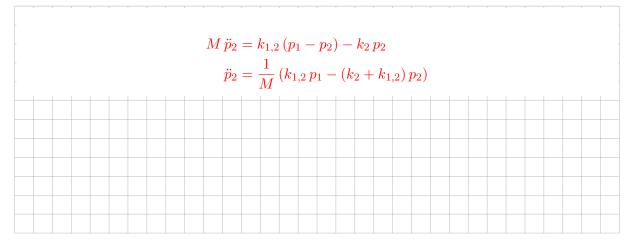
a) Use Newton's second law to derive the equation of motion of the left cart in the form $\ddot{p}_1 = f(p_1, \dot{p}_1, p_2, \dot{p}_2, F)$.

(ca. 2 points)



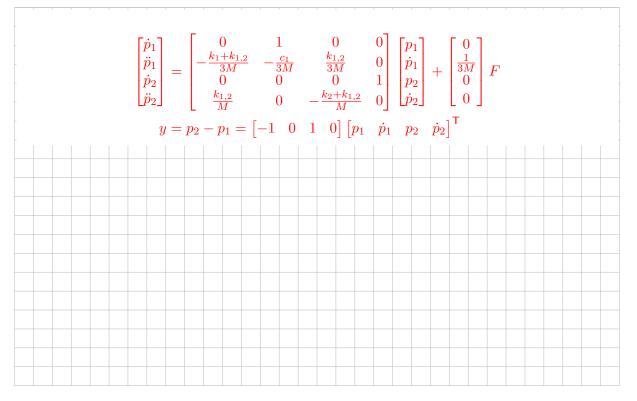
b) Use Newton's second law to derive the equation of motion of the right cart in the form $\ddot{p}_2 = f(p_1, \dot{p_1}, p_2, \dot{p_2}, F)$.

(ca. 2 points)



c) Derive a state space model of the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$, $y = \mathbf{c}^{\mathsf{T}}\mathbf{x}$. The input u is the external force F and the distance $p_2 - p_1$ shall be considered as output signal y. Use the state vector $\mathbf{x} = [p_1, \dot{p}_1, p_2, \dot{p}_2]^{\mathsf{T}}$.

(ca. 3 points)



Task 2: Laplace Transform

The differential equation

$$\dot{y}(t) + \sigma(t) * y(t) = 2 * u(t)$$

of a system is given. The initial value is y(0) =. Consider the following hints regarding notation and the given Laplace correspondences.

a) Determine the step response h(t) and the impulse reponse g(t) of the system.

	(ca. 3 points)
$\dot{y}(t) + \sigma(t) * y(t) = 2 * u(t)$	
$sY(s) - \underbrace{y(0)}_{=0} + \frac{1}{s}Y(s) = 2U(s)$	
$\Rightarrow Y(s) = \frac{2s}{s^2 - 1}U(s)\checkmark$	
$\Rightarrow T(s) = \frac{1}{s^2 - 1} U(s) \mathbf{v}$	
$U(s) = \frac{1}{s} \Rightarrow Y(s) = H(s) = \frac{2}{s^2 + 1}$	
$s^{1} + 1$	
$\overset{\diamond}{h(t)}=2\sin(t)\checkmark$	
$g(t) = \dot{h}(t) = 2\cos(t)\checkmark$	

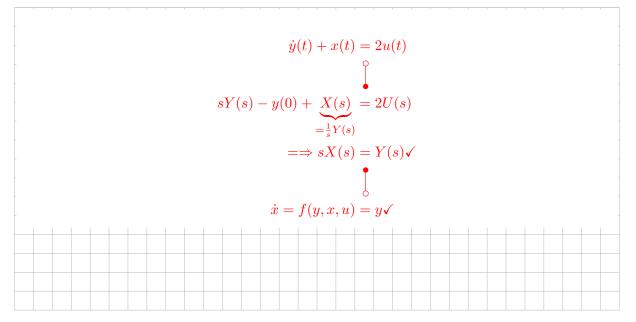
(ca. 5 points)

b) The system of differential equations is now given as

$$\dot{y} = -x + 2u \dot{x} = f(y, x, u)$$
 (1)

Compute f(x, y, u) such that the system of differential equations is equivalent to the system from a).

