

Eexam Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
 This code contains a unique number that associates this exam with your registration
- number.
 This number is printed both next to the code and to the signature field in the attendance check list.

Mock Exam for Engineering Mechanics 1 and 2

Exam:	xxxxxxx / Mock Exam	Date:	$xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0^{th}$, 0
Examiner:	XXXX	Time:	xxxx00:00 - xxxx00:00

Working instructions

- This exam consists of **14 pages** with a total of **6 problems**. Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- · Detaching pages from the exam is prohibited.
- Allowed resources:
 - one non-programmable pocket calculator
 - one analog dictionary English \leftrightarrow native language
- · Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- · Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.

Left room from to / Early submission a	t
--	---

For multiple choice problems mark the correct answers as follows:

Mark correct answers with a cross To undo a cross, completely fill out the answer option To re-mark an option, use a human-readable marking

	X
X	

Correct answers result in positive credit, wrong answers will result in negative credit, empty boxes are not counted. It is not possible to get a total score that is negative.

For the shown cross sections and the given coordinate, which statement is true for the second moment of area I_{yy} ?

b)*

a)*

Which statement regarding the second moments of area is true?

\Box I_{yz} can be positive, negative or zero	For every cross section of a beam: $I_{zz} > I_{yy}$
\Box I_{yz} can be positive and negative, but never zero	For every cross section of a beam: $I_{yy} > I_{zz}$

c)*

The shown bar is heated uniformly by ΔT . The thermal expansion coefficient is constant (α_T). No other loads are applied. The displacement function u(x) will be:

For the shown cross sections, which statement is true? (I_{yy} and I_{zz} are second moment of areas about the respective axis and I_T is the torsion constant of the cross-section)

Shown is the thin-walled cross section of a bar. The bar is loaded by a torsional moment. At which point would one expect the greatest magnitude of the torsional shear stress $|\tau|$?

Problem 2 Plane truss (19 credits)

Given is the shown plane truss made of rigid bars. It is supported in the points A and B. The system is loaded by point loads at points C, D, E, G, and H. Bearing conditions, loads and dimensions are shown in the drawing.

Given quantities: a, F, coordinate system xy (right-hand system)

All subtasks can be solved independently of each other.

a)* Is the truss statically determined?

No No	Yes
-------	-----

b)* How many degrees of freedom are constrained by the support in A?

c)* Calculate the support forces A_x . Consider the constant k = 2 in point G.

$\Box A_x = -4.5F$	$\Box A_x = 7.0F$
$\Box A_x = -9.0F$	$\Box A_x = 3.5F$

d)* Calculate the support forces A_y . Consider the constant k = 2 in point G.

$A_y = -2.5F$	$A_y = 8.0F$
$A_y = -6.0F$	$\Box A_y = 4.0F$

- Page 6 / 14 -

e)* Calculate the support forces B_x . Consider the constant k = 2 in point G.

$$\square B_x = 0F$$

$$\square B_x = 4.5F$$

$$\square B_x = 6.5F$$

f)* Calculate the bar force S_1 in bar 1. Consider the constant k = 4 in point G.

Given: The support forces are given with the values being $A_x = -\frac{15}{2}F$, $A_y = 6F$ and $B_x = \frac{15}{2}F$.

Convention: The positive direction of the support forces is aligned with the positive direction of the coordinate system axes.

g)* Calculate the bar force S_2 in bar 2. Consider the constant k = 4 in point G.

Given: The support forces are given with the values being $A_x = -\frac{15}{2}F$, $A_y = 6F$ and $B_x = \frac{15}{2}F$.

Convention: The positive direction of the support forces is aligned with the positive direction of the coordinate system axes.

\Box $S_2 \approx 3.58F$	\Box $S_2 \approx -9.41 F$
\Box S ₂ \approx -12.73F	\Box $S_2 pprox$ 7.21F

h)* Calculate the bar force S_3 in bar 3. Consider the constant k = 4 in point G.

Given: The support forces are given with the values being $A_x = -\frac{15}{2}F$, $A_y = 6F$ and $B_x = \frac{15}{2}F$.

Convention: The positive direction of the support forces is aligned with the positive direction of the coordinate system axes.

Problem 3 (6 credits)

Given is the shown planar system. The massless, rigid bar (length 3*I*) is supported at points A and B and is support against the rigid environment at point B by a linear, mass-free spring (spring stiffness *k*). Two point masses *m* and *m* and are attached to the bar. The position of the bar is completely and unambiguously described by the angular coordinate ϕ . The linear spring is relaxed in the position $\phi = \frac{\pi}{2}$. The acceleration due to gravity *g* acts in the negative y-direction. Bearing conditions, loads as well as dimensions can be taken from the drawing.

Given quantities: *I*, *k*, *m*, *g*, coordinate systems *xy* (right-handed systems), Angular coordinate $\phi \in [0, \frac{pi}{2}]$

The system has two equilibrium positions. Cross the two correct equilibrium conditions.

