Ecorrection

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Mock Exam for Engineering Mechanics 1 and 2

Exam: xxxxxxx / Mock Exam
Examiner: xxxx

Date: $\quad x x x x x x x x x x x x x x x$ xxxxxxx0 $0^{\text {th }}, 0$
Time: xxxx00:00 - xxxx00:00

Working instructions

- This exam consists of $\mathbf{1 4}$ pages with a total of $\mathbf{6}$ problems.

Please make sure now that you received a complete copy of the exam.

- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
- one non-programmable pocket calculator
- one analog dictionary English \leftrightarrow native language
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad to \qquad / Early submission at \qquad

For multiple choice problems mark the correct answers as follows:
Mark correct answers with a cross
To undo a cross, completely fill out the answer option
To re-mark an option, use a human-readable marking \times

Correct answers result in positive credit, wrong answers will result in negative credit, empty boxes are not counted. It is not possible to get a total score that is negative.

Problem 1 （ 6 credits）

a）＊

For the shown cross sections and the given coordinate，which statement is true for the second moment of area $I_{y y}$ ？
区 $I=I I \gg \|$
$\square 11>1>1 I$
$\square I=I I I<I I$
$\square I>I I I>I I$
b）＊
Which statement regarding the second moments of area is true？

$$
\text { 区 } l_{y z} \text { can be positive, negative or zero } \square \text { For every cross section of a beam: } l_{z z}>l_{y y}
$$

$\square l_{y z}$ can be positive and negative，but never zero
\square For every cross section of a beam：$l_{y y}>l_{z z}$
c）＊

The shown bar is heated uniformly by ΔT ．The thermal expansion coefficient is constant $\left(\alpha_{T}\right)$ ．No other loads are applied．The displacement function $u(x)$ will be：
d) ${ }^{*}$

Cross-Section 1

Cross-Section 2

For the shown cross sections, which statement is true? ($I_{y y}$ and $I_{z z}$ are second moment of areas about the respective axis and I_{T} is the torsion constant of the cross-section)
$\square I_{y y, 1}>I_{y y, 2} ; I_{z z, 1}<I_{z z, 2} ; I_{T, 1}<I_{T, 2}$
$\square I_{y y, 1}<I_{y y} ; I_{z z, 1}>I_{z z, 2} ; I_{T, 1}<I_{T, 2}$
区 $I_{y, 1}=I_{y y, 2} ; I_{z z, 1}<I_{z z, 2} ; I_{T, 1}<I_{T, 2}$
$\square I_{y y, 1}>I_{y y, 2} ; I_{z z, 1}<I_{z z, 2} ; I_{T, 1}=I_{T, 2}$
$\square I_{y, 1}=I_{y y, 2} ; I_{z z, 1}<I_{z z, 2} ; I_{T, 1}>I_{T, 2}$
$\square I_{y y, 1}>I_{y y, 2} ; I_{z z, 1}=I_{z z, 2} ; I_{T, 1}=I_{T, 2}$
e)*

Shown is the thin-walled cross section of a bar. The bar is loaded by a torsional moment. At which point would one expect the greatest magnitude of the torsional shear stress $|\tau|$?
\square D
区
\square B
$\square \mathrm{A}$

Problem 2 Plane truss（19 credits）

Given is the shown plane truss made of rigid bars．It is supported in the points A and B ．The system is loaded by point loads at points C，D，E，G，and H．Bearing conditions，loads and dimensions are shown in the drawing．

Given quantities：a，F，coordinate system xy（right－hand system）

All subtasks can be solved independently of each other．
a）＊Is the truss statically determined？

区 Yes
b）＊How many degrees of freedom are constrained by the support in A？

区 2

$\square 1$
$\square 0$
$\square 3$
c）＊Calculate the support forces A_{x} ．Consider the constant $k=2$ in point G ．
Х $A_{x}=-4.5 \mathrm{~F}$
$\square A_{x}=7.0 \mathrm{~F}$$A_{x}=-9.0 F$
$\square A_{x}=3.5 \mathrm{~F}$
d）＊Calculate the support forces A_{y} ．Consider the constant $k=2$ in point G ．$A_{y}=-2.5 F$
$\square A_{y}=8.0 \mathrm{~F}$$A_{y}=-6.0 \mathrm{~F}$

区 $A_{y}=4.0 \mathrm{~F}$
e）＊Calculate the support forces B_{x} ．Consider the constant $k=2$ in point G ．
$\square B_{x}=0 \mathrm{~F}$
$\square B_{x}=3.0 \mathrm{~F}$
区 $B_{x}=4.5 \mathrm{~F}$
$\square B_{X}=6.5 \mathrm{~F}$
f）＊Calculate the bar force S_{1} in bar 1 ．Consider the constant $k=4$ in point G ．