(ca. 2 points)



Task 3:Bode Diagram

(ca. 10 points)

The transfer function of a dynamic system can be represented by the series connection of the two transfer functions $G_1(s)$ and $G_2(s)$:

$$G(s) = \frac{Y(s)}{U(s)} = G_1(s) \, G_2(s)$$

The following diagram contains approximations of the magnitude and phase response curves for the element $G_1(s)$. The transfer function $G_2(s)$ is:

$$G_2(s) = \frac{20s + 4000}{(s+20)^2}$$

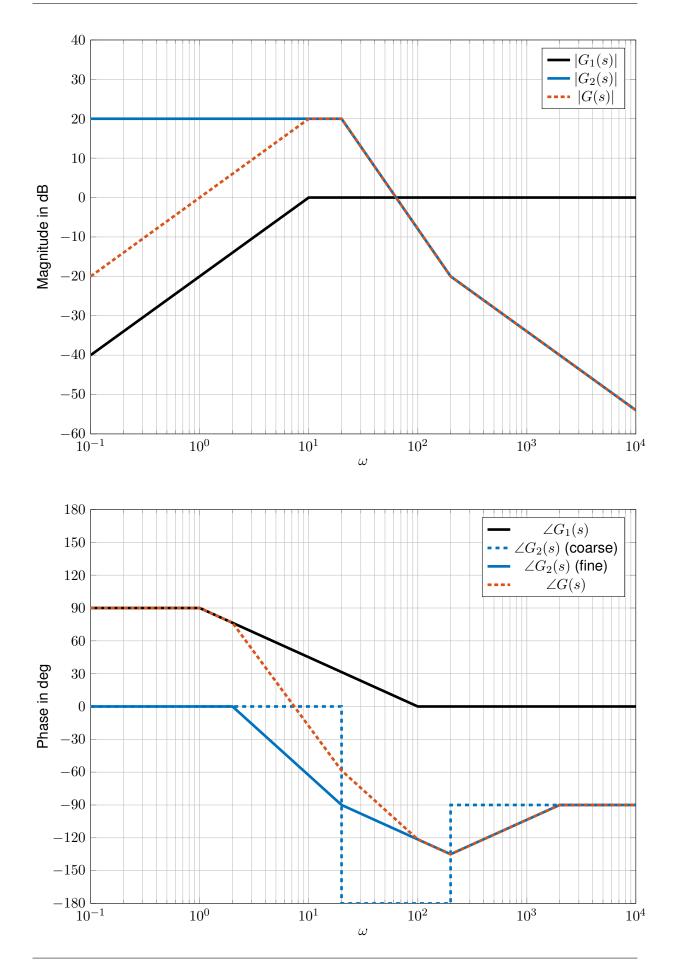
Tasks: see next pages.

a) Determine the corner frequencies of $G_2(s)$ as well as approximations of the initial value $|G_2(\omega_{min})|$ and gradient $|G_2(\omega_{min})|'$ of the magnitude response in dB and dB/decade and the initial value of the phase response $\angle G_2(\omega_{min})$.

(ca. 4 points)

Hint: $\omega_{\min} = 10^{-1}$ Corner frequencies: $G_{2}(s) = \frac{20s + 4000}{(s + 20)^{2}} = 10 \frac{s/200 + 1}{(s/20 + 1)^{2}}$ $\tilde{T}_{1} = \frac{1}{200} \Rightarrow \tilde{\omega}_{1} = \frac{1}{|\tilde{T}_{1}|} = 200$ $T_{1,2} = \frac{1}{20} \Rightarrow \omega_{1,2} = \frac{1}{|T_{1,2}|} = 20$ Gain K = 10, no poles or zeros at 0: $\Rightarrow |G_{2}(\omega_{\min})| \approx 20 \log_{10}(10) = 20 \text{ dB}$ $\Rightarrow |G_{2}(\omega_{\min})|' \approx 0 \text{ dB/decade}$ $\Rightarrow \angle G_{2}(\omega_{\min}) \approx 0^{\circ}$

