Ecorrection

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
 This code contains a unique number that associates this exam with your registration
- number.
 This number is printed both next to the code and to the signature field in the attendance check list.

Mock Exam for Engineering Mechanics 1 and 2

Exar Exar	m: miner:	XXXX XXXX	xxxx / Mock	Exam	Date: Time:		xxxxxxxxxx x 0:00 — xxxxC		^{.h} , 0
	P 1		P 2	P 3	Р	4	P 5	P 6	
, [

Working instructions

- This exam consists of **14 pages** with a total of **6 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
 - one non-programmable pocket calculator
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from	to	/
----------------	----	---

Early submission at

For multiple choice problems mark the correct answers as follows:

C A RANGE

Mark correct answers with a cross	
To undo a cross, completely fill out	the answer option
To re-mark an option, use a humar	n-readable marking 🗙 🗖

Correct answers result in positive credit, wrong answers will result in negative credit, empty boxes are not counted. It is not possible to get a total score that is negative.

 $\boxed{I} = III > II$ $\boxed{I} > III$ $\boxed{I} = III < II$ $\boxed{I} = III < II$ $\boxed{I} > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III > III$ $\boxed{I} = III < II$ $\boxed{I} > III > III > III > III$ $\boxed{I} = III < III > III > III > III$ $\boxed{I} = III < III > III > III > III > III > III > III$ $\boxed{I} = III < III > III >$

The shown bar is heated uniformly by ΔT . The thermal expansion coefficient is constant (α_T). No other loads are applied. The displacement function u(x) will be:

Constant	Cubic
Quadratic	🗙 Linear

For the shown cross sections, which statement is true? (I_{yy} and I_{zz} are second moment of areas about the respective axis and I_T is the torsion constant of the cross-section)

$\Box I_{yy,1} > I_{yy,2}; I_{zz,1} < I_{zz,2}; I_{T,1} < I_{T,2}$	$ I_{yy,1} < I_{yy,2}; I_{zz,1} > I_{zz,2}; I_{T,1} < I_{T,2} $
\boxtimes $I_{yy,1} = I_{yy,2}; I_{zz,1} < I_{zz,2}; I_{T,1} < I_{T,2}$	$ I_{yy,1} > I_{yy,2}; I_{zz,1} < I_{zz,2}; I_{T,1} = I_{T,2} $
$\Box I_{yy,1} = I_{yy,2}; I_{zz,1} < I_{zz,2}; I_{T,1} > I_{T,2}$	$\Box \ l_{yy,1} > l_{yy,2}; \ l_{zz,1} = l_{zz,2}; \ l_{T,1} = l_{T,2}$
2	Notes
	jon
So corre	

Shown is the thin-walled cross section of a bar. The bar is loaded by a torsional moment. At which point would one expect the greatest magnitude of the torsional shear stress $|\tau|$?

Problem 2 Plane truss (19 credits)

Given is the shown plane truss made of rigid bars. It is supported in the points A and B. The system is loaded by point loads at points C, D, E, G, and H. Bearing conditions, loads and dimensions are shown in the drawing.

Given quantities: a, F, coordinate system xy (right-hand system)

$A_y = -2.5F$	$\Box A_y = 8.0F$
$A_y = -6.0F$	\triangleleft A _y = 4.0F

e)* Calculate the support forces B_x . Consider the constant k = 2 in point G.

$$\square B_x = 0F$$

$$\square B_x = 3.0F$$

$$\square B_x = 6.5F$$

f)* Calculate the bar force S_1 in bar 1. Consider the constant k = 4 in point G.

Given: The support forces are given with the values being $A_x = -\frac{15}{2}F$, $A_y = 6F$ and $B_x = \frac{15}{2}F$.

Convention: The positive direction of the support forces is aligned with the positive direction of the coordinate system axes.

g)* Calculate the bar force S_2 in bar 2. Consider the constant k = 4 in point G.

Given: The support forces are given with the values being $A_x = -\frac{15}{2}F$, $A_y = 6F$ and $B_x = \frac{15}{2}F$.

Convention: The positive direction of the support forces is aligned with the positive direction of the coordinate system axes.

	$S_2 pprox 3.58F$	
\mathbf{X}	$S_2 \approx -12.73F$	

$S_2 pprox -9.41 \mathrm{F}$
$S_2 \approx 7.21 \mathrm{F}$

h)* Calculate the bar force S_3 in bar 3. Consider the constant k = 4 in point G.

Given: The support forces are given with the values being $A_x = -\frac{15}{2}F$, $A_y = 6F$ and $B_x = \frac{15}{2}F$.