Given：The support forces are given with the values being $A_{x}=-\frac{15}{2} F, A_{y}=6 F$ and $B_{x}=\frac{15}{2} F$ ．

Convention：The positive direction of the support forces is aligned with the positive direction of the coordinate system axes．
$\square S_{1}=-7.0 \mathrm{~F}$
【 $S_{1}=-5.0 F$
$\square S_{1}=-6.0 \mathrm{~F}$
$\square S_{1}=-4.0 \mathrm{~F}$
g）＊Calculate the bar force S_{2} in bar 2 ．Consider the constant $k=4$ in point G ．

Given：The support forces are given with the values being $A_{x}=-\frac{15}{2} F, A_{y}=6 F$ and $B_{x}=\frac{15}{2} F$ ．

Convention：The positive direction of the support forces is aligned with the positive direction of the coordinate system axes．
$\square S_{2} \approx 3.58 \mathrm{~F}$
$\square S_{2} \approx-9.41 F$
【 $S_{2} \approx-12.73 F$
$\square S_{2} \approx 7.21 \mathrm{~F}$
h）＊Calculate the bar force S_{3} in bar 3 ．Consider the constant $k=4$ in point G ．

Given：The support forces are given with the values being $A_{x}=-\frac{15}{2} F, A_{y}=6 F$ and $B_{x}=\frac{15}{2} F$ ．

Convention：The positive direction of the support forces is aligned with the positive direction of the coordinate system axes．
$\square S_{3}=3.0 \mathrm{~F}$
区 $S_{3}=-9.0 F$
$\square S_{3}=-5.0 \mathrm{~F}$
$\square S_{3}=4.0 \mathrm{~F}$

Problem 3 (6 credits)

Given is the shown planar system. The massless, rigid bar (length $3 /$) is supported at points A and B and is support against the rigid environment at point B by a linear, mass-free spring (spring stiffness k). Two point masses m and m and are attached to the bar. The position of the bar is completely and unambiguously described by the angular coordinate ϕ. The linear spring is relaxed in the position $\phi=\frac{\pi}{2}$. The acceleration due to gravity g acts in the negative y-direction. Bearing conditions, loads as well as dimensions can be taken from the drawing.

Given quantities: I, k, m, g, coordinate systems xy (right-handed systems), Angular coordinate $\phi \in\left[0, \frac{p i}{2}\right]$

The system has two equilibrium positions. Cross the two correct equilibrium conditions.
$\square \phi=\frac{2 \pi}{3}$
区 $\phi=\frac{\pi}{2}$
$\square \phi=\frac{\pi}{3}$
$\square \phi=\arcsin \frac{3 m g}{2 k l}$
$\square \phi=\frac{\pi}{4}$
$\square \phi=\arcsin \frac{m g}{4 k l}$
【 $\phi=\arcsin \frac{m g}{3 k l}$
$\square \phi=\arcsin \frac{2 m g}{3 k l}$

Problem 4 Cross-Section Properties (8 credits)

Shown is the cross section of a beam with measurement a.
Given: a, ($\bar{y}, \bar{z})$-coordinate-system
a)* Determine the coordinate $\overline{y_{c}}$ of the cross-section's centroid with respect to the given $\left(\bar{y}_{c}, \bar{z}_{c}\right)$-coordinatesystem.
$\square \bar{y}_{c}=2.41 \mathrm{a}$
$\square \bar{y}_{c}=2.52 \mathrm{a}$
区 $\overline{y_{c}}=2.19 a$
$\square \bar{y}_{c}=2.14 a$
b) ${ }^{*}$ Determine the coordinate \bar{z}_{c} of the cross-section's centroid with respect to the given $\left(\bar{y}_{c}, \bar{z}_{c}\right)$-coordinatesystem.
$\square \bar{z}_{c}=2.52 \mathrm{a}$
X $\bar{z}_{c}=2.14 a$
$\square \bar{z}_{c}=2.19 a$
$\square \bar{z}_{c}=2.41 a$
c)* For this subtask, use the rounded centroid coordinates $\bar{y}_{c}=2.2 \mathrm{a}$ and $\bar{z}_{c}=2.15 \mathrm{a}$. Compute the second moment of area $I_{y y}$ with respect to the centroidal (y, z)-coordinate-system.
$\square I_{y y}=19.32 a^{4}$
$\square I_{y y}=17.71 a^{4}$
区 $I_{y y}=18.71 a^{4}$
$\square I_{y y}=20.43 a^{4}$