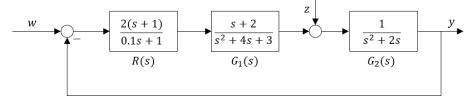
- **b)** Draw the approximation of the magnitude and phase response curves of $G_2(s)$ in the diagram on the next page. *(ca. 4 points)*
- c) Finally, draw the approximation of the magnitude and phase response curves of the entire system G(s) in the diagram on the next page. (ca. 2 points)



Task 4: System Analysis / Steady-State Accuracy

(ca. 3 points)

The following stable closed-loop system is given:



a) Evaluate the steady-state accuracy of the closed-loop system with regard to the reference tracking behavior of the control loop (reference variable: *w*) assuming a step input in *w* and justify your statement.

(ca. 1 point)

-	Inte	egra	atic	on i	n F	RG	${}_1G$	₂ , c	los	ed	-loc	op :	stal	ble	\Rightarrow	ste	ad	y-s	tate	e a	CCL	irat	e r	efe	rer	ice	tra	cki	ng.	
													1																	

b) Evaluate the steady-state accuracy of the closed-loop system with regard to the disturbance behavior of the control loop (disturbance variable: z) assuming a step input in z and justify your statement.

(ca. 1 point)

 mit	egi	atio	on	In I	RG	1 =	⇒ d	istı	urb	anc	e k	beh	avi	or	not	ste	ead	y-s	tat	e a	CCL	urat	te.				
																								No integration in $RG_1 \Rightarrow$ disturbance behavior not steady-state accurate.			

c) What type of the controller R(s) is used? If necessary, distinguish between ideal and real implementation.

(ca. 1 point)

-	F	Rea	al F	D	coi	ntro	olle	r.												

Task 5:Input/Output Linearization

Consider a dynamic system of the form $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$, $y = h(\mathbf{x})$ with the states $\mathbf{x} = [x_1, x_2, x_3]^T$, input signal u and output signal y:

$$\begin{split} \mathbf{x} \in \mathbb{R}^n & \mathbf{f} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, \ (\mathbf{x}, u) \mapsto \dot{\mathbf{x}} \\ u \in \mathbb{R} & h : \mathbb{R}^n \to \mathbb{R}, \ \mathbf{x} \mapsto y \end{split}$$

a) Describe *in general terms* the principle of input-output linearization for single input single output (SISO) systems of this form.

(ca. 2 points)

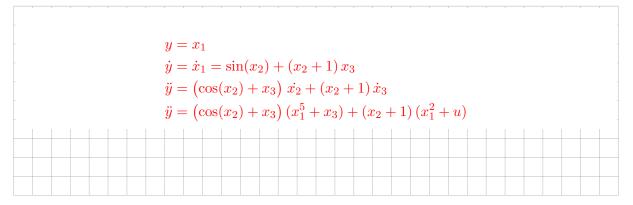
The system output y is differentiated until an explicit influence by the input u appears at derivative order r (the relative degree). Solving the relation between $\stackrel{(r)}{y}$ and u for the input signal u yields a control law that compensates the nonlinearity of the system by inversion such that linear input-output dynamics result, with the new input $\stackrel{(r)}{y}$ acting as pseudo-control.

In the following the system S is considered:

$$S: \quad \mathbf{f}(\mathbf{x}, u) = \begin{bmatrix} \sin(x_2) + (x_2 + 1) \, x_3 \\ x_1^5 + x_3 \\ x_1^2 + u \end{bmatrix}, \quad h(\mathbf{x}) = x_1$$

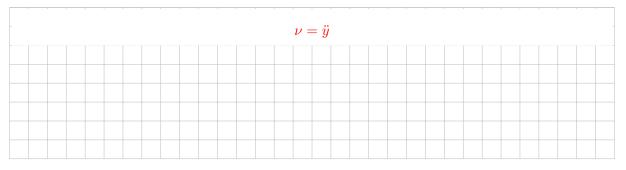
b) Differentiate the output of the system S up to the relative degree and explicitly state the relation to the input signal.

