

Arbeitsunterlagen zur Vorlesung

Wärmetransportphänomene

Betreuer: Nadin Rausch/ Tobias Losher/ Daniel Siebe (APT) Moritz Merk (TFD) E-Mail: wtp.apt@ed.tum.de Anmerkung:

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte der Vervielfältigung und Verbreitung, sowie der Übersetzung und des Nachdrucks bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung des Lehrstuhls für Thermodynamik reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Stand: 2. April 2024

© W. Polifke, TUM

Inhaltsverzeichnis

0	The	rmodynamische Grundlagen	8
	0.1	Integrale Form der Bilanzgleichungen	8
	0.2	Globale Bilanzen für offene Systeme	9
2	Gru	ndbegriffe der Wärmeleitung	12
	2.1	Fourier'sches Gesetz	12
	2.2	Fourier'sche Differentialgleichung	12
	2.3	Randbedingungen	13
3	Stat	ionäre Wärmeleitung	16
	3.1	Eindimensionale Wärmeleitung ohne Wärmequellen	16
	3.2	Eindimensionaler Wärmedurchgang ohne	
		Wärmequellen	17
		3.2.1 Pécletgleichungen für Reihenschaltung von Widerständen	17
		3.2.2 Wärmedurchgangszahl	18
		3.2.3 Biot-Zahl und kritischer Radius	19
	3.3	Q1D Wärmeleitung mit inneren Wärmequellen	20
	3.4	Mehrdimensionale stationäre Wärmeleitung	22
		3.4.1 Formfaktoren für zweidimensionale Anordnungen	23
		3.4.2 Formfaktoren für dreidimensionale Anordnungen	25
4	Insta	ationäre Wärmeübertragung	26
	4.1	Modell der thermischen Blockkapazität:	
		Näherung für kleine Biot-Zahlen	26
	4.2	Biot- und Fourier-Zahlen	27
5	Phy	sikalische Grundlagen der Wärmestrahlung	28
	5.1	Definitionen	28
	5.2	Schwarze Strahler	28
	5.4	Nicht-Schwarze Strahler	29
		5.4.1 Graue Strahler	29
		5.4.2 Reale Strahler	29
	5.5	Gesetz von Kirchhoff	30

6 Wärmeübertragung durch Strahlung

	6.1	Strahlungsaustauschbeziehungen	32
	6.3	Strahlungs-Wärmeübergangskoeffizient	33
	6.4	Schwarzkörperfunktion	33
7	Kon	vektiver Transport: Bilanzen	34
1	7 1	Durchströmter ideal gerührter Behälter	34
	7.2	Rohr- und Kanalströmung	35
_	1.2		
8	Wär	meübertrager	36
10	Kon	vektiver Wärmeübergang und Nußelt-Zahl	40
	10.1	Längsangeströmte dünne Platte	40
		10.1.1 Örtliche Nußelt-Zahl	40
		10.1.2 Mittlere Nußelt-Zahl	41
		10.1.3 Grenzschichtdicke und Reibungsbeiwert	41
	10.2	Rohr- und Kanalströmung	42
		10.2.1 Laminare Strömung ($Re < Re_k$)	43
		10.2.2 Turbulente Strömung ($\operatorname{Re} > \operatorname{Re}_k$)	45
	10.3	Umströmung	46
		10.3.1 Zylinder, querangeströmt (D: Zylinderdurchmesser)	46
		10.3.2 Kugel (D: Kugeldurchmesser)	46
		10.3.3 Rohrbündel, querangeströmt (D: Rohraußendurchmesser)	47
12	Ken	nzahlen & Ähnlichkeitstheorie	48
	12.1	Zum Begriff der Ähnlichkeit	48
	12.2	Kennzahlen aus (Differential)Gleichungen	49
	12.3	Dimensionsanalyse & Π -Theorem	49
	12.4	Auslegung von Modellversuchen	50
	12.5	Darstellung experimenteller Ergebnisse	50
	12.4	Reynolds - Analogie	50
10	- ·		50
13	Frei	e Konvektion	52
	13.1	Freie Konvektion bei Umstromung 12.1.1.6 1.1.1.6 1.1.1.6	52
		13.1.1 Senkrechte Platte, Zylinder und Kugel	53
	12.0	13.1.2 Waagerechte Platte [8] Freis Konselstien in Cabielten	54
	13.2		55
Α	Anh	ang	56
	A.1	Einheiten, Konstanten, Größen	56
		A.1.1 Basis- und abgeleitete Einheiten	56
		A.1.2 Wesentliche Kenngrößen	56
		A.1.3 Wesentliche Konstanten	58
		A.1.4 Kenngrößen der Wärme- und Stoffübertragung	58
	A.2	Stoffwerte	59

	A.2.1	Feststoffe	59
	A.2.2	Flüssigkeiten	64
	A.2.3	Gase	68
A.3	Mather	matische Grundlagen	71
	A.3.1	Ableitung und Entwicklung einer Funktion	71
	A.3.2	Integration einer Funktion und Mittelwert	74
	A.3.3	Lösen von Differentialgleichungen	76
	A.3.4	Vektorrechnung	80
A.4	Weiter	e thermodynamische Grundlagen	83
	A.4.1	Quasi-eindimensionale Rohr- und Kanalströmung mit veränderlicher Quer-	
		schnittsfläche	83

Thermodynamische Grundlagen

Es gilt die Einstein'sche Summenkonvention, gemäß der über wiederholte Indizes summiert wird, also z.B.

$$\vec{w} \cdot d\vec{A} = w_i dA_i = w_1 dA_1 + w_2 dA_2 + w_3 dA_3$$

für das Skalarprodukt aus Geschwindigkeitsvektor \vec{w} und Flächennormale $d\vec{A}$.

0.1 Integrale Form der Bilanzgleichungen

Betrachtet wird ein offenes Bilanzvolumen V mit Systemgrenze ∂V .

Massenerhaltung

$$\frac{d}{dt} \int_{V} \rho \, \mathrm{d}V + \int_{\partial V} \rho \, w_i \, \mathrm{d}A_i = 0$$

Impulserhaltung

$$\frac{d}{dt} \int_{V} \rho w_{j} \mathrm{d}V + \int_{\partial V} \rho w_{j} w_{i} \, \mathrm{d}A_{i} = \int_{\partial V} \sigma_{ji} \, \mathrm{d}A_{i} + \int_{V} \rho g_{j} \, \mathrm{d}V.$$

Energieerhaltung

$$\frac{d}{dt} \int_{V} \rho \left(u + \frac{1}{2} w^{2} + g_{j} x_{j} \right) dV + \int_{\partial V} \rho \left(u + \frac{1}{2} w^{2} \right) w_{i} dA_{i}$$
$$= \int_{\partial V} \left(\sigma_{ji} w_{j} - \dot{q}_{i} \right) dA_{i} + \int_{V} \left(\dot{\omega} + \rho g_{j} w_{j} \right) dV.$$

Wenn der Einfluss der Viskosität des Fluids gering ist, darf der Spannungstensor vernachlässigt werden und es gilt in guter Näherung $\sigma_{ij} = -p \, \delta_{ij}$ und damit $\sigma_{ji} w_j = -p \, w_i$.

Mit h = u + pv und Vernachlässigung der Beiträge von kinetischer und potentieller Energie $(w^2/2 \ll u, g_j x_j \ll u)$ vereinfacht sich der Ausdruck zu:

$$\frac{d}{dt} \int_{V} \rho \, u \, \mathrm{d}V + \int_{\partial V} \rho \, h \, w_i \, \mathrm{d}A_i = -\int_{\partial V} \dot{q}_i \, \mathrm{d}A_i + \int_{V} \dot{\omega} \, \mathrm{d}V.$$

0.2 Globale Bilanzen für offene Systeme

Bei der Summenschreibweise $\sum_{i} \ldots$ sind eintretende Ströme per Konvention positiv, austretende hingegen negativ.

