Esolution

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

CAD/TD for Aerospace Engineers

Exam: CADTD / LRG Master - Aptitude Assessment
Examiner: Prof. Dr.-Ing. Fernaß Daoud

Date: Thursday $22^{\text {nd }}$ August, 2024
Time: 13:30-15:00

Working instructions

- This exam consists of $\mathbf{1 2}$ pages with a total of $\mathbf{3}$ problems.

Please make sure now that you received a complete copy of the exam.

- The total amount of achievable credits in this exam is 60 credits.
- Detaching pages from the exam is prohibited.
- Allowed resources:
- one non-programmable pocket calculator
- one analog dictionary English \leftrightarrow native language
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.
- Physically turn off all electronic devices, put them into your bag and close the bag.
\qquad
\qquad

For multiple choice problems mark the correct answers as follows：
Mark correct answers with a cross
To undo a cross，completely fill out the answer option
To re－mark an option，use a human－readable marking
$\boxed{\square}$
$\times \square$

Problem 1 Technical Drawing（ 24 credits）

1．1 Which kind of view is shown in the following drawing？

\square Partial view
\square Section view

区 Isometric view
\square Dimetric view

1．2 Which projection method is indicated by the following symbol？

\square Projection method 2
\square Arrow method
区 Projection method 1
\square Projection method 3

1．3 Which projection method has to be used for partial views？Projection method 2
区 Projection method 3Depends on the projection method used for the remainder of the drawing．Projection method 1
1.4 Which projection method has been used in the following technical drawing?

\square Projection method 2
\square Projection method 1
Arrow method
区 Projection method 3
1.5 What does the following view represent?
 \square An internal thread

区 An external thread
\square A hole
1.6 What does the following symbol in technical drawings mean?
Identical surface properties of the outer contour of a part.The surface must be machined.
\square For the surface removing material by machining is permitted.
X For the surface removing material by machining is not permitted.

1．7 Which information can you derive from the following surfaces specification？

\square The surface must be produced with cutting with a maximum average roughness value of $R z \leq 16 \mu \mathrm{~m}$
\square The surface must be produced without cutting with a maximum averaged roughness depth of $R z \leq$ $16 \mu \mathrm{~m}$

【 The surface must be produced with cutting with a maximum averaged roughness depth of $R z \leq 16 \mu \mathrm{~m}$
\square The surface must be produced without cutting with a maximum average roughness value of $R z \leq 16 \mu \mathrm{~m}$

1．8 Which of the test body is used for the hardness specification measurement of Vickers？
\square Three－sided pyramid
\square Cone
\square Sphere
区 Four－sided pyramid

1．9 What does the following symbol in technical drawings mean？

【 Burring up to 0.3 mm allowed，burr direction vertical．
\square Burring up to 0.3 mm allowed．
\square
Burring up to 0.3 mm allowed，burr direction horizontal．
\square Without burring，removal up to 0.3 mm allowed

1．10 Which form tolerance is specified by the following symbol in technical drawings ？

\square Roundness tolerance
\square Profile form tolerance

Coaxiality tolerance
区 Cylinder form tolerance

1．11 Which form tolerance is specified by the following symbol in technical drawings ？

\square Straightness toleranceParallelism tolerance
【 Levelness tolerance
\square Runout tolerance

1．12 Determine the correct value of the dimension tolerance of the following dimension：
$\square 100 \mu \mathrm{~m}$
【 $150 \mu \mathrm{~m}$
$\square 15 \mu \mathrm{~m}$
$\square 50 \mu \mathrm{~m}$

1．13 Assign the correct fit type for the following fit pair $\boldsymbol{\sigma} 25 \mathrm{H} 7 / \mathbf{7} 7$ ．
\square Interference Fit
\square Transition Fit

区 Clearance Fit
\square Not Valid

1．14 Assign the correct fit type for the following fit pair $\boldsymbol{\varnothing} 25 \mathrm{H} 7 / \mathbf{s} 7$ ．
\square Clearance Fit
】 Interference Fit
\square Transition Fit
Not Valid

1．15 What does the following symbol denote in technical drawings？

\square A fillet seam with a seam length of 4 mm
\square An l－seam with a seam length of 4 mm
\square A continous fillet seam with a seam thickness of 4 mm
区 A continous I－seam with a seam thickness of 4 mm

Problem 2 CAD（ 16 credits）

2．1 What does the abbreviation CAD mean？
\square Computer Added Design
区 Computer Aided Design

2．2 What does the abbreviation CAM mean ？
\square Computer Added Management
\square Computer Added Manufacturing
区 Computer Aided Manufacturing
\square Computer Aided Drawing
\square Computer Added Dynamics

2．3 Which modeling technique has the highest information content of the model？
\square Edge model
区 Volume model
\square Surface model
\square Wireframe model

2．4 Which modeling techniques requires the least memory？
\square Surface model \square Point model
\square Volume model
Х Wireframe model

2．5 What is the major benefit of neutral data formats？

区 Data exchange among different CAD programs
\square More precise
\square Containing many additional information
\square Less metadata as native formats

2．6 Curvature continuity of two curves at a common endpoint requires that ．．．
\square the second derivatives of the curves are equal at this point．
\square the third derivatives of the curves are equal at this point．
区 the first and the second derivatives of the curves are equal at this point．
\square the first derivatives of the curves are equal at this point．