(ca. 2 points)



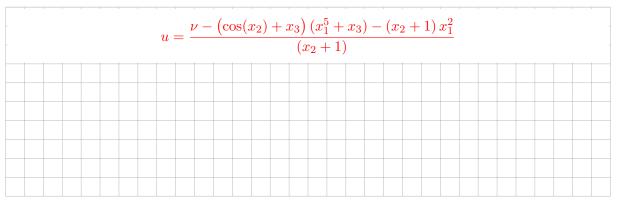
c) State a pseudo-control variable ν for the system *S*.

(ca. 1 point)



d) Calculate a control law $u = g(\mathbf{x}, \nu)$ for the system S that linearizes the dynamics between ν and y.

(ca. 2 points)

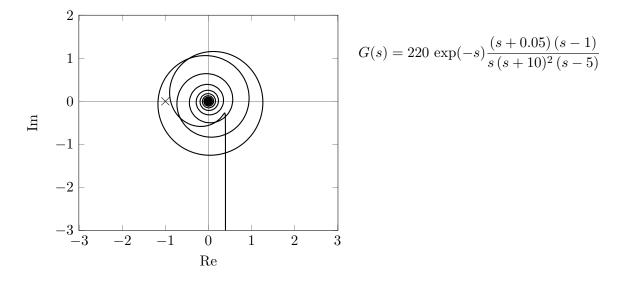


Task 6:Nyquist Criterion

(ca. 3 points)

The following plot shows the open-loop frequency response $G(j\omega)$ of the open-loop system G(s) for all relevant frequencies $\omega > 0$. The closed-loop stability shall be assessed using the general Nyquist criterion.

- Calculate the argument change W^*_+ of G(jw) + 1 required for closed-loop stability.
- Determine the actual argument change W_+ .
- Determine the stability of the closed-loop system.



• one neutral and one unstable pole $\Rightarrow W_{+}^{*} = 1\frac{\pi}{2} + 1\pi = \frac{3\pi}{2}$	(1P)
• from locus: $W_+ = -\frac{3\pi}{2}$	(1P)
• $W_+ \neq W_+^* \Rightarrow$ closed-loop system unstable	(1P)
• alternative solution: $\omega \in [-\infty, \infty] \implies W_+^* = 3\pi \neq -3\pi = W_+$	-

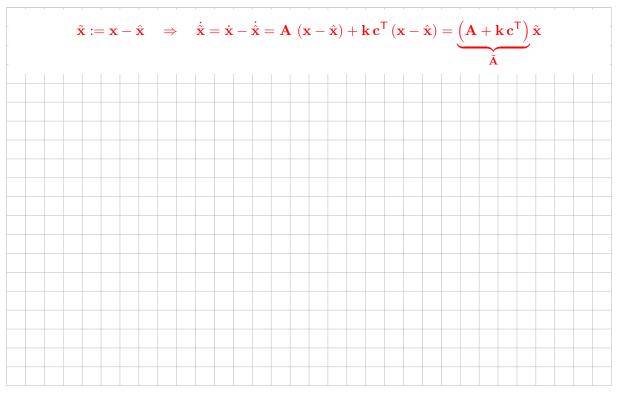
Task 7:State Observer

(ca. 5 points)

The system Σ is given. To estimate its state \mathbf{x} , a state observer L is used. The estimation error $\tilde{\mathbf{x}}$ is defined as $\tilde{\mathbf{x}} := \mathbf{x} - \hat{\mathbf{x}}$.

$$\Sigma: \qquad \dot{\mathbf{x}} = \mathbf{A} \mathbf{x} \qquad \qquad y = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
$$L: \qquad \dot{\hat{\mathbf{x}}} = \mathbf{A} \hat{\mathbf{x}} - \mathbf{k} (y - \hat{y}) \qquad \qquad \hat{y} = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

a) Derive the differential equation $\dot{\tilde{x}} = \tilde{A}\tilde{x}$ for the estimation error dynamics. *(ca. 2 points)*