Massenbilanz, Kontinuitätsgleichung

Massenströme berechnet man als Produkt aus Dichte ρ und Volumenstrom: $\dot{m} = \rho \dot{V} = \rho w A$. Die zeitliche Änderung der Masse m in einem offenen System ist gleich dem eintretenden Netto-Massenstrom:

$$\frac{dm}{dt} = \dot{m}_{zu} - \dot{m}_{ab} \quad \text{bzw.} \quad \frac{dm}{dt} = \sum_{i} \dot{m}_{i}.$$

Impulsbilanz, Impulsgleichung

Die zeitliche Änderung des Impulses $I_j = m w_j$ mit j = 1, 2, 3 entsprechend x, y, z ist gleich der Summe der angreifenden Kräfte plus der ein- bzw. austretenden konvektiven Impulsströme:

$$\frac{d}{dt}I_{j} = (\dot{I}_{j})_{zu} - (\dot{I}_{j})_{ab} + (pA_{j})_{zu} - (pA_{j})_{ab} + mg_{j} + F_{j}.$$

$$(pA)_{zu}$$

$$I_{zu}$$

$$G_{zu}$$

$$G_{zu}$$

$$G_{zu}$$

$$F_{i}$$

$$(pA)_{ab}$$

$$I_{ab}$$

$$\begin{array}{ll} I_{j}=m\,w_{j} & \quad \text{Impuls im System in Richtung } x_{j} \\ \dot{I}_{j}=\dot{m}\,w_{j} & \quad \text{konvektiver Strom von } j\text{-Impuls} \\ p\,A_{j} & \quad \text{Druckkraft auf Ein- oder Austrittsflächen. Dabei bezeichnet } A_{j}=|\vec{A}\cdot\hat{x}_{j}| \\ & \quad \text{den Betrag der Projektion des Flächenvektors } \vec{A} \text{ in } j\text{-Richtung.} \\ m\,g & \quad \text{Gewichtskraft} \end{array}$$

*F*_j Kraft an der Berandung

Energiebilanz, Umformungen und Vereinfachungen

Die zeitliche Änderung der Gesamtenergie E = me in einem System ist gleich der Summe der in das System ein- und austretenden Energieströme, der am System geleisteten Arbeit pro Zeit sowie der inneren Wärmequellen:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{i} \dot{m}(e+pv)_{i} - p\frac{\mathrm{d}V}{\mathrm{d}t} + \sum_{i} \dot{Q}_{i} + \dot{\Omega} + P$$

Mit h = u + pv, Vernachlässigung der kinetischen und potentiellen Energien $(w^2/2 \ll u, g_j x_j \ll u)$ sowie sämtlichen Formen der Arbeit mit Ausnahme der Verschiebearbeit gelangt man zu folgender Bilanz für die zeitliche Änderung der inneren Energie U:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \sum_{i} \dot{H}_{i} + \sum_{i} \dot{Q}_{i} + \dot{\Omega}.$$

2.02		
$e = u + \frac{w}{2} + g_j x_j$	spezifische Energie	[J/kg]
h = u + pv	spezifische Enthalpie	[J/kg]
E = me	Gesamtenergie im System	[J]
U = mu	innere Energie im System	[J]
H = mh	Enthalpie	[J]
$\dot{V} = \dot{m}v$	Volumenstrom	$[m^3/s]$
$\dot{m} = \rho \dot{V}$	Massenstrom	[kg/s]
$\sum \dot{E} = \sum \dot{m}e$	Netto-Energiestrom	$[kg/s \cdot J/kg = J/s = W]$
$\sum \dot{H} = \sum \dot{m}h$	Netto-Enthalpiestrom	$[kg/s \cdot J/kg = J/s = W]$
$p \dot{V}$	Verschiebearbeit pro Zeit	$[N/m^2\cdotm^3/s=J/s=W]$
$\sum \dot{Q}$	Netto-Wärmestrom	[J/s=W]
$\dot{\Omega} = \dot{\omega}V$	innere Wärmequelle	$\left[W/m^3\cdotm^3=W ight]$
Р	zugeführte technische Leistung	[J/s=W]
$-p\frac{\mathrm{d}V}{\mathrm{d}t}$	Volumenänderungsarbeit pro Zeit	$[N/m^2\cdotm^3/s=J/s=W]$

Innere Energie und Enthalpie

siehe z.B. [23] oder [4] Energetische Zustandsgleichung / Gibbs'sche Fundamentalbeziehung

spezifische innere Energiedu = Tds - p dvspezifische Enthalpiedh = du + d(pv) = Tds + vdp

Energetische Zustandsgleichung in Koeffizientenform

Allgemeine Form für reale Fluide:

$$du = c_v dT - (1 - \beta_v T)p dv,$$

$$dh = c_p dT + (1 - \beta_p T)v dp.$$

Sonderfälle:

• Ideales Gas mit thermischer Zustandsgleichung pv = RT und spezifischer Gaskonstante $R = R_m/M$:

$$du = c_v \, dT,$$
$$dh = c_p \, dT.$$

• Inkompressibles Fluid mit v = const. und $c \equiv c_v = c_p$:

$$du = c \, dT,$$

$$dh = c \, dT + v \, dp.$$

• Vernachlässigbare Druckunterschiede $p \approx \text{const.}$ und $c \equiv c_v = c_p$:

$$du = c \, dT - p \, dv,$$
$$dh = c \, dT.$$

Mit hier auftretenden Koeffizienten sind im Allgemeinen wie folgt definiert und nehmen für die drei Sonderfälle spezielle Werte an:

	Allgemein	ideales Gas	v = const.	$p \approx {\rm const.}$
lsochore spez. Wärmekapazität	$c_v = \left(\frac{\partial u}{\partial T}\right)_v$			
lsobare spez. Wärmekapazität	$c_p = \left(\frac{\partial h}{\partial T}\right)_p$	$c_v + R$	c_v	C_v
lsochorer Spannungskoeffizient	$\beta_v = \frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_{\! v}$	$\frac{1}{T}$		0
lsobarer Ausdehnungskoeffizient	$\beta_p = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p$	$\frac{1}{T}$	0	
lsotherme Kompressibilität	$\chi_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T$	$\frac{1}{p}$	0	∞

Ausserdem gilt die folgende nützliche Beziehung: $\frac{\beta_p}{\beta_v} = p \, \chi_T$

© W. Polifke, TUM

Grundbegriffe der Wärmeleitung

2.1 Fourier'sches Gesetz

Temperaturgradienten in einem Körper mit *Wärmeleitfähigkeit* λ verursachen einen Wärmefluss $\vec{q}(\vec{x})$

$$\vec{\dot{q}}(\vec{x}) = -\lambda \nabla T(\vec{x}).$$

Der Wärmefluss ist durch Betrag und Richtung charakterisiert, ist also im Allgemeinen ein Vektor. Bei eindimensionaler Wärmeleitung in *x*-Richtung vereinfacht sich das Fourier'sche Gesetz zu

$$\dot{q}_x = -\lambda \, \frac{dT}{dx}.$$

2.2 Fourier'sche Differentialgleichung

Die Fourier'sche Differentialgleichung ergibt sich durch eine Leistungsbilanz am differentiellen Volumenelement dV. Nach Taylor-Reihenentwicklung und mit Hilfe des Fourier'schen Gesetzes erhält man eine Differentialgleichung zur Bestimmung des Temperaturfeldes $T(\vec{x}, t)$ in einem Festkörper (oder einem ruhenden, raumfesten Fluid). In kartesischen Koordinaten lautet diese:

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \dot{\omega}.$$

Für 1-dimensionale Wärmeleitung in x-Richtung und bei konstanter Wärmeleitfähigkeit λ vereinfacht sich die Fourier'sche Differentialgleichung zu

$$\rho c \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2} + \dot{\omega}.$$

Alternativ formuliert man mit der *Temperaturleitfähigkeit*¹ $a \equiv \frac{\lambda}{\rho c}$

$$\frac{1}{a}\frac{\partial T}{\partial t} \equiv \frac{\partial^2 T}{\partial x^2} + \frac{\dot{\omega}}{\lambda}.$$

¹auch *thermischer Diffusionskoeffizient*. Für kompressible Medien mit $c_p \neq c_v$ gilt $a = \lambda/(\rho c_p)$.

2.3 Randbedingungen

Um das Temperaturfeld $T(\vec{x}, t)$ als Lösung der Fourier'schen DGL zu bestimmen, müssen auch Randbedingungen festgelegt werden. Man unterscheidet drei Arten von Randbedingungen

Randbedingung 1. Art (Dirichlet'sche RB)

Wandtemperatur $T_W(t)$ gegeben.

Der Wandwärmefluss \dot{q}_W wird aus der Lösung für das Temperaturprofil errechnet:

$$\dot{q}_W(t) = -\lambda \frac{\partial T(x,t)}{\partial x}$$

Oft gilt: $T_W = \text{const.}$

Randbedingung 2. Art (Neumann'sche RB)

Wand-Wärmestromdichte $\dot{q}_W(t)$ gegeben.

Die Wandtemperatur $T_W(t)$ berechnet man als Lösung der Fourier-DGL

Oft gilt: $\dot{q}_W = \text{const.}$

Ein Spezialfall der RB2 ist die *Adiabasie* mit $\dot{q}_W = 0$, z.B. bei Symmetrierandbedingung.

Randbedingung 3. Art (Robin'sche RB)

Diese Randbedingung ist beim konvektiven Wärmeübergang zwischen einem Festkörper und einem strömenden (!) Fluid wichtig. Die Wärmeleitung im Körper mit $\dot{q}_{W,K}$ ist dabei an den Wärmestrom $\dot{q}_{W,F}$ von der Oberfläche des Körpers an das Fluid gekoppelt. Für letzteren nutzt man den Ansatz nach Newton.

Wärmeübergangskoeffizient $\alpha(t)$ und Umgebungstemperatur $T_{\infty}(t)$ sind gegeben.

