

Topic	Comprises, amongst others, the following tasks and problem statements:
Fundamentals	Definition of the terms materials, process.
of materials	Classification of materials: metals, polymers, composites, ceramics.
science and	Material properties: physical, mechanical, chemical and processing
processes	properties. Characteristics of the material groups.
Structure of	Atomic structure
materials	Periodic table
	• Electrons in atoms: Bohr and wave-mechanical atom models, quantum
	number, electron configuration, electronegativity, primary and secondary
	bond
	• Atomic bonding: ionic, covalent, metallic and Van der Waals bonds, sphere
	spring model
Material	Mechanical properties: strength, stiffness, toughness, ductility, hardness,
characterization	durability, fatigue, tribology and friction value.
and mechanical	• Test methods: characteristics of destructive and non-destructive testing.
properties	 Tensile test: strain-stress curve
	 Hardness: Brinell, Vickers, Rockwell methods
	 Creep and fatigue testing: strain-time, Wöhler curve
	 Impact bending test
Metals and	Crystalline and amorphous materials
ceramics	Common lattice structures: body centered cubic, face centered cubic,
	hexagonal closed packed.
	• Lattice defects: point defects, linear defects, interfacial defects, bulk
	defects.
	 Deformation mechanisms: elastic and plastic deformation
	Strengthening mechanisms: solid solution, grain size reduction, strain
	hardening
	 Development of crystal structures: single and polycrystalline crystals,
	diffusion, phase diagrams.
	 Iron steel: phase amounts in phase diagram, influence of heat treatments
	(hardening and annealing), main groups of iron steel (carbon steel, stainles
	steel)
	 Non-ferrous metals: aluminum, copper, magnesium, titanium, nickel and
	their main characteristics
	Ceramics: consumer, functional, and structural, manufacturing processes
	(forming, sintering), mechanical characteristics
Plastics	 Structure and fundamental properties of thermoplastics, elastomers,
	thermosets
	 Copolymerization: alternating, statistical, block, graft
	 Mechanical, thermal and electrical properties in comparison to metals and
	ceramics
	 Polymer synthesis: polymerization, polycondensation, polyaddition
	 Classification (according to their reinforcement and matrix), materials and
composites	properties
	 Manufacturing of composites: winding, braiding, weaving, draping, AFP, pultrusion, RTM

Level of Expectations – Aerospace Material Science and Processes 1+2

Introduction to additional properties	 Thermal: heat capacity, thermal expansion, heat conduction, thermal stresses, thermal properties of different materials (metals, ceramics, polymers) Electrical: Ohm's law, electrical conductivity and resistivity, semiconductors (intrinsic and extrinsic) Degradation of polymers: mechanisms (thermal oxidation, ultraviolet radiation, chain scission, hydrolysis) Corrosion: types of corrosion, corrosion protection, corrosion rates Optical: basics (electromagnetic radiation, electromagnetic spectrum, light interaction with solids, atomic and electronic interactions), refraction, optical properties of metals and nonmetals Magnetic: basics (magnetic dipoles, magnetic parameters), magnetic field vectors, magnetic parameters, types of magnetism
Material	 Connections between part design process and material selection by the
selection	 major design stages (concept design, embodiment design, detail design) Material selection methodology: the four steps in material selection (translation, screening, ranking, documentation/research), revolutionary and evolutionary materials, Material indices Performance, functional requirements, geometrical constraints and material Structural and material efficiency coefficients
	Material property charts (Ashby Plots)
Introduction to material processes	 Definition of the term process Classification of material processes with attributes in terms of cohesion: primary shaping (casting injection molding), forming (forging, deep drawing, stretch forming, creasing, shear forming), separating, joining, coating and modification of substance properties Primary shaping Classification according to nature of shapeless material Casting Material characteristics (casted iron, casted steel, casted aluminum, high-performance materials) Processes: lost form (sand casting, investment casting, lost foam casting), permanent form (mold casting, die casting) Construction guidelines: volume shrinkage, casting defects Primary shaping from plastics: extrusion, injection molding, reinforced polymers Primary shaping by additive manufacturing: selective laser melting, electronic beam melting Forming Classification according to DIN 8582 and to ASME Bulk forming: forging processes, extrusion, rolling processes Sheet forming: bending of sheet metals, bending of metal, deep drawing, stretch forming, spinning, shot peen forming Forming processes of plastics and composites: vacuum forming process, diaphragm forming process

