Practice Exam Fluid Mechanics

 Examiner: apl. Prof. Dr.-Ing. C. Breitsamter| Date of the exam | |
| :--- | :--- |
| Room | |
| Name, First Name | |
| Student number | |
| Signature | |

Exam type: Written

This test includes 5 Pages (including cover sheet). A formula collection is issued. Please check the completeness immediately after receiving the test information. Label this cover page with your last name, first name and your student number. Sign this cover sheet. At the end of the test, all worksheets must be submitted.

All tasks are to be answered on the task sheets. Please use the front and back of the sheets. Calculation results are only evaluated with solution path. If partial tasks cannot be solved, make reasonable assumptions for the missing values for further calculation.

Task	1	2 a	2 b	Sum
Points				
Achieved points				

The operators used in the exam can be found in the following table. Please consider them when editing the tasks.

name	to mention or identify by name
present	(re-)structure and write down

justify support a fact or a statement with reasonable arguments
describe give an accurate account of sth.
show, illustrate
use examples to explain or make clear
explain
assess, evaluate
describe and define the causes
consider in a balanced way the points for and against sth.
interpret make clear the meaning of sth. and give your own views on it
discuss investigate or examine by argument; give reasons for and against

Collection of Formulas

Mass conservation for incompressible flows
$\vec{\nabla} \cdot \vec{u}=0$
Navier-Stokes equations
$\rho\left(\frac{\partial u_{1}}{\partial t}+u_{1} \frac{\partial u_{1}}{\partial x_{1}}+u_{2} \frac{\partial u_{1}}{\partial x_{2}}+u_{3} \frac{\partial u_{1}}{\partial x_{3}}\right)=-\frac{\partial p}{\partial x_{1}}+\mu\left(\frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{1}}{\partial x_{3}^{2}}\right)+\rho f_{1}$
$\rho\left(\frac{\partial u_{2}}{\partial t}+u_{1} \frac{\partial u_{2}}{\partial x_{1}}+u_{2} \frac{\partial u_{2}}{\partial x_{2}}+u_{3} \frac{\partial u_{2}}{\partial x_{3}}\right)=-\frac{\partial p}{\partial x_{2}}+\mu\left(\frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{2}}{\partial x_{3}^{2}}\right)+\rho f_{2}$
$\rho\left(\frac{\partial u_{3}}{\partial t}+u_{1} \frac{\partial u_{3}}{\partial x_{1}}+u_{2} \frac{\partial u_{3}}{\partial x_{2}}+u_{3} \frac{\partial u_{3}}{\partial x_{3}}\right)=-\frac{\partial p}{\partial x_{3}}+\mu\left(\frac{\partial^{2} u_{3}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{3}}{\partial x_{2}^{2}}+\frac{\partial^{2} u_{3}}{\partial x_{3}^{2}}\right)+\rho f_{3}$
Gas dynamics: Outlet flow
$\frac{p_{0}}{p}=\left(1+\frac{\gamma-1}{2} M a^{2}\right)^{\frac{\gamma}{\gamma-1}}$
Gas dynamics: Perpendicular compression shock
$\frac{p_{2}}{P_{1}}=\frac{2 \gamma}{\gamma+1} M a_{1}^{2}-\frac{\gamma-1}{\gamma+1}$

1 Short questions

a Describe the physical principle of the formation of friction within a fluid
De: molekularer Impulsaustausch zwischen Fluidelementen unterschiedlicher Geschwindigkeit.
En: molecular momentum exchange between fluid particles of different velocity.
b Consider a gas inside a closed container. Explain the connection between the temperature of the gas and the pressure one can measure at the container walls
De: thermodynamischer Zusammenhang: Zustandsgleichung $p=\rho R T$.
auf molekularer Ebene verursacht die thermische Bewegung der Gasmoleküle Kollisionen mit den Wänden \rightarrow Druck.