Koppelbedingung (auf Vorzeichen achten!):

$$\underbrace{\alpha(t)(T_{\infty}(t) - T_{W}(t))}_{-\dot{q}_{W,F}} = \underbrace{-\lambda \left. \frac{\partial T(x,t)}{\partial x} \right|_{W}}_{\dot{q}_{W,K}}$$

Die Wandtemperatur $T_W(t)$ berechnet man als Teil der Lösung.

Oft gilt: $T_{\infty} = \text{const.}, \ \alpha = \text{const.}$

Die Randbedingung 1.Art kann als Spezialfall der Randbedingung 3.Art behandelt werden. Lässt man den thermischen Widerstand zwischen Umgebung und Wand $R_{th,\alpha} = \frac{1}{\alpha A}$ gegen 0 gehen ($\equiv \alpha \rightarrow \infty$), so wird $T_{\infty} = T_W$. Man erkennt dies durch Umstellung der Gleichung für den Wärmestrom:

$$T_{\infty} - T_W = -\frac{\lambda}{\alpha} \frac{\partial T}{\partial x}.$$

Nützlich, falls für die Randbedingung 3. Art eine Lösung bekannt ist!

© W. Polifke, TUM

Stationäre Wärmeleitung

3.1 Eindimensionale Wärmeleitung ohne Wärmequellen

Die Fourier'sche DGL für (quasi-)eindimensionale stationäre Wärmeleitung ohne Wärmequellen lautet allgemein für kartesische, zylindrische oder sphärische Koordinatensysteme:

$$\frac{d}{dr} \left(\lambda A(r) \frac{dT}{dr} \right) = 0.$$

bzw.
$$\frac{d}{dr} \left(\lambda r^n \frac{dT}{dr} \right) = 0 \text{ mit } n = \begin{cases} 0 \text{ Platte} \\ 1 \text{ Zylinderschale} \\ 2 \text{ Kugelschale} \end{cases}$$

Bei räumlicher homogener Wärmeleitfähigkeit λ folgt:

$$\frac{d}{dr}\left(r^{n}\frac{dT}{dr}\right) = 0$$
 oder $\frac{d^{2}T}{dr^{2}} + \frac{n}{r}\frac{dT}{dr} = 0.$

Direkt aus dem Fourier'schen Gesetz mit $\dot{Q} = \dot{q}(r)A(r)$ schließt man:

$$\frac{dT}{dr} = -\dot{Q}\,\frac{1}{\lambda\,A(r)}.$$

Im Bereich $r_1 \leq r \leq r_2$ mit Wandtemperaturen $T(r_1) = T_1$ und $T(r_2) = T_2$ (Randbedingungen 1. Art) ergeben sich im stationären Fall die folgenden Temperaturprofile:

(Siehe auch die Abbildung im Abschnitt 3.2.1 Pécletgleichungen ...)

3.2 Eindimensionaler Wärmedurchgang ohne Wärmequellen

Für die serielle bzw. parallele Schaltung von thermischen Widerständen gelten folgende Regeln:

Der Gesamtwärmestrom \dot{Q} durch die Konfiguration berechnet sich damit zu

$$\dot{Q} = rac{T_1 - T_2}{R_{\text{Gesamt}}} \qquad R = \left[rac{\mathsf{K}}{\mathsf{W}}\right]$$

3.2.1 Pécletgleichungen für Reihenschaltung von Widerständen

Allgemein: $\dot{Q} = (T_i - T_a)/R_{\text{Gesamt}}$ mit $R_{\text{Gesamt}} = R_{th,\alpha_i} + R_{th,\lambda} + R_{th,\alpha_a}$

Ebene Platte:

$$(T_i) 1 (T_1) (T_2 - r_1) (T_2) (T_a) (T_a)$$

Zylinderschale:

$$\underbrace{\mathsf{T}_{i}}_{i} \underbrace{\frac{1}{\alpha_{i} 2r_{1}\pi L}}_{\mathbf{T}_{1}} \underbrace{\mathsf{T}_{1}}_{\lambda 2\pi L} \underbrace{\frac{\ln(r_{2}/r_{1})}{\lambda 2\pi L}}_{\mathbf{T}_{2}} \underbrace{\mathsf{T}_{2}}_{\mathbf{T}_{a}} \underbrace{\frac{1}{\alpha_{a} 2r_{2}\pi L}}_{\mathbf{T}_{a}} \underbrace{\mathsf{T}_{a}}_{\mathbf{T}_{a}}$$

Kugelschale:

(c) W. Polifke, TUM

$$T_{1}$$

$$T_{1}$$

$$T_{2}$$

$$T_{3}$$

$$T_{4}$$

$$T_{4$$

Τ

3.2.2 Wärmedurchgangszahl

Bei Zusammenschaltung mehrerer Wärmewiderstände ist es zweckmäßig, eine *Wärmedurch*gangszahl U zu definieren, sodass der Wärmestrom aus der Gleichung

$$\dot{Q} = UA_{\text{bez}} \left(T_i - T_a\right), \quad \text{mit } U \equiv \frac{1}{R_{\text{Gesamt}}A_{\text{bez}}}, \qquad U = \left[\frac{\mathsf{W}}{\mathsf{m}^2\mathsf{K}}\right]$$

berechnet werden kann. Für Geometrien mit $A \neq \text{const.}$ (Zylinder- und Kugelschale) muss bei Angabe eines U-Wertes auch die entsprechende Bezugsfläche A_{bez} festgelegt werden. Für die im Abschnitt 3.2.1 gezeigten Konfigurationen gelten exemplarisch die folgenden Formeln:

\dot{r}_1 $\dot{\lambda}$ \dot{q} \dot{r}_2 α_i α_a	U-Wert be Innenfläche ($r=r_1$)	U-Wert bezogen auf menfläche $(r = r_1)$ Außenfläche $(r = r_2)$	
Platte	$U = \frac{1}{\frac{1}{\alpha_i} + \frac{r}{\alpha_i}}$	$U = \frac{1}{\frac{1}{\alpha_i} + \frac{r_2 - r_1}{\lambda} + \frac{1}{\alpha_a}}$	
Zylinder	$U_i = \frac{1}{\frac{1}{\alpha_i} + \frac{r_1}{\lambda} \ln\left(\frac{r_2}{r_1}\right) + \frac{r_1}{r_2 \alpha_a}}$	$U_a = \frac{1}{\frac{r_2}{r_1 \alpha_i} + \frac{r_2}{\lambda} \ln\left(\frac{r_2}{r_1}\right) + \frac{1}{\alpha_a}}$	
Kugel	$U_{i} = \frac{1}{\frac{1}{\alpha_{i}} + \frac{r_{1}^{2}}{\lambda} \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right) + \frac{r_{1}^{2}}{r_{2}^{2} \alpha_{a}}}$	$U_{a} = \frac{1}{\frac{r_{2}^{2}}{r_{1}^{2} \alpha_{i}} + \frac{r_{2}^{2}}{\lambda} \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right) + \frac{1}{\alpha_{a}}}$	

Beispielhaftes Ersatzschaubild bei Verwendung des auf die Innenfläche ($r = r_1$) bezogenen *U*-Wertes:

Viele Konfigurationen mit Isolationsschichten (s. Abb. links) können durch Verwendung des *U*-Wertes auf Standardkonfigurationen (s. Abb. rechts) zurückgeführt werden, für die fertige Lösungen existieren. Für die jeweilige Berechnung muss die Wärmedurchgangszahl verwendet werden, vgl. z.B. Wärmeleitung mit Wärmequellen (Kap. 3.3) oder Blockkapazität (Kap. 4.1).

(c) W. Polifke, TUM

3.2.3 Biot-Zahl und kritischer Radius

Bei Zylinder- und Kugelgeometrien (s. Abb. vorherige Seite) kann eine dickere Isolationsschicht in Kombination mit einer Randbedingung der 3. Art paradoxerweise zu erhöhtem Wärmestrom führen. Man definiert einen normierten Wärmestrom Φ als:

$$\Phi=rac{\dot{Q}_{\mathsf{mit}}}{\dot{Q}_{\mathsf{ohne}}}$$
Isolationschicht

Für die **Zylinderschale** folgt entsprechend nach Entdimensionierung:

$$\Phi = \frac{1}{\mathsf{Bi}\ln(\varrho) + \frac{1}{\varrho}}$$
$$\varrho = \frac{r_2}{r_1}$$
$$\mathsf{Bi} = \frac{\alpha_2 r_1}{\gamma}$$

Für die Kugelschale ergibt sich analog:

$$\Phi = \frac{1}{\mathsf{Bi}\left(1 - \frac{1}{\varrho}\right) + \frac{1}{\varrho^2}}$$

Der normierte Wärmedurchgang Φ durchläuft bei $\rho_{crit} = \frac{n}{Bi}$ ein Maximum. Ein kritischer Radius existiert nur falls die Biot-Zahl Bi < n (mit n = 0/1/2 für Platte/ Zylinderschale/Kugelschale).