Problem 5 Beam Stresses（15 credits）

Loadcase 1 ：

Loadcase 2：

The shown clamped beam of length I is subjected to the moment M about the y－axis and the normal force F_{1} at it＇s free end in loadcase 1 and to the force F_{2} in loadcase 2．The cross－section and the modulus of elasticity are constant along the beam＇s x－axis．Each subtask is referring to only one of both loadcases．Use the given coordinate system with its origin in the cross sections centroid C ．
Given：$I_{z z}=8748 \mathrm{~mm}^{4},(x, y, z)$－coordinate－system，$a=18 \mathrm{~mm}, \mathrm{l}=1 \mathrm{~m}, M=40 \mathrm{kNmm}, F_{1}=10 \mathrm{kN}, F_{2}=20$ kN
(y, z)－coordinates of points A，B，D and E：A：$\left(\frac{a}{2}, \frac{-a}{2}\right)$ ； $\mathrm{B}:\left(\frac{a}{2}, \frac{a}{2}\right) ; \mathrm{D}:\left(\frac{-a}{4}, \frac{a}{2}\right) ; \mathrm{E}:\left(\frac{-a}{4}, 0\right)$
a）＊Loadcase 1：Calculate the normal stress $\sigma_{x x}$ at point A at $x=\frac{1}{2} I$
$\square \sigma_{x x, A}=72.03 \mathrm{MPa}$
$\square \sigma_{x x, A}=-72.03 \mathrm{MPa}$
$\square \sigma_{x x, A}=10.29 \mathrm{MPa}$
【 $\sigma_{x x, A}=-10.29 \mathrm{MPa}$
b）＊Loadcase 1：Calculate the normal stress $\sigma_{x x}$ at point B at $x=\frac{1}{2} l$
$\square \sigma_{x x, B}=-10.29 \mathrm{MPa}$
$\square \sigma_{x X, B}=-72.03 \mathrm{MPa}$
$\square \sigma_{x x, B}=10.29 \mathrm{MPa}$
区 $\sigma_{x x, B}=72.03 \mathrm{MPa}$
c）Loadcase 1：Which statement is correct？Point A is stress free

X Point A is in compressionPoint A is in tension
d）Loadcase 1：Which statement is correct？

区 Point B is in tension
\square Point B is stress free
\square Point B is in compression
e）Loadcase 1：Calculate F_{1} ，such that the whole beam is in tension at $x=\frac{1}{2} /$ ．
$\square F_{1}>13.33 N$
$\square F_{1}<13.33 N$
【 $F_{1}>13.33 \mathrm{kN}$
$\square F_{1}<13.33 \mathrm{kN}$
f）${ }^{*}$
g）＊Loadcase 2：Calculate the shear stress $\tau_{x z}$ at point E at $x=\frac{1}{2} l$
$\square \tau_{x z, E}=0$
【 $\tau_{x z, E}=92.59 \mathrm{MPa}$
$\square \tau_{x z, \mathrm{E}}=185.18 \mathrm{MPa}$
$\square \tau_{x z, E}=30.86 \mathrm{MPa}$

Problem 6 Energy Methods（6 credits）

Given：$I=3 \mathrm{~m} ; q_{0}=150 \frac{\mathrm{~N}}{\mathrm{~m}} ; E=210 \mathrm{GPa}=210 * 10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} ; l_{y y}=6 * 10^{-8} \mathrm{~m}^{4} ; G A_{s}=\infty$
a）＊For the depicted system，the polynomial order of the bending moment $M(x)$ will be：
Constant
区 Cubic
\square Quadratic
\square Linear
b）${ }^{\text {＊}}$ Compute $M(x=I)$ ．
$\square-112.5 \mathrm{Nm}$
区 $-225 N m$
$\square 112.5 \mathrm{Nm}$
$\square 225 \mathrm{Nm}$
c）＊To calculate the deflection w of the beam at $x=0$ ，one could use energy methods and apply a virtual force in the direction of the sought deflection．For the virtual＂1＂－System with the applied virtual force，the polynomial order of the bending moment $\bar{M}(x)$ would be：
\square Quadratic
\square Cubic

区 Linear
\square Constant
d）${ }^{*}$ Compute $\bar{M}(x=I)$ ．

【 $-3 N m$
$\square 3 \mathrm{Nm}$
$\square 1.5 \mathrm{Nm}$
$\square-1.5 \mathrm{Nm}$
e）＊Compute the deflection w at $x=0$ ．
$\square w=0.0214 m$
$\square w=0.0401 m$
【 $w=0.0321 \mathrm{~m}$