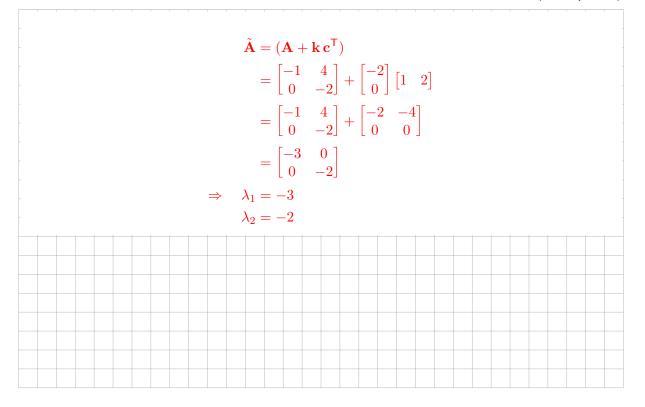


Now the following values are given:

$$\mathbf{A} = \begin{bmatrix} -1 & 4\\ 0 & -2 \end{bmatrix}, \qquad \qquad \mathbf{k} = \begin{bmatrix} -2\\ 0 \end{bmatrix}, \qquad \qquad \mathbf{c}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

b) Calculate the matrix $\tilde{\mathbf{A}}$ and its eigenvalues.

(ca. 2 points)



c) Does the estimation error vanish for $t \to \infty$? Justify your answer.

(ca. 1 point)

-	1			1	,]	Re($\lambda_{1,2}$	2) <	< 0	\Rightarrow] t	$\lim_{\to\infty}$	$\tilde{\mathbf{x}}$	= ()					-

Task 8: **Transfer Function**

(ca. 3 points)

Calculate the transfer function $G(s) = \frac{X(s)}{F(s)}$ for the system of second order differential equations

$$\mathbf{M} \, \ddot{\mathbf{q}} = -\mathbf{R} \, \dot{\mathbf{q}} + \mathbf{e} \, f$$

with the output equation $x = \mathbf{a}^{\mathsf{T}} \mathbf{q}$. Hint: $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\mathbf{R} \in \mathbb{R}^{n \times n}$, $\mathbf{q}(t) \in \mathbb{R}^{n \times 1}$, $\mathbf{e} \in \mathbb{R}^{n \times 1}$, $\mathbf{a}^{\mathsf{T}} \in \mathbb{R}^{1 \times n}$, $f(t) \in \mathbb{R}$, $x(t) \in \mathbb{R}$

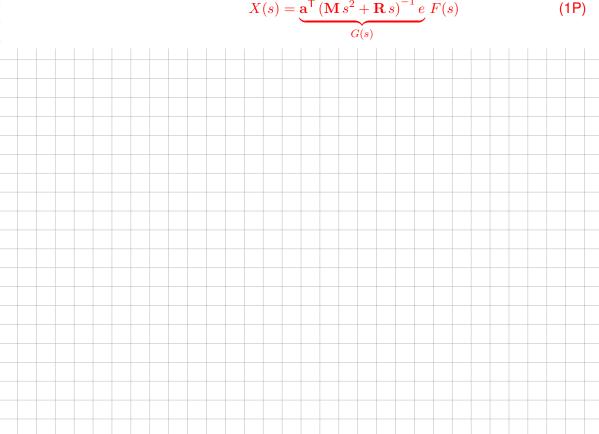
$$\mathbf{M}s^{2}\mathbf{Q}(s) + \mathbf{R}s\mathbf{Q}(s) = eF(s)$$
(1P)

$$(\mathbf{M} s^{2} + \mathbf{R} s) \mathbf{Q}(s) = e F(s)$$

$$\mathbf{Q}(s) = (\mathbf{M} s^{2} + \mathbf{R} s)^{-1} e F(s)$$
(1P)

$$\mathbf{Q}(s) = (\mathbf{M}\,s^{-} + \mathbf{K}\,s) \quad e\,F(s) \tag{1P}$$
$$X(s) = \mathbf{a}^{\mathsf{T}}\,\mathbf{Q}(s)$$

$$X(s) = \underbrace{\mathbf{a}^{\mathsf{T}} \left(\mathbf{M} \, s^2 + \mathbf{R} \, s\right)^{-1} e}_{\mathsf{P}} F(s) \tag{1P}$$



Task 9: Control Design / State Feedback

(ca. 6 points)

Consider the following system with state vector \mathbf{x} , control input u and output signal y:

a) Calculate the feedback gain **r** of the following control law such that the closed-loop eigenvalues become $\lambda_{R,1}, \lambda_{R,2}$.