Dimensionsloser Wärmestrom $\Phi(\varrho)$ für eine **Zylinderschale**, n = 1.

3.3 Q1D Wärmeleitung mit inneren Wärmequellen

Die Fourier'sche Differenzialgleichung für (quasi-)eindimensionale stationäre Wärmeleitung *mit inneren Wärmequellen* lautet:

$$\frac{d}{dr} \left(\lambda A(r) \frac{dT}{dr} \right) + \dot{\omega} A(r) = 0.$$

bzw.
$$\frac{d}{dr} \left(\lambda r^n \frac{dT}{dr} \right) + \dot{\omega} r^n = 0 \quad \text{mit } n = \begin{cases} 0 \text{ Platte} \\ 1 \text{ Zylinderschale} \\ 2 \text{ Kugelschale} \end{cases}$$

Hier bezeichnet $\dot{\omega}$ die volumenspezifische Quelldichte (Einheit W/m³). Für eine homogenen Wärmequelle mit $\dot{\omega} = const.$ im Bereich $r: 0 \rightarrow R$ sowie $\dot{q} = 0$ bei r = 0 (z.B. wegen Symmetrie) ergibt sich

$$\frac{dT}{dr} = -\frac{\dot{\omega}}{\lambda} \frac{r}{(n+1)}.$$

Damit kann man mit dem Fourier'schen Ansatz die Wandwärmestromdichte bestimmen

$$\dot{q}_W = \dot{q} \mid_{r=R} = \frac{\dot{\omega} R}{(n+1)} = \frac{\dot{\omega} V}{A(R)}$$

Bei homogener Wärmeleitfähigkeit λ und Randbedingung 3. Art an der "Wand" r = R folgt die Lösung für das Temperaturprofil im Bereich $0 \le r \le R$:

Dimensionslose Darstellung der Lösung

Mit den Definitionen

$$\xi = \frac{r}{R}$$
$$\theta = \frac{T - T_{\infty}}{\dot{\omega}R^{2}/\lambda}$$
Bi = $\frac{\alpha R}{\lambda}$

lässt sich das Temperaturprofil kompakt in dimensionsfreier Form darstellen:

$$\theta(\xi) = \frac{1}{2(n+1)} \left(1 + \frac{2}{\mathsf{Bi}} - \xi^2 \right), \quad 0 \le \xi \le 1.$$

Im Zentrum bzw. an der Oberfläche des Körpers gilt:

$$\theta(0) = \frac{1}{n+1} \left(\frac{1}{2} + \frac{1}{\text{Bi}} \right) \text{ und } \theta(1) = \frac{1}{n+1} \frac{1}{\text{Bi}}$$

Abbildung 3.1: * Dimensionslose Temperaturverteilung für verschiedene Biot-Zahlen am Beispiel einer ebenen Platte.

3.4 Mehrdimensionale stationäre Wärmeleitung

Der **Formfaktor** S eines prismatischen Körpers mit homogener Wärmeleitfähigkeit $\lambda = const.$ ist eine geometrische Größe und nur von der Form des Querschnitts des Körpers abhängig. Unter der Voraussetzung dass die beiden Ränder des Querschnitts Isothermen mit Temperatur T_1, T_2 sind, berechnet sich der Wärmestrom durch diesen Körper im stationären Fall zu

$$\dot{Q} = \lambda S (T_1 - T_2), \qquad R_{th} = \frac{1}{\lambda S}, \qquad S = [\mathsf{m}].$$

Alternativ mit dem auf die Länge L bezogenen Formfaktor S_L (L senkrecht zur betrachteten Ebene, in der die Wärmeleitung stattfindet, also entlang der Längsaches des prismatischen Körpers)

$$\dot{Q} = \lambda L S_L (T_1 - T_2), \qquad R_{th} = \frac{1}{\lambda S_L L}, \qquad S_L = [-].$$

Die Wärmedurchgangszahl U ergibt sich aus

$$U = \frac{1}{A R_{th}}$$

Der Formfaktor eines aus einzelnen thermischen Widerständen zusammengesetzten Systems ergibt sich

Bei Reihenschaltung aus

$$S_{L_{ges}} = \frac{1}{\sum_{i} \frac{1}{S_{L_i}}}$$

Bei Parallelschaltung aus

$$S_{L_{ges}} = \sum_{i} S_{L_i}$$

3.4.1 Formfaktoren für zweidimensionale Anordnungen

Planparallele Platten:

Fall 1:
$$b \gg a$$
: $S_L = \frac{b}{a}$
Fall 2: $a \gg b$: $S_L = \frac{\pi}{\ln \frac{4a}{b}}$

Nebeneinander liegende Bänder:

$$\mathbf{a} \begin{bmatrix} \mathbf{b} & \text{Fall 1:} & b \gg a: & S_L = \frac{2}{\pi} \ln \left[4 \left(1 + \frac{2b}{a} \right) \right]$$
$$\mathbf{a} \begin{bmatrix} \mathbf{b} & \text{Fall 2:} & a \gg b: & S_L = \frac{2\pi}{\ln \left[4 \left(2 + \frac{a}{b} \right) \right]} \end{bmatrix}$$

Band im Quadratrohr:

Fall 1:
$$a \approx b$$
: $S_L = \frac{8}{\pi} \ln \left(\frac{3,06}{1 - \frac{b}{a}} \right)$
Fall 2: $a \gg b$: $S_L = \frac{2\pi}{\ln \left(2,16 \frac{b}{a} \right)}$

Band im Kreisrohr:

$$S_L = \frac{8}{\pi} \ln\left(\frac{4}{1-\frac{b}{a}}\right)$$
$$S_L = \frac{2\pi}{\ln\frac{2a}{b}}$$

Schacht (innen und außen quadratisch):

Schacht (innen kreisförmig):

Exzentrische Rohre:

$$m_{1} = \frac{a}{2} \left[1 + \left(\frac{b}{a}\right)^{2} - \left(\frac{c}{a}\right)^{2} \right] \qquad m_{2} = \frac{a}{2} \left[1 - \left(\frac{b}{a}\right)^{2} + \left(\frac{c}{a}\right)^{2} \right]$$
$$S_{L} = \frac{2\pi}{\operatorname{arcosh}\left(-\frac{m_{1}}{b}\right) - \operatorname{arcosh}\left(\frac{m_{2}}{c}\right)}$$

Nebeneinander liegende Rohre:

$$m_{1} = \frac{a}{2} \left[1 + \left(\frac{b}{a}\right)^{2} - \left(\frac{c}{a}\right)^{2} \right] \qquad m_{2} = \frac{a}{2} \left[1 - \left(\frac{b}{a}\right)^{2} + \left(\frac{c}{a}\right)^{2} \right]$$

$$B_{L} = \frac{2\pi}{\operatorname{arcosh}\left(\frac{m_{1}}{b}\right) + \operatorname{arcosh}\left(\frac{m_{2}}{c}\right)}$$

Rohr im halbunendlichen Bereich:

3.4.2 Formfaktoren für dreidimensionale Anordnungen

Kugeln unterschiedlicher Größe:

$$a > 5c \qquad c > b$$

$$a = \frac{4\pi a}{\frac{a}{b} + \frac{a}{c} - 2}$$

Einzelkugel (zweite Isotherme im Unendlichen):

Scheibe auf halbunendlichem Körper (zweite Isotherme im Unendlichen):

Weitere Formfaktoren finden sich zum Beispiel in [10] und [26].

Instationäre Wärmeübertragung

4.1 Modell der thermischen Blockkapazität: Näherung für kleine Biot-Zahlen

Wenn der Wärmeleitwiderstand R_{λ} eines Körpers deutlich kleiner als der Wärmeübergangswiderstand R_{α} zur Umgebung ist (wir fordern eine Biot-Zahl Bi < 0,2), dann ist der Temperaturunterschied zwischen Kern und Oberfläche sehr klein. Die Temperatur im Körper ist dann näherungsweise nur eine Funktion der Zeit und nicht mehr des Ortes, $T(\vec{x},t) \approx T(t)$.

Eine Vielzahl von Problemen der instationären Wärmeübertragung lassen sich mit dieser Näherung

einfach behandeln. An Stelle der instationären Fourier'schen DGL für das Temperaturfeld $T(\vec{x},t)$ (eine partielle Differentialgleichung) wird aus einer vereinfachten Form des 1. Hauptsatzes eine gewöhnliche Differentialgleichung für die gesamte innere Energie U(t) des Körpers abgeleitet, die vergleichsweise einfach zu lösen ist.