2．7 Which of the following statements about splines is incorrect？
\square NURBS is a mathematical model using basis splines．
\square The term＂B－spline＂is short for basis spline．
\square A NURBS curve is defined by its order，a set of weighted control points，and a knot vector．
A basis spline is defined by its order，a set of weighted control points，and a knot vector．

2.8 Which of the following operation isn't a boolean operation?

\square Subtract
\square Add
区 Extrusion
\square Intersection
2.9 Given are the following functions of two curves:

$$
\begin{array}{r}
\left.\left.y_{1}(x)=3\left(x^{2}-1\right)^{2}: x \in\right]-\infty, 1\right] \\
y_{2}(x)=2\left(x^{2}-\right)^{2}: x \in[1,+\infty[\tag{2.2}
\end{array}
$$

Check the continuities of the curves at $x=1$ and decide which of the following statements is correct at $x=1$.
\square Positional,tangential and curvature continuity are fulfilled at $x=1$.
\square Positional,tangential and curvature continuity aren't fulfilled at $x=1$.
\square Positional continuity is fulfilled at $x=1$. Tangential and curvature continuity aren't fulfilled at $x=1$.
P Positional and tangential continuity are fulfilled at $x=1$. Curvature continuity is not fulfilled at $x=1$.

$$
\begin{aligned}
& y_{1}(x)=3(x-1)^{2} ; y_{1}(1)=0 \\
& y_{2}(x)=2(x-1)^{2} ; y_{2}()=0 \\
& y_{1} \prime(x)=6(x-1) ; y_{1} \prime(1)=0 \\
& y_{2}^{\prime}(x)=4(x-) ; y_{2} \prime(1)=0
\end{aligned}
$$

$$
\begin{aligned}
& y_{1} \prime \prime(x)=6 ; y_{1} \prime \prime(1)=6 \\
& y_{2} \prime \prime(x)=4 ; y_{2} \prime \prime(1)=4
\end{aligned}
$$

Problem 3 Design Theory（ 20 credits）

3．1 Fail Safe Design is an example of ．．．
\square Basic safety
区 Direct Safety
\square Illustrative safety
\square Indirect Safety

3．2 Which milling process is shown in the following picture ？
Face－circumference milling
\square Circumference－face milling
区 Circumference milling
\square Face milling
3．3 Which machining process is shown in the following picture？

\square Round turning
\square Circumference turning

【 Face turning
\square Form turning

3．4 The Bottom－Up design approach is considered beneficial，if ．．．
\square a low number of variants with low degree of commonality is considered．
】 a large number of variants with high degree of commonality is considered．
\square the form／functionality is driven by the＂outer shape＂．
\square the detail design of the individual components is still unclear．

3．5 The Integral design approach ．．．reduces the weight efficiency of the component．
\square devides large components in smaller single parts．
® reduces the number of single parts of a component． increases the design space.
3.6 Which of the following basic guidelines for machining is correct?
\square Planes or turning surfaces should not be parallel or vertical to the clamping surface.
\square Provide blind holes if possible.
【 Specify tolerances of holes only as deep as necessary
\square Re-clamping of the workpiece doesn't increase the mashine costs.
3.7 Which of the following statements about casting is correct?

区 During machining the casted component tends to warp or crack due to changes in internal stress conditions.
\square A homogenous temperature distribution during the casting process leads to less shrinkage and contraction.
\square Different cooling speeds in the component avoids the formation of cavities.
\square A Decrease in density caused by cooling results in a reduction of the volume.
3.8 Which of the following design rule for casting is correct?
\square Large wall thickness changes aren't restricted for casted components.
X Choose the position of the separation planes in a way to avoid casting offsets in joints.
\square Avoid ribs in casted parts.
\square The use of so called "sand corners" improves the casting result.
3.9 Which of the following design rule for welding is correct?

X Avoid tensile stress in thickness direction.
\square Avoid flattening and overhangs.
\square Avoid concave fillet welds.
\square Mulitiple seams and seam crossing increases the strength of the weld seam.
3.10 Which of the following design rule for soldering is correct?
\square Use as less area as possible for the solder connection.
\square Avoid pressure.
\square Avoid shear stresses.
X Avoid tensile and bending stresses.
3.11 Which of the following assembly design guidline is correct?
\square A differential design leads to shorter assembly time.
\square Don't combine assembly operations.
Х Combine components by integral and composite construction.
\square Multiple simultaneous fitting operations improve the assembly sequence.

Recommended edge dimensions "a" in mm

11	
$+2,5$	
+1	
$+0,5$	
$+0,3$	
$+0,1$	
$+0,05$	
$+0,02$	
$-0,02$	
$-0,05$	
$-0,1$	
$-0,3$	transition
$-0,5$	
-1	
$-2,5$	
-21	

1) Other dimensions as required

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

																								,	
																						-	\cdots	-	-
																						\checkmark	,		
																			\triangle			,	-		
																				-	-	\square			
																			2	\cdots					
																		-		-					
																				\bigcirc					
																		-	-						
																		,							
																-									
																	\checkmark								
													-												
											\rangle														
									,																
					-	-	\bigcirc	,																	
						\checkmark																			
		-		-																					
		-																							
		-																							
	-																								
	-																								
													-												