 $u = -\mathbf{r}^{\mathsf{T}} \mathbf{x}, \quad \mathbf{r} \in \mathbb{R}^2, \quad \lambda_{R,1} = -2, \quad \lambda_{R,2} = -3$

(ca. 2 points)

$$\mathbf{r} = [r_1, r_2]^{\mathsf{T}}$$

$$\mathbf{A}_R = \mathbf{A} - \mathbf{b}\mathbf{r}^{\mathsf{T}}$$

$$(s\mathbf{I} - \mathbf{A}_R) = \begin{bmatrix} s+1 & -1\\ 1-r_1 & s-r_2+1 \end{bmatrix}$$

$$\det(s\mathbf{I} - \mathbf{A}_R) = s^2 + (2-r_2)s + (2-r_2 - r_1) \qquad (1\mathsf{P})$$

$$\stackrel{!}{=} \prod_k (s - \lambda_{R,k}) = s^2 + 5s + 6$$

$$(2-r_2) = 5 \implies r_2 = -3$$

$$(2-r_2 - r_1) = 6 \implies r_1 = -1$$

$$\Rightarrow \mathbf{r} = [-1, -3]^{\mathsf{T}} \qquad (1\mathsf{P})$$

b) The output signal y shall track the reference signal w with steady-state accuracy. Calculate the corresponding parameter m_u of the following control law.

$$u = -\mathbf{r}^{\mathsf{T}} \mathbf{x} + m_u w, \qquad m_u \in \mathbb{R}, \qquad \mathbf{r} = [-4, -2]^{\mathsf{T}}$$

(ca. 4 points)

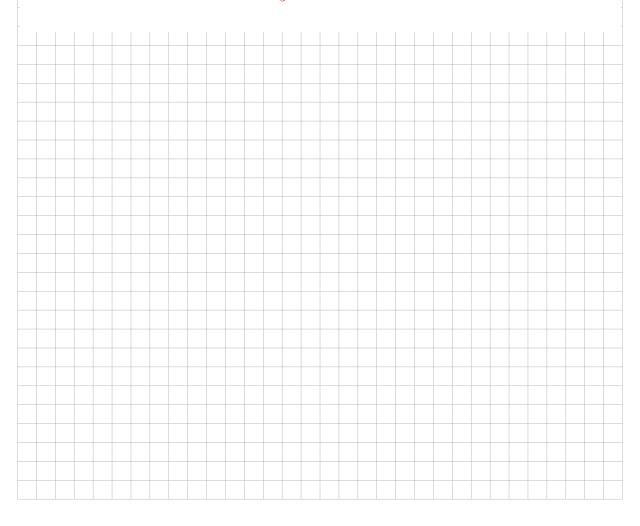
$$\mathbf{A}_{w} = \mathbf{A} - \mathbf{b}\mathbf{r}^{\mathsf{T}}$$
$$\mathbf{b}_{w} = \mathbf{b} m_{u}$$
$$(s\mathbf{I} - \mathbf{A}_{w}) = \begin{bmatrix} s+1 & -1\\ 5 & s+3 \end{bmatrix}$$
(1P)

$$(s\mathbf{I} - \mathbf{A}_w)^{-1} = \frac{1}{s^2 + 4s + 8} \begin{bmatrix} s+3 & 1\\ -5 & s+1 \end{bmatrix}$$
(1P)

$$G_{yw}(s) = \mathbf{c}^{\mathsf{T}} (s\mathbf{I} - \mathbf{A}_w)^{-1} \mathbf{b}_w = \frac{-5 \, m_u}{s^2 + 4s + 8} \tag{1P}$$

$$1 \stackrel{!}{=} \lim_{s \to 0} G_{yw}(s) = -\frac{5}{8}m_u \tag{0.5P}$$

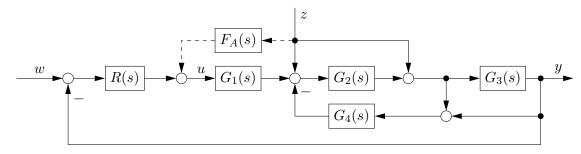
$$\Rightarrow m_u = -\frac{8}{5} \tag{0.5P}$$