θ

1.0

Bsp: Für die sog. **Sprungantwort** eines gut wärmeleitenden Körpers mit Anfangstemperatur T_0 berechnet man mit der Methode der Blockkapazität:

$$\frac{T(t) - T_{\infty}}{T_0 - T_{\infty}} = \exp\left(-\frac{\alpha A t}{m c}\right)$$

Dimensionsfrei schreibt man (siehe Abb.)

$$\theta = \exp\left(-\tau\right)$$

mit $\theta = \frac{T(t) - T_{\infty}}{T_0 - T_{\infty}}, \tau \equiv \frac{t}{t_{\text{ref}}}$ und der Zeitkonstanten (auch Relaxationszeit) $t_{\text{ref}} \equiv \frac{mc}{\alpha A}$.

Die Methode der Blockkapazität kann auch auf einen ideal gerührten Behälter angewendet werden. Als Folge des Rührens ist die Temperatur des Fluids nahezu homogen, $T(\vec{x},t) \approx T(t)$. Den relevanten Wärme*durch*gangswiderstand berechnet man mit dem *U*-Wert der Behälterwand.

Die Sprungantwort für den ideal gerührten Behälter ergibt sich analog zum gut wärmeleitenden Festkörper:

$$\frac{T(t) - T_{\infty}}{T_0 - T_{\infty}} = \exp\left(-\frac{UAt}{m\ c}\right)$$

4.2 Biot- und Fourier-Zahlen

Wichtige dimensionslose Kennzahlen sind Biot- und Fourier-Zahl:

$$\begin{split} \mathsf{Bi} &\equiv \frac{\alpha L}{\lambda} \sim \frac{\mathsf{W}\ddot{\mathsf{a}}\mathsf{r}\mathsf{m}\mathsf{e}\ddot{\mathsf{u}}\mathsf{b}\mathsf{e}\mathsf{r}\mathsf{g}\mathsf{a}\mathsf{n}\mathsf{g}\mathsf{s}\mathsf{w}\dot{\mathsf{d}}\mathsf{e}\mathsf{r}\mathsf{s}\mathsf{t}\mathsf{a}\mathsf{d}}{\mathsf{W}\ddot{\mathsf{a}}\mathsf{r}\mathsf{m}\check{\mathsf{e}}\ddot{\mathsf{u}}\mathsf{b}\mathsf{e}\mathsf{r}\mathsf{g}\mathsf{a}\mathsf{n}\mathsf{g}\mathsf{s}\mathsf{w}\dot{\mathsf{d}}\mathsf{e}\mathsf{r}\mathsf{s}\mathsf{t}\mathsf{a}\mathsf{d}} \sim 1/\alpha A \\ \mathsf{Fo} &\equiv \frac{at}{L^2} \sim \left(\frac{L_a}{L}\right)^2 \sim \left(\frac{\mathsf{T}\mathsf{h}\mathsf{e}\mathsf{r}\mathsf{m}\mathsf{i}\mathsf{s}\mathsf{c}\mathsf{h}\mathsf{e}\mathsf{s}}{\mathsf{g}}\mathsf{o}\mathsf{m}\mathsf{e}\mathsf{t}\mathsf{r}\mathsf{i}\mathsf{s}\mathsf{c}\mathsf{h}\mathsf{e}\mathsf{s}} \, \mathsf{L}\ddot{\mathsf{a}}\mathsf{n}\mathsf{g}\mathsf{e}\mathsf{n}\mathsf{m}\mathsf{a}\mathsf{B}}\right)^2 \end{split}$$

Mit dem **thermischen Diffusionslängenmaß** $L_a \sim \sqrt{at}$ kann man abschätzen, wie weit sich eine Temperaturstörung in einem Körper mit Temperaturleitfähigkeit *a* innerhalb eines Zeitintervalls [0, t] ausbreitet

Für gut wärmeleitende, quasi-1D einfache Körper (P/Z/K mit n=0/1/2) formuliert man das exponentielle Abklingen des Temperaturunterschieds bei der Sprungantwort mit Biot- und Fourier-Zahl:

$$\theta = \exp\left(-(n+1) \text{ Bi Fo}\right)$$

Physikalische Grundlagen der Wärmestrahlung

5.1 Definitionen

Einfallende Strahlung wird entweder absorbiert, reflektiert oder transmittiert. Aus einer Bilanz für die Energie der einfallenden Strahlung folgt somit: $\alpha + \rho + \tau = 1$.

Die Energiebilanz für einen bestrahlten Körper lautet im einfachsten Fall (keine Beiträge von konvektivem Wärmeübergang, Wärmeleitung oder -quellen):

$$\frac{dU}{dt} = \dot{Q}_A - |\dot{Q}_E|.$$

5.2 Schwarze Strahler

Die spektrale Intensität e_{λ} beschreibt die Verteilung der flächenspezifischen Emissionsleistung über die Wellenlänge λ . Für den Idealfall eines schwarzen Körpers berechnet man mit dem Planck'schen Strahlungsgesetz:

$$e_{\lambda,S}(T,\lambda) = \frac{c_1}{\lambda^5 \left[\exp\left(\frac{c_2}{\lambda T}\right) - 1 \right]} \quad \left(\text{ Einheit } \frac{\mathsf{W}}{\mathsf{m}^3} \right)$$

mit den Konstanten $c_1 = 2\pi c^2 h = 3,741 \times 10^{-16} \text{ W m}^2$, $c_2 = \frac{ch}{k} = 1,438 \times 10^{-2} \text{ K m}.$

Die Wellenlänge λ_{max} bei der spektrale Intensität $e_{\lambda,S}$ eines schwarzen Körpers ihr Maximum erreicht berechnet man mit dem *Wien'schen Verschiebungsgesetz*:

$$\lambda_{max} T = 2898 \, \mu m K$$

Das *Emissionsvermögen* e_S (auch *Gesamtemission*, entspricht der Wärmestromdichte) eines schwarzen Körpers berechnet man als Integral der spektralen Intensität über alle Wellenlängen. Gemäß *Stefan-Boltzmann* gilt:

$$e_S(T) = \int_0^\infty e_{\lambda,S} \, \mathrm{d}\lambda = \sigma_S T^4 \quad \left(\text{ Einheit } \frac{\mathsf{W}}{\mathsf{m}^2} \right)$$

mit der Stefan-Boltzmann'schen Strahlungskonstanten $\sigma_S = 5,67 \times 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$.

5.4 Nicht-Schwarze Strahler

5.4.1 Graue Strahler

Beim grauen Strahler gilt für das Emissionsvermögen

$$e(T) = \varepsilon(T)e_S(T) = \varepsilon(T)\sigma_S T^4.$$

Der Emissionsgrad ε [-] ist hier nicht abhängig von der Wellenlänge, variiert aber im Allgemeinen mit der Temperatur T des emittierenden Körpers.

N.B. Das Wien'sche Verschiebungsgesetz gilt auch bei grauen Strahlern.

5.4.2 Reale Strahler

Beim realen Strahler gilt für die spektrale Intensität

$$e_{\lambda}(T,\lambda) = \varepsilon_{\lambda}(T,\lambda)e_S(T,\lambda)$$

Dabei hängt der *spektrale Emissionsgrad* $\varepsilon_{\lambda}(T,\lambda)$ [-] im Allgemeinen sowohl von der Wellenlänge λ als auch von der Temperatur T ab.

• Der Gesamtemissionsgrad $\varepsilon(T)$ ist als gewichteter, normierter Mittelwert über den spektralen Emissionsgrad $\varepsilon_{\lambda}(T, \lambda)$ zu berechnen:

$$\varepsilon(T) = \frac{\int\limits_{0}^{\infty} \varepsilon_{\lambda}(T,\lambda) \ e_{\lambda,S}(T,\lambda) \ d\lambda}{\int\limits_{0}^{\infty} e_{\lambda,S}(T,\lambda) \ d\lambda}$$

Gewichtet und normiert wird mit der (spektralen) Intensität des Schwarzen Körpers.

• Analog bestimmt man den *Gesamtabsorptionsgrad* $\alpha(T)$ als Mittelwert über den spektralen Absorptionsgrad $\alpha_{\lambda}(T, \lambda)$:

$$\alpha(T) = \frac{\int\limits_{0}^{\infty} \alpha_{\lambda}(T,\lambda) \ b_{\lambda}(\lambda) \ d\lambda}{\int\limits_{0}^{\infty} b_{\lambda}(\lambda) \ d\lambda}$$

Gewichtet und normiert wird hier allerdings mit der spektralen Bestrahlungsstärke $b_{\lambda}(\lambda)$.

(c) W. Polifke, TUM

5.5 Gesetz von Kirchhoff

Voraussetzung: diffuser Strahler Spektrale Emission = spektrale Absorption: $\varepsilon_{\lambda} = \alpha_{\lambda} = f(\lambda, T)$

Für diffus-graue (!) Strahler sind die globalen Emissions- und Absorptionsgrade gleich:

 $\varepsilon_{\lambda} \neq f(\lambda) \quad \Rightarrow \quad \varepsilon = \alpha = f(T)$

Wärmeübertragung durch Strahlung

6.1 Strahlungsaustauschbeziehungen

Die folgenden Strahlungsaustauschbeziehungen wurden unter der Voraussetzung $\varepsilon = \alpha$ und $\tau = 0$ hergeleitet. Sie gelten für diffus-graue Oberflächenstrahler und schwarze Strahler.