Problem 4 Cross-Section Properties (8 credits)

Shown is the cross section of a beam with measurement a. **Given:** a, (\bar{y}, \bar{z}) -coordinate-system

a)* Determine the coordinate $\bar{y_c}$ of the cross-section's centroid with respect to the given $(\bar{y_c}, \bar{z_c})$ -coordinate-system.

$\bar{y}_c = 2.41a$	$v_c = 2.52a$
$\bar{y}_c = 2.19a$	$v_{c} = 2.14a$

b)* Determine the coordinate $\bar{z_c}$ of the cross-section's centroid with respect to the given $(\bar{y_c}, \bar{z_c})$ -coordinate-system.

$\bar{z_c} = 2.52a$	$\Box \bar{z_c} = 2.14a$
$\bar{z_c} = 2.19a$	$z_c = 2.41a$

c)* For this subtask, use the rounded centroid coordinates $\bar{y_c} = 2.2a$ and $\bar{z_c} = 2.15a$. Compute the second moment of area l_{yy} with respect to the centroidal (y,z)-coordinate-system.

Problem 5 Beam Stresses (15 credits)

The shown clamped beam of length *I* is subjected to the moment *M* about the *y*-axis and the normal force F_1 at it's free end in loadcase 1 and to the force F_2 in loadcase 2. The cross-section and the modulus of elasticity are constant along the beam's x-axis. Each subtask is referring to only one of both loadcases. Use the given coordinate system with its origin in the cross sections centroid *C*.

Given: $I_{zz} = 8748 \text{ mm}^4$, (x, y, z)-coordinate-system, a = 18 mm, I = 1 m, M = 40 kNmm, $F_1 = 10 \text{ kN}$, $F_2 = 20 \text{ kN}$

(y, z)-coordinates of points A, B, D and E: A: $(\frac{a}{2}, -\frac{a}{2})$; B: $(\frac{a}{2}, \frac{a}{2})$; D: $(-\frac{a}{4}, \frac{a}{2})$; E: $(-\frac{a}{4}, 0)$

a)* **Loadcase 1:** Calculate the normal stress σ_{xx} at point A at $x = \frac{1}{2}I$

\Box $\sigma_{xx,A}$ = 72.03 <i>MPa</i>	$\Box \sigma_{xx,A} = -72.03 MPa$
$\Box \sigma_{xx,A} = 10.29 MPa$	$\Box \sigma_{xx,A} = -10.29 MPa$

b)* **Loadcase 1:** Calculate the normal stress σ_{xx} at point B at $x = \frac{1}{2}I$

$\Box \sigma_{xx,B} = -10.29 MPa$	$\Box \sigma_{xx,B} = -72.03 MPa$
σ _{xx,B} = 10.29 <i>MPa</i>	$\Box \sigma_{xx,B} = 72.03 MPa$

c) Loadcase 1: Which statement is correct?

Point A is stress free	Point A is in compression	Point A is in tension
d) Loadcase 1: Which statement is	s correct?	
Point B is in tension	Point B is stress free	Point B is in compression
e) Loadcase 1: Calculate <i>F</i> ₁ , such	that the whole beam is in tension at	$X=\frac{1}{2}I.$
\Box F ₁ > 13.33N	\Box F ₁ < 13.33	Ν
\Box F ₁ > 13.33kN	\Box F ₁ < 13.33	kN
f)*		
g)* Loadcase 2: Calculate the she	ear stress τ_{xz} at point E at $x = \frac{1}{2}I$	

 $\tau_{xz,E} = 185.18 MPa$ $\tau_{xz,E} = 30.86 MPa$

Problem 6 Energy Methods (6 credits)

Given: $I = 3m; q_0 = 150 \frac{N}{m}; E = 210 GPa = 210 * 10^9 \frac{N}{m^2}; I_{yy} = 6 * 10^{-8} m^4; GA_s = \infty$

a)* For the depicted system, the polynomial order of the bending moment M(x) will be:

Constant	Cubic
Quadratic	Linear
b)* Compute $M(x = l)$.	
□ –112.5 <i>Nm</i>	112.5 <i>Nm</i>
	225Nm

c)* To calculate the deflection *w* of the beam at x = 0, one could use energy methods and apply a virtual force in the direction of the sought deflection. For the virtual "1"-System with the applied virtual force, the polynomial order of the bending moment $\overline{M}(x)$ would be:

Quadratic	Linear
	Constant
d)* Compute $\bar{M}(x = I)$.	
□ –3Nm	1 .5 <i>Nm</i>
☐ 3Nm	□ -1.5 <i>Nm</i>
e)* Compute the deflection w at $x = 0$.	
w = 0.0214m	w = 0.0401m
w = 0.0442m	w = 0.0321m