En: thermodynamic correlation: $p=\rho R T$
On molecular level the thermal movement of the particles causes collisions with the walls $\boldsymbol{\rightarrow}$ pressure.
c Describe the statement of the conservation of momentum considering a fixed volume

De: zeitliche Änderung des Impulses innerhalb eines Kontrollvolumes ist gleich der Resultierenden der auf dieses wirkenden Kräfte.

En: transient variation of momentum within a control volume equals the resultant forces on the control volume.
d Write down the formula of the Bernoulli equation assuming a horizontal flow
$p+\frac{\rho}{2} \cdot U^{2}=$ const .
e Write down the formula of the Reynolds number
$\operatorname{Ren}=\frac{U \cdot L}{v}$
$f \quad$ What is the meaning of the critical Reynolds number?
De: Umschlag von laminarer zu turbulenter Strömung.
En: Transition of laminar to turbulent flow.
g How is a Couette-Poiseuille flow driven (what acts against the friction)?
De: Die Couette-Poiseuille-Strömung ist eine Strömung in einem ebenen Kanal, die von einer bewegten Wand und einem Druckgradienten angetrieben wird.

En: The Couette-Poiseuille flow is a flow within an even channel, driven by both a moving wall and a pressure gradient.

2 Calculation tasks

a Free jet

A circular fee jet leaks from a container with the diameter d, the density ρ and the velocity q. In a height h above the container opening the free jet hits axially a hollow hemisphere with the mass m which therefore is hovering ($h=$ const.). The flow is stationary, frictionless and ρ is constant.

Given:
$q=7.0 \mathrm{~m} / \mathrm{s}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, d=0.1 \mathrm{~m}, \mathrm{~h}=1.0 \mathrm{~m}, g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

Note:
The mass of the fluid inside the control volume $K V$ can be neglected, the mass of the free jet outside the control volume cannot be neglected. The cross-section of the redirected flow shows the shape of an annulus. The flow velocities through the container opening and over the boundaries of the control volume are each constant.

To calculate:
Give a general solution for the mass of the hemisphere dependent on ρ, q, d, h and g. Additionally, calculate the numerical value.
$m=2 \frac{\rho}{g} \sqrt{q^{2}-2 g h} \cdot q \frac{\pi}{4} d^{2}=60.754 \mathrm{~kg}$

b Thrust reverser

A test bench for aircraft thrust reversers is designed as sketched below. An air jet of constant density rho exhausts as a free jet from a rectangle nozzle of height h_{1} and width b with the constant velocity q_{1} at the location (1). A guide vane can be translated along the y -direction which separates a portion of the free jet with the height h_{2} and width b and redirects it (angle α). At the location (2), its velocity profile can be assumed as linear with the values $q_{2}=0$ at the vane walls $=0$ and $q_{2, \max }$ at the jet surfaces $=h_{2}$. The jet portion (3) has a variable height d at the Point \mathbf{A} with $0 \leq$ $q d \leq h_{1}$ and the width b. The velocity of the free jet q_{3} is constant over the cross-section at the location (3). The flow is stationary and the influence of the gravity can be neglected. The flow from (1) to (3) can be assumed as without losses.

Given:
$\rho, q_{1}, h_{1}, b, \alpha, q_{2, \max }, p_{\infty}$

To calculate:

1) Define the flow velocity q_{3} at the location(3).
2) Define the equation of $q_{2}(s)$ at the location (2) as a function ofsand in dependency of the unknown h_{2}.
3) Define the height h_{2} at the location (2) in dependency of d.
4) The guide vane is set to a specific position d. Doing so, h_{2} and $q_{2}(s)$ are set as well. Define the vertical and the horizontal component of the force F, necessary to hold the vane in place. Consider h_{2} and d as known.
5) $q_{3}=q_{1}$
6) $q_{2}=\frac{q_{2, \max }}{h_{2}} s$
7) $h_{2}=\frac{2 q_{1}\left(h_{1}-d\right)}{q_{2, \max }}$
8) $F_{y}=\rho b \sin \alpha \frac{1}{3} q_{2, \max }^{2} h_{2}$