Netto-Wärmestrom \dot{Q}_{12} zwischen zwei Flächen $A_1 \leq A_2$ mit jeweils räumlich konstanten Temperaturen und Emissionsgraden ε_1 und ε_2 :

$$\dot{Q}_{12} = \Sigma_{12} A_1 (T_1^4 - T_2^4).$$

Beispiele für die Strahlungskonstante Σ_{12} verschiedener Anordnungen:

I. Konvexe (!) Fläche A_1 von A_2 umschlossen:

$$\Sigma_{12} = \frac{\sigma_S}{\frac{1}{\varepsilon_1} + \frac{A_1}{A_2} \left(\frac{1}{\varepsilon_2} - 1\right)}$$

II. Sonderfall: parallele, "unendlich große" Flächen $A_1 = A_2$:

$$\Sigma_{12} = \frac{\sigma_S}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

III. Sonderfall: "sehr kleine", konvexe, umschlossene Fläche $A_1 \ll A_2$:

$$\Sigma_{12} = \varepsilon_1 \, \sigma_S$$

6.3 Strahlungs-Wärmeübergangskoeffizient

Definiert man einen Wärmeübergangskoeffizienten α_{Str} aufgrund von Strahlung, so ist dieser eine Funktion von T_1 und T_2 :

$$\alpha_{Str} = \Sigma_{12} \left(T_1 + T_2 \right) \left(T_1^2 + T_2^2 \right)$$

$$\Rightarrow \quad \dot{Q}_{12} = \alpha_{Str} A_1 (T_1 - T_2)$$

6.4 Schwarzkörperfunktion

Konvektiver Transport: Bilanzen

7.1 Durchströmter, ideal gerührter Behälter

Annahme: im durchströmten Behälter findet eine so intensive Durchmischung des Fluides statt, dass die Temperatur nahezu homogen ist, $T(\vec{x},t) \approx T(t)$, und somit die Methode der Blockkapazität angewendet werden kann.

Anfangsbedingung: $T(t = 0) = T_E = T_{\infty}$ konstante Wärmezufuhr: \dot{Q}_{zu} Wärmeverluste: $\dot{Q}_{ab}(t) = UA_B (T(t) - T_{\infty})$

Lösung:

$$\Theta(\tau) = 1 - \exp(-\tau)$$

mit

$$\Theta = \frac{T - T_{\infty}}{\Delta T}$$
$$\tau = \frac{t}{\Delta t}$$
$$\Delta T = \frac{\dot{Q}_{zu}}{\dot{m} \ c \ (1 + \gamma)}$$
$$\Delta t = \frac{m_0}{\dot{m}} \frac{1}{1 + \gamma}$$

Die dimensionslosen Kennzahl γ erfasst die Wärmeverluste an die Umgebung:

$$\gamma = \frac{U A_B}{\dot{m} c}$$

7.2 Rohr- und Kanalströmung

Für die stationäre eindimensionale Rohr- und Kanalströmung ohne Wärmequellen ergibt sich aus der Energiebilanz für die Strömung eines dichtebeständigen Fluides oder bei vernachlässigbaren Druckverlusten die Differentialgleichung eine Differenzialgleichung für den Temperaturverlauf :

$$0 = \underbrace{-\rho w A c_p \frac{\partial T}{\partial x}}_{1)} + \underbrace{\frac{\partial}{\partial x} \left(\lambda A \frac{\partial T}{\partial x}\right)}_{2)} + \underbrace{\dot{q}_O O}_{3)} + \underbrace{\psi \tau O}_{4)}$$

Die Terme auf der rechten Seite repräsentieren 1) konvektiven Transport, 2) Wärmeleitung in Längsrichtung, 3) Wärmeübertragung an die Rohrwand und 4) Dissipationsleistung. Ist die Längswärmeleitung im Vergleich zum massegebundenen Transport gering und die Dissipationsleistung vernachlässigbar, so vereinfacht sich die Gleichung weiter zu:

$$0 = -\rho w A c_p \frac{\partial T}{\partial x} + \dot{q}_O O$$

Ist die Wärmestromdichte zwischen der Umgebung mit der Temperatur T_{∞} und der Fluidtemperatur T(x) in der Form $\dot{q}_O = U(T_{\infty} - T(x))$ gegeben (U: auf den Umfang O bezogene Wärmedurchgangszahl zwischen Umgebung und Fluid), so erhält man die Differentialgleichung für die Temperatur T(x)

$$0 = -\rho w A c_p \frac{\partial T}{\partial x} + U O(T_{\infty} - T)$$

Mit der Randbedingung $T(x = 0) = T_0$ resultiert die Lösung

$$\frac{T - T_{\infty}}{T_0 - T_{\infty}} = \exp\left(-\frac{UO}{\underbrace{\rho wA}_{\dot{m}} c_p} x\right).$$

Dimensionslos schreibt man mit $\xi \equiv \frac{x}{L}$ oder alternativ mit $\xi^* \equiv \frac{UO}{\dot{m}c_p}x$

$$\Theta = \exp\left(-\frac{UOL}{\dot{m}c_p}\xi\right)$$
 bzw. $\Theta = \exp\left(-\xi^*\right)$

Zeichen	Name	Einheit
L	Rohr-/ Kanallänge	m
0	Umfang	m
w	Geschwindigkeit	m/s
A	Querschnittsfläche	m ²

Wärmeübertrager

Die nachfolgenden Ergebnisse gelten für einen stationär betriebenen Wärmeübertrager mit der wärmeübertragenden Fläche *A*, mit der darauf bezogenen, **konstanten, homogenen** Wärmedurchgangszahl

$$U = f(\alpha_1, \alpha_2, \lambda) = \text{const.}$$

und den Wärmekapazitätsströmen

$$\dot{C}_h = \dot{m}_h c_{p,h}, \dot{C}_c = \dot{m}_c c_{p,c}.$$

Wärmeübertragung zur Umgebung, Dissipationsleistung und Druckverluste werden vernachlässigt! Die dimensionslosen Kennzahlen

$$\theta_h = \frac{T_h - T'_h}{T_h - T_c}, \quad \theta_c = \frac{T'_c - T_c}{T_h - T_c}, \quad N = \frac{UA}{\dot{C}_{min}}, \quad \dot{C}_r = \frac{\dot{C}_{min}}{\dot{C}_{max}}, \quad \epsilon = \frac{\dot{Q}}{\dot{Q}_i},$$

ermöglichen eine kompakte Darstellung der Zusammenhänge. Die gestrichenen Temperaturen beziehen sich jeweils auf den Austritt eines Stroms (siehe Abb. 8.1). N ist die (dimensionslose) *Übertragungsfähigkeit*, \dot{C}_r das Verhältnis der Wärmekapazitätsströme; es gilt $0 \leq \dot{C}_r \leq 1$. Die Größe ϵ definiert die *Effektivität*. Globale Energiebilanzen erfordern, dass

$$\theta_{min} = \epsilon, \ \theta_{max} = \epsilon \dot{C}_r,$$
(8.1)

dabei ist $\theta_{min/max}$ die Temperaturerhöhung des Stranges mit jeweils kleinerer / größerer Wärmekapazität \dot{C} .

Lokale Energiebilanzen liefern gekoppelte Differenzialgleichungen für den Temperaturverlauf bei "Gleichstrom" bzw. "Gegenstrom" (gestrichelte Pfeile in der Abb.):

$$\begin{array}{lll} \displaystyle \frac{dT_h(x)}{dx} & = & -\frac{U\,b}{\dot{C}_h}\,(T_h(x)-T_c(x)) \\ \\ \displaystyle \frac{dT_c(x)}{dx} & = & \pm \frac{U\,b}{\dot{C}_c}\,(T_h(x)-T_c(x)) & \qquad \left\{ \begin{array}{ll} + & : & {\rm Gleichstrom} \\ - & : & {\rm Gegenstrom}. \end{array} \right. \end{array}$$

Abbildung 8.1: Temperaturverläufe im Wärmeübertrager.