Task 10: Control Structures / Disturbance Rejection

(ca. 5 points)

Consider the following system with reference signal w, control input u, output signal y, plant $G_1(s) \ldots G_4(s)$ and controller R(s). The system is affected by the disturbance z, which is measured. A disturbance rejection filter $F_A(s)$ shall be designed.



a) Calculate the *open-loop* transfer functions $G_{yu}(s)$ and $G_{yz}(s)$ from the control input and disturbance to the output. Here, $F_A(s) = 0$. *(ca. 2 points)*

Auxiliary cut
$$v$$
 at the input to G_3 :
 $v = (1+G_2)z + G_1G_2u - G_2G_4(1+G_3)v$

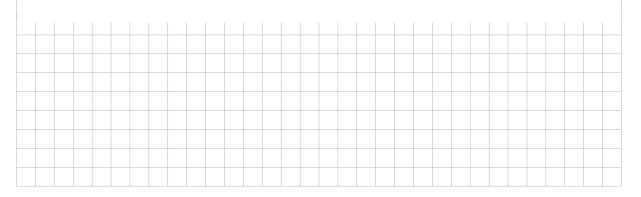
$$\Rightarrow \quad G_{vu}(s)|_{z=0} = \frac{G_1 G_2}{1 + G_2 G_4 (1 + G_3)}$$

$$\Rightarrow \quad G_{vz}(s)|_{u=0} = \frac{1 + G_2}{1 + G_2 G_4 (1 + G_3)}$$

$$G_{yv} = G_3$$

 $\Rightarrow \quad G_{yu}(s) = \frac{G_1 G_2 G_3}{1 + G_2 G_4 (1 + G_3)}$
(1P)

$$\Rightarrow \quad G_{yz}(s) = \frac{(1+G_2)G_3}{1+G_2G_4(1+G_3)} \tag{1P}$$



b) Using the following transfer functions, calculate an appropriate disturbance rejection filter $F_A(s)$ that can be implemented in practice. If necessary, apply a filter of the form V(s) (give reasons for this!).

Note: This task can be solved independently.

$$G_{yu} = \frac{s-2}{(s+2)(3s^2+13s-8)} \qquad \qquad G_{yz} = \frac{2s+1}{3s^2+13s-8}$$
$$V(s) = \frac{(s-a)^m}{(Ts+1)^n} \qquad \qquad T = 0.01, \ a \in \mathbb{R}, \ m, n \in \mathbb{Z}_{\geq 0}$$

(ca. 3 points)

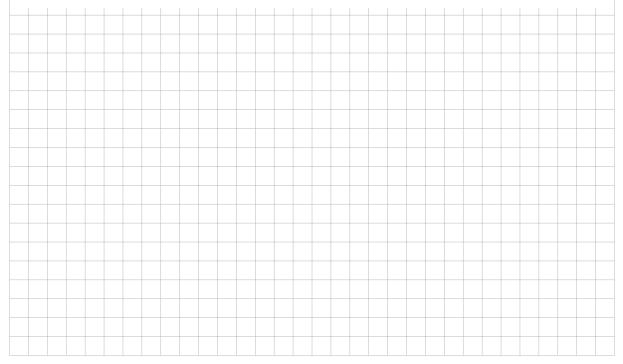
$$u = F_{A}z$$

$$y = G_{yu}u + G_{yz}z = (G_{yu}F_{A} + G_{yz})z \stackrel{!}{=} 0 \ \forall z$$

$$\Rightarrow \quad F_{A,ideal} = -G_{yu}^{-1}G_{yz} = \frac{(s+2)(2s+1)}{s-2}$$
(1P)

 $F_{A,ideal}$ is *unstable* and *violates causality*. We need to cancel the unstable pole $s_1 = 2$ with a right half-plane zero and use a second-order low-pass filter to restore causality.(1P)

$$F_A = \frac{s-2}{(s+1)^2} F_{A,ideal} = \frac{(s+2)(2s+1)}{(Ts+1)^2} = 2\frac{(s+2)(s+0.5)}{(0.01s+1)^2}$$
(1P)



Task 11: Discrete-Time Control

For the implementation of a discrete time filter on a digital micro controller the continuous time transfer function G(s) shall be discretized and the difference equation of the discrete time filter shall be derived.