Convention: The positive direction of the support forces is aligned with the positive direction of the coordinate system axes.

Problem 3 (6 credits)

Given is the shown planar system. The massless, rigid bar (length 3*I*) is supported at points A and B and is support against the rigid environment at point B by a linear, mass-free spring (spring stiffness *k*). Two point masses *m* and *m* and are attached to the bar. The position of the bar is completely and unambiguously described by the angular coordinate ϕ . The linear spring is relaxed in the position $\phi = \frac{\pi}{2}$. The acceleration due to gravity *g* acts in the negative y-direction. Bearing conditions, loads as well as dimensions can be taken from the drawing.

Given quantities: *I*, *k*, *m*, *g*, coordinate systems *xy* (right-handed systems), Angular coordinate $\phi \in [0, \frac{pi}{2}]$

The system has two equilibrium positions. Cross the two correct equilibrium conditions.

0

Problem 4 Cross-Section Properties (8 credits)

Shown is the cross section of a beam with measurement a. **Given:** a, (\bar{y}, \bar{z}) -coordinate-system

a)* Determine the coordinate $\bar{y_c}$ of the cross-section's centroid with respect to the given $(\bar{y_c}, \bar{z_c})$ -coordinate-system.

b)* Determine the coordinate $\bar{z_c}$ of the cross-section's centroid with respect to the given $(\bar{y_c}, \bar{z_c})$ -coordinatesystem.

c)* For this subtask, use the rounded centroid coordinates $\bar{y_c} = 2.2a$ and $\bar{z_c} = 2.15a$. Compute the second moment of area I_{yy} with respect to the centroidal (y,z)-coordinate-system.

 $I_{yy} = 17.71a^4$ $I_{yy} = 20.43a^4$ $I_{VV} = 19.32a^4$ $I_{yy} = 18.71a^4$

Problem 5 Beam Stresses (15 credits)

The shown clamped beam of length *I* is subjected to the moment *M* about the *y*-axis and the normal force F_1 at it's free end in loadcase 1 and to the force F_2 in loadcase 2. The cross-section and the modulus of elasticity are constant along the beam's x-axis. Each subtask is referring to only one of both loadcases. Use the given coordinate system with its origin in the cross sections centroid *C*.

Given: $I_{zz} = 8748 \text{ mm}^4$, (x, y, z)-coordinate-system, a = 18 mm, l = 1 m, M = 40 kNmm, $F_1 = 10 \text{ kN}$, $F_2 = 20 \text{ kN}$

(y, z)-coordinates of points A, B, D and E: A: $(\frac{a}{2}, -\frac{a}{2})$; B: $(\frac{a}{2}, \frac{a}{2})$; D: $(-\frac{a}{4}, \frac{a}{2})$; E: $(-\frac{a}{4}, 0)$

a)* **Loadcase 1:** Calculate the normal stress σ_{xx} at point A at $x = \frac{1}{2}I$

$\Box \sigma_{xx,A} = 72.03 MPa$	$\Box \sigma_{xx,A} = -72$.03MPa			
$\Box \sigma_{xx,A} = 10.29 MPa$	$\mathbf{X} \ \sigma_{\mathbf{x}\mathbf{x},\mathbf{A}} = -10$.29MPa			
b)* Loadcase 1 : Calculate the normal stress σ_{xx} at point B at $x = \frac{1}{2}l$					
□ σ _{xx,B} = −10.29 <i>MPa</i>	$\Box \sigma_{\mathbf{x}\mathbf{x},B} = -72$.03 <i>MPa</i>			
σ _{xx,B} = 10.29 <i>MPa</i>	$\sigma_{xx,B} = 72.0$	3MPa			
c) Loadcase 1: Which statement is correct?					
Point A is stress free	Point A is in compression	Point A is in tension			
d) Loadcase 1: Which statement is correct?					
Point B is in tension	Point B is stress free	Point B is in compression			
e) Loadcase 1: Calculate F_1 , such that the whole beam is in tension at $x = \frac{1}{2}I$.					
\Box F ₁ > 13.33N	\Box F ₁ < 13.33/	V			
$F_1 > 13.33$ kN	\Box $F_1 < 13.33k$	κN			
f)*					

g)* **Loadcase 2:** Calculate the shear stress τ_{xz} at point E at $x = \frac{1}{2}I$

 $\Box \tau_{xz,E} = 185.18 MPa$ $\Box \tau_{xz,E} = 30.86 MPa$

west and

Problem 6 Energy Methods (6 credits)