Die beiden Gleichungen lassen sich zu einer Differenzialgleichung für die Temperaturdifferenz kombinieren:

$$\frac{d\Delta T(x)}{\Delta T(x)} = -U \, b \, dx \left(\frac{1}{\dot{C}_h} \pm \frac{1}{\dot{C}_c} \right) \qquad \left\{ \begin{array}{ccc} + & : & \text{Gleichstrom} \\ - & : & \text{Gegenstrom.} \end{array} \right.$$

Integriert man diese Gleichung über die Länge L des Wärmeübertragers bzw. von "1" nach "2" so erhält man jeweils die *Betriebscharakteristik* des

Gleichstromwärmeübertragers

$$N(1+\dot{C}_r) + \ln\left(1-\epsilon \left(1+\dot{C}_r\right)\right) = 0,$$

bzw. des Gegenstromwärmeübertragers

$$N(1 - \dot{C}_r) - \ln\left(\frac{1 - \epsilon \dot{C}_r}{1 - \epsilon}\right) = 0.$$

Zur Auslegung eines Wärmeübertragers löst man die Betriebscharakteristik nach der Übertragungsfähigkeit $N(\epsilon, \dot{C}_r)$ auf, zur Nachrechnung löst man nach $\epsilon(N, \dot{C}_r)$ auf. Am Ende dieses Kapitels sind in der Tabelle 8.1 Ergebnisse für unterschiedliche Bauformen zusammenstellt. Der übertragene Wärmestrom \dot{Q} kann auf zwei Arten berechnet werden:

1. Mit Kenntnis der Effektivität ϵ und des Wärmestroms eines idealen Übertragers \dot{Q}_i

$$\dot{Q} = \epsilon \, \dot{Q}_i \quad \text{mit} \quad \dot{Q}_i = \dot{C}_{min} \, \left(T_h - T_c \right)$$

2. Beim Gleich- oder Gegenstromübertrager nutzt man alternativ die über die Länge L gemittelte Temperaturdifferenz ("logarithmisch gemittelte Temperaturdifferenz") ΔT_{log}

$$\begin{split} \dot{Q} &= b \, U \int_{0}^{L} \left(T_{h}(x) - T_{c}(x) \right) dx = U \, A \, \Delta T_{log} \\ \Delta T_{log} &\equiv \frac{\Delta T_{2} - \Delta T_{1}}{\ln \left(\frac{\Delta T_{2}}{\Delta T_{1}} \right)} \end{split}$$

mit den Temperaturen (siehe Abb. 8.1)

$$\begin{split} \Delta T_1 &= T_h - T_c \quad \text{und} \quad \Delta T_2 = T'_h - T'_c \qquad \text{Gleichstrom} \\ \Delta T_1 &= T_h - T'_c \quad \text{und} \quad \Delta T_2 = T'_h - T_c \qquad \text{Gegenstrom} \end{split}$$

Strömungsführung	Effektivität $\epsilon(N,\dot{C}_r)$	dimensionslose Übertragungsfähigkeit $N(\epsilon,\dot{C}_r)$
Gegenstrom	$\epsilon = \frac{1 - \exp\left[-N(1 - \dot{C}_r)\right]}{1 - \dot{C}_r \exp\left[-N(1 - \dot{C}_r)\right]}$	$N = \frac{1}{1 - \dot{C}_r} \ln\left(\frac{1 - \epsilon \dot{C}_r}{1 - \epsilon}\right)$
Gleichstrom	$\epsilon = \frac{1 - \exp\left[-N(1 + \dot{C}_r)\right]}{1 + \dot{C}_r}$	$N = -\frac{\ln\left[1 - \epsilon(1 + \dot{C}_r)\right]}{1 + \dot{C}_r}$
Kreuzstrom (ungemischt)	$\epsilon = 1 - \exp\left[\frac{1}{\dot{C}_r} N^{0,22} \left\{ \exp[-\dot{C}_r N^{0,78}] - 1 \right\} \right]$	
Kreuzstrom (einseitig querge- mischt, \dot{C}_{min} un- gemischt)	$\epsilon = \frac{1}{\dot{C}_r} \left[1 - \exp\left\{ -\dot{C}_r [1 - \exp(-N)] \right\} \right]$	$N = -\ln\left[1 + \frac{1}{\dot{C}_r}\ln(1 - \epsilon \dot{C}_r)\right]$
Kreuzstrom (einseitig querge- mischt, \dot{C}_{max} un- gemischt)	$\epsilon = 1 - \exp\left(-\frac{1}{\dot{C}_r}\left\{1 - \exp\left[-\dot{C}_r N\right]\right\}\right)$	$N = -\frac{1}{\dot{C}_r} \ln[\dot{C}_r \ln(1-\epsilon) + 1]$
$\dot{C}_r=0$ (beliebige Bau- form)	$\epsilon = 1 - \exp(-N)$	$N = -\ln(1-\epsilon)$

Tabelle 8.1: Betriebscharakteristiken verschiedener Wärmeübertrager

	Gegenstrom, $\dot{C}_c = \dot{C}_h$	$\dot{C}_c \gg \dot{C}_h$	$\dot{C}_h \gg \dot{C}_c$
Beispiel		verdampfende	kondensierende
		Flüssigkeit	Flüssigkeit
Resultat	$\Delta T_1 = \Delta T_2 = \Delta T_{log}$	$\dot{C}_r = 0$	$\dot{C}_r = 0$
Skizze	$T_{h} \bigcirc \dot{C}_{c} = \dot{C}_{h} \oslash \downarrow$ $\Delta T_{1} \bigcirc \dot{L}_{c} \bigcirc \downarrow$ $T_{c'} \bigcirc \downarrow \downarrow$ $T_{c'} \bigcirc \downarrow \downarrow$ $T_{c'} \bigcirc \downarrow$ $T_{c'} \land x$	$T_{h} \bigcirc C_{c} = T_{c} \lor C_{c}$	$T_{h} \textcircled{T}_{h} = T_{h'} \overset{ }{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset$

Tabelle 8.2: Besondere Betriebsbedingungen

Kapitel 10

Konvektiver Wärmeübergang und Nußelt-Zahl

10.1 Längsangeströmte dünne Platte

Freistromgeschwindigkeit w_{∞} , Umgebungstemperatur $T_{\infty} = \text{const.}$ Kritische Reynolds-Zahl: $3,2 \times 10^5 < \text{Re}_k < 3 \times 10^6$ Prandtl-Zahl: $\text{Pr} = \nu/a$ Kinematische Viskosität: $\nu = \eta/\rho$ mit dynamischer Viskosität η und Dichte ρ (ideales Gas: $\rho = p/RT$) Temperaturleitfähigkeit: $a = \lambda/\rho c_p$

Pr =	0,01	0,1	0,7	1	10	100	1000
f(Pr) =	0,72	0,91	0,99	1,0	1,012	1,027	1,058

10.1.1 Örtliche Nußelt-Zahl

	Ν	$\operatorname{Vu}_x = -$	$\frac{\lambda}{\lambda}$	$Re_x = \frac{w_\infty x}{\nu}$
laminar:	$10 < {\sf Re}_x < {\sf Re}$ 0,01 < Pr < 100	: 20	$Nu_x =$	0,332 $\operatorname{Re}_{x}^{\frac{1}{2}} \operatorname{Pr}^{\frac{1}{3}} f(\operatorname{Pr})$
turbulent:	$Re_k < Re_x < 10$ $0,6 < Pr < 15$) ⁷ :	$Nu_x =$	$0,0296 { m Re}_x^{0,8} { m Pr}^{rac{1}{3}}$
	$10^7 < {\sf Re}_x < 10^7$) ⁹ :	$Nu_x =$	$0,185 \frac{\operatorname{Re}_{x}\operatorname{Pr}^{\frac{1}{3}}}{\left(\log_{10}\operatorname{Re}_{x}\right)^{2,584}}$
	$0,6 < \Pr < 15$)		· · ·

10.1.2 Mittlere Nußelt-Zahl

	$Nu = \frac{\alpha L}{\lambda}$		$Re = rac{w_\infty L}{ u}$
laminar:	$10 < {\sf Re} < {\sf Re}_k$ 0,01 < Pr < 1000	:	$Nu = 0,664 Re^{\frac{1}{2}} Pr^{\frac{1}{3}} f(Pr)$
turbulent: (mit laminarem Anlaufbereich)	$5 \times 10^5 < \text{Re} < 10^7$ 0,6 < Pr < 1000	:	$Nu = 0,037 \Big(Re^{0,8} - 23100 \Big) Pr^{\frac{1}{3}}$

10.1.3 Grenzschichtdicke und Reibungsbeiwert

$$\tau_W(x) = c_f(x) \cdot \frac{\varrho}{2} \cdot w_\infty^2$$

laminar: $\operatorname{Re} < \operatorname{Re}_k$: $c_f = 0,664 \operatorname{Re}_x^{-\frac{1}{2}}$ $\delta(x) = 4,91 x \operatorname{Re}_x^{-\frac{1}{2}}$ $\delta_{th}(x) = 4,91 x \operatorname{Re}_x^{-\frac{1}{2}} \operatorname{Pr}^{-\frac{1}{3}}$

turbulanti $10^6 < \mathbf{P}_2 < 10^9$		0,455
$Lurbulent: 10^{\circ} < Re < 10^{\circ}:$	$c_f \equiv$	$\overline{[\ln(0,06 \text{ Re}_x)]^2}$
	$\delta(x) =$	$0,16 x \mathrm{Re}_x^{-rac{1}{7}}$
	$\delta_{th}(x) =$	$\delta(x)$