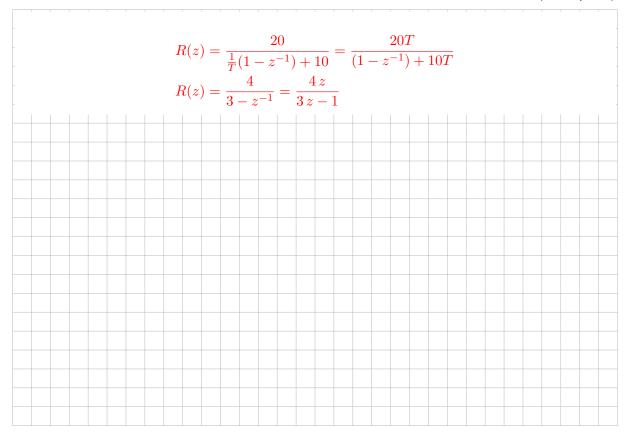
$$G(s) = \frac{Y(s)}{U(s)} = \frac{20}{(s+10)}$$

a) Derive the discrete time transfer function $R(z) = \frac{Y(z)}{U(z)}$. The sampling frequency of the discrete time filter is $f_T = 5$ Hz. Use the following transformation:

$$s = \frac{1}{T}(1 - z^{-1})$$

(ca. 1 point)

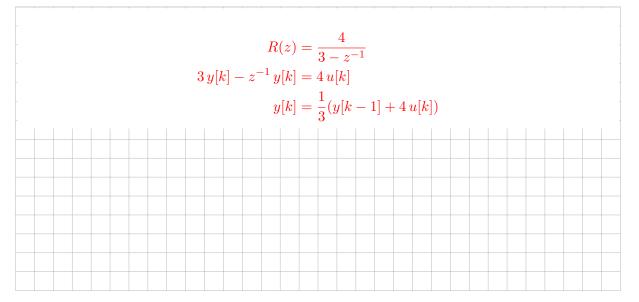
(ca. 3 points)



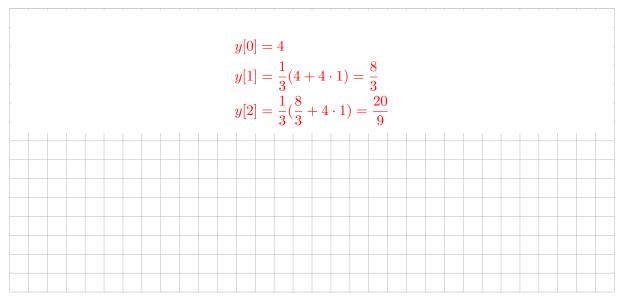
b) Derive the difference equation for the computation of the filter output signal in the following form:

$$y[k] = f(u[k], u[k-1], \dots, y[k-1], \dots)$$
.

(ca. 1 point)



c) At the time step k = 1, a unit step signal is applied at the filter input: u[k > 0] = 1. The initial output value of the filter is y[k = 0] = 4. What is the value of the filter output signal y[k] at the time step k = 2? *(ca. 1 point)*



Task 12:Short Questions

Tick the correct answer.

a) Which of the following elements leads to steady-state accuracy?

Options	Antwort / Answer
Integrator	\checkmark
Differentiator	
Low pass filter	
High pass filter	

(ca. 1 point)

(ca. 3 points)

b) The error signal of a standard feedback control system depends on:

Options	Answer
Command and output signal.	\checkmark
Command and plant input signal	
Plant input and output variable.	
Model parameters.	

(ca. 1 point)

c) An open-loop control system has the following property:

Options	Answer
The input variables are dependent on the output signals.	
The input variables are independent of the output signals.	 ✓
The input variables depend on the size of the system.	
The input variables depend on plant parameters.	

(ca. 1 point)

<u> </u>					 				 						 	
<u> </u>			 		 	 	 	 	 		 	 		 	 	

-																
-		 			 	 	 		 	 				 	 	
-			 													
<u> </u>			 													
-																
<u> </u>			 							 						

-																
-																
<u> </u>												 				
<u> </u>																