•

Joining Introduction: form closure, force closure, material closure 0 Characteristics of joining by assembling, by processing amorphous 0 materials, by mechanical means, by forming processing, by welding, by soldering/brazing, by means of adhesives Joining of textiles and ceramics 0 Separating Cutting 0 Definitions according to DIN 8588 Shearing: open and closed cut, fine blanking, limitations and problems Wedge cutting Water jet cutting Thermal separation processes: oxy-fuel cutting, plasma cutting, laser cutting, laser fusion cutting, sublimation cutting Machining 0 Introduction: machining technology, chip formation, cutting forces, cutting materials, tool geometry Machining with geometrically defined cutting tool: turning, drilling, milling, broaching, sawing • Machining with geometrically undefined cutting tool: grinding, honing, lapping Cleaning Definition and purpose 0 Classification (DIN 8592): blast, mechanical, flow, solvent, chemical 0 and thermal • Selection according to component properties, pollution status, cleanliness requirements, plant data

- Analysis methods: visual inspection, fluorescence, thermography
- Coating

•

- Definition and purpose
- Classification: liquid, plastic, mushy, solid, gas/vapor, ionized, welding, soldering
- Processes
- Property modification
 - Classification (DIN 8580): strengthening by forming, heat treatment, thermomechanical treatment, sintering firing, magnetization, irradiation, photochemical processes
- Composite processing
 - Processes overview for preform, prepreg and wet composite processes
 - Materials: non-crimp fabrics, textiles
 - Tape laying processes: AFP, ATL
 - o Hand layup
 - o Braiding

Evaluation	Life Cycle Assessment (LCA)
	 Definition and phases of a LCA: goal and scope definition, Life Cycle Inventory (LCI), Life Cycle Impact Assessment (LCIA) and interpretation
	 Technology Readiness Level (TRL) and costing TRL definitions, purposes, assessments S-Curve Model with emergence, rapid improvement, declining improvement, maturity Financials in development: active and passive accounting Basics of costs: revenue, fixed costs, variable costs, total costs, breakeven
	 Costs in engineering: economies of scale, economies of scope, modularization, mass-customization, function integration, rule of ten Definition of cost calculation terms: return of investment, contribution margin, capacity utilization rate, manufacturing cycle efficiency, defect rate, lead-time, recurring and non-recurring costs. Marginal costs, machine costs
Recycling	 Recycling of aerospace aluminum components: general process stages of scrap pre-treatment and scrap refining, techniques for separating aluminum scrap from non-aluminum components, method to sort aluminum scrap by sort of alloy (Laser Induced Breakdown Spectroscopy) Recycling of CFRP: techniques (mechanical, pyrolysis, chemical) with their characteristics, advantages, and disadvantages

Selected references:

- 1. Bargel, H.-J., Schulze, G.: Werkstoffkunde. Springer Verlag, 2008.
- 2. Bautsch, H.-J., Bohm, J., Kleber, I.: Einführung in die Kristallographie. Verlag Oldenbourg, 2002.
- 3. BDS-Fachbuchreihe Bd. 14: Fragen und Antworten aus der Werkstoffkunde. Vertriebsgesellschaft des BDS, 1975.
- 4. Berns, H., Theisen, W.: Eisenwerkstoffe Stahl und Gusseisen. Springer Verlag, 2008.
- 5. Bergmann, W.: Werkstofftechnik Teil 1+2. Carl Hanser Verlag, 2008.
- 6. Dietrich, H.: Mechanische Werkstoffprrüfung. expert Verlag, 1994.
- 7. Haasen, P.: Physikalische Metallkunde. Springer Verlag, 1994.
- 8. Hellerich, W., Harsch, G., Haenle, S.: Werkstoffführer Kunststoffe. Hanser Fachbuchverlag, 2004.
- 9. Hornbogen, E., Eggeler, G., Werner, E.: Werkstoffe, Aufbau und Eigenschaften. Springer Verlag, 2009.
- 10. Ilschner, B., Singer, R. F.: Werkstoffwissenschaften und Fertigungstechnik, Eigenschaften, Vorgänge, Technologien. Springer Verlag, 2005.
- 11. Kalpakjian, S., Schmid, S.R., Werner, E.:Werkstofftechnik. Pearson, 2011.
- 12. Menges, G.: Werkstoffkunde Kunststoffe. Hanser Fachbuchverlag, 2002.
- 13. Merkel, M., Tomas, K.-J.: Taschenbuch der Werkstoffe. Carl Hanser Verlag, 2008.
- 14. Schatt, W., Worch, H., Werkstoffwissenschaften. Wiley-VCH Verlag, 2002.
- 15. Schmidt, W., Dietrich, H.: Praxis der mechanischen Werkstoffprüfung. expert Verlag, 1999.
- 16. Shackelford, J. F.: Werkstofftechnologie für Ingenieure. Pearson Studium, 2007.
- 17. Weißbach, W., Dahms, M.: Aufgabensammlung Werkstoffkunde und Werkstoffprüfung. Fragen – Antworten. Verlag Vieweg + Teubner, 2008.
- 18. Werner, E., Hornbogen, E., Jost, N., Eggeler, G.: Fragen und Antworten zu Werkstoffe. Springer Verlag, 2010.