10.2 Rohr- und Kanalströmung

mittlere Strömungsgeschwindigkeit: w

Hydraulischer Durchmesser (A: durchströmte Fläche, O: benetzter Umfang):

$$D_H = 4 \frac{A}{O} = 4 \frac{\text{durchströmte Querschnittsfläche}}{\text{benetzer Umfang}}$$

Reynolds-Zahl:

$$\mathsf{Re} = \frac{w \, D_H}{\nu}$$

kritische Reynolds-Zahl:

$$2300 \le \text{Re}_k < 10^4$$

Hydrodynamische Einlauflänge:

$$\begin{split} \frac{L_{e,h}}{D_H} &\approx 0,056 \cdot \text{Re} \quad (\text{laminare Strömung}) \\ 10 &< \frac{L_{e,h}}{D_H} < 60 \quad (\text{turbulente Strömung}) \end{split}$$

Thermische Einlauflänge:

$$L_{e,t} \approx L_{e,h} \cdot \mathsf{Pr}$$

Mittlere Nußelt-Zahl:

$$\mathsf{Nu} = \frac{\alpha \, D_H}{\lambda}$$

Bezugstemperatur für Stoffwerte:

$$T_{bez} = \frac{T_{ein} + T_{aus}}{2}$$

Korrekturfaktor für die Richtung des Wärmestromes bei temperaturabhängigen Stoffwerten:

$$K_{\mathsf{Pr}} = \left(\frac{\mathsf{Pr}}{\mathsf{Pr}_W}\right)^{0,11}$$

Pr: Prandtl-Zahl bei Bezugstemperatur T_{bez}

 Pr_W : Prandtl-Zahl bei Wandtemperatur T_W

10.2.1 Laminare Strömung ($Re < Re_k$)

Rohrströmung $\operatorname{Nu} = \frac{\alpha D}{\lambda}$ $\operatorname{Re} = \frac{w D}{\nu}$ $\widetilde{\operatorname{Pe}} = \operatorname{Re} \operatorname{Pr} \frac{D}{L}$

(D: Durchmesser)

Spaltströmung $Nu = \frac{\alpha 2S}{\lambda}$ $Re = \frac{w 2S}{\nu}$ $\widetilde{Pe} = Re \Pr \frac{2S}{L}$

(S: Spalthöhe)

10.2.1.1 Hydrodynamisch und thermisch ausgebildete Laminarströmung

$$\label{eq:rescaled_function} \begin{split} \text{für } \operatorname{Re} \frac{D}{L} < 20 \qquad \text{und} \qquad \widetilde{\operatorname{Pe}} < 0,1 \qquad \text{und} \qquad \frac{\operatorname{Nu}}{K_{\operatorname{Pr}}} = \operatorname{Nu}_{\infty} = \operatorname{const.} \end{split}$$

	D_H	ψRe_D	Nu_∞	Nu_∞	ε
			$\dot{q}_W = const.$	$T_W = \text{const.}$	
○ ‡▫	D	64	4,36	3,66	1,61
↓ Þ	2b	96	8,24	7,54	1,83
‡a	a	57	2,98	3,61	
→b=2a→	$\frac{4}{3}a$	62	3,39	4,12	

Druckverlust: $\Delta p = \Psi \frac{L}{D} \rho \frac{w^2}{2}$

10.2.1.2 Thermischer Anlauf bei hydrodynamisch ausgebildeter laminarer Rohrströmung (konstante Wandtemperatur)

für $0, 1 < \widetilde{\text{Pe}} < 10^4$

Druckverlustberechnung analog zu 10.3.1

Allgemein für Gase und Flüssigkeiten in Rohren (geringe Δ T):

$$\mathsf{Nu}_{t} = \frac{3,657}{\tanh\left(2,264 \left(\frac{1}{\widetilde{\mathsf{Pe}}}\right)^{\frac{1}{3}} + 1,7 \left(\frac{1}{\widetilde{\mathsf{Pe}}}\right)^{\frac{2}{3}}\right)} + 0,0499 \,\widetilde{\mathsf{Pe}} \tanh\left(\frac{1}{\widetilde{\mathsf{Pe}}}\right) \qquad (\mathsf{Baehr})$$

Näherungsgleichung für weitere Kanalgeometrien:

© W. Polifke, TUM

 $\operatorname{Nu}_t \approx \sqrt[3]{\operatorname{Nu}_{\infty}^3 + \epsilon^3 \widetilde{\operatorname{Pe}} K_{\operatorname{Pr}}}$ (Schlünder/Stephan)

10.2.1.3 Hydrodynamischer und thermischer Anlauf bei laminarer Rohrströmung (konstante Wandtemperatur)

Druckverlust:

$$\Delta p = \left(1,25 + 64 \frac{L}{D \operatorname{Re}}\right) \tanh\left(11,016 \sqrt{\frac{L}{D \operatorname{Re}}}\right) \frac{\varrho \cdot u_m^2}{2}$$

Wärmeübergangskoeffizient:

$$\mathsf{Nu}_{t,h} = \frac{\mathsf{Nu}_t}{\mathsf{tanh}\left[2,\!432(\frac{L}{D\mathsf{Re}})^{1/6}\right]}$$

für kurze Rohre: $\frac{D}{L} > 0{,}1$

$$Nu_{t,h} = 0,664\sqrt[3]{Pr}\sqrt{Re\frac{D}{L}}K_{Pr}$$
 (Stephan/Pohlhausen)

10.2.2 Turbulente Strömung ($Re > Re_k$)

(Glatte, gerade Rohre)

Korrekturfaktor für hydraulischen und thermischen Einlauf mit L = Rohrlänge:

$$K_L = 1 + \left(\frac{D_H}{L}\right)^{\frac{2}{3}} \qquad \qquad K_L \approx 1 \quad \text{für} \quad \frac{L}{D_H} \ge 200$$

Korrekturfaktor für temperaturabhängige Stoffwerte:

$$K_{\mathsf{Pr}} = \left(\frac{\mathsf{Pr}}{\mathsf{Pr}_w}\right)^{0,11}$$

Falls thermischer Einlauf und/oder temperaturabhängige Stoffwerte vorliegen, sind die mittels *Gnielinski* bzw. *Dittus-Bölter* berechneten Nußeltzahlen mit den Korrekturwerten zu multiplizieren.

10.2.2.1 Allgemeine Gleichung nach Gnielinski (1984)

für 0,5 < Pr < 500 2300 < Re < 10⁶ 10 <
$$\frac{L}{D_H}$$
 < ∞ :
Nu = $\frac{\frac{\xi}{8} (\text{Re} - 1000) \text{Pr}}{1 + 12,7 \sqrt{\frac{\xi}{8}} (\text{Pr}^{\frac{2}{3}} - 1)}$ (· $K_L \cdot K_{\text{Pr}}$) (10.1)

mit dem Reibungsbeiwert $\xi = (0,790 \cdot \ln \operatorname{Re} - 1,64)^{-2}$ (Petukhov)

10.2.2.2 Näherungsgleichung nach Dittus-Bölter

für 0,7 < Pr < 160 10^4 < Re, $10 < \frac{L}{D}$: Nu = 0,023 · Re^{4/5}Pr^{1/3} (· $K_L \cdot K_{Pr}$)

10.2.2.3 Gleichung für flüssige Metalle

$$\label{eq:rescaled_function} \begin{split} \text{für } 0 < \Pr < \textbf{0}, \textbf{1} \qquad 10^4 < \texttt{Re} < 10^6 \qquad 60 < \tfrac{L}{D_H} < \infty : \end{split}$$

$$Nu = 5 + 0.025 \,(Re \,Pr)^{0.8}$$

10.3 Umströmung

Freistromgeschwindigkeit: w_{∞} $T_W = \text{const.}$

0,6 < Pr < 500: Mittlere Nußelt-Zahl: Nu = $\frac{\alpha D}{\lambda}$

Reynolds-Zahl: $\operatorname{Re} = \frac{w_{\infty} D}{\nu}$

10.3.1 Zylinder, querangeströmt (D: Zylinderdurchmesser)

$$1 < {\rm Re} < 10^3 \qquad \qquad : \quad {\rm Nu} = ({\rm 0},\!{\rm 43}+{\rm 0},\!{\rm 50\,Re^{0,5}})\,{\rm Pr^{0,38}}\left(\frac{{\rm Pr}}{{\rm Pr}_W}\right)^{0,25}$$

 $10^3 < {\rm Re} < 2 \times 10^5 \quad : \quad {\rm Nu} = 0.25 \, {\rm Re}^{0.6} \, {\rm Pr}^{0.38} \, \left(\frac{{\rm Pr}}{{\rm Pr}_W} \right)^{0.25}$

10.3.2 Kugel (D: Kugeldurchmesser)

$$3.5 < {
m Re} < 8 imes 10^4$$
 : ${
m Nu} = 2 + (0.4 \, {
m Re}^{0.5} + 0.06 \, {
m Re}^{0.67}) \, {
m Pr}^{0.4} \left(rac{\eta}{\eta_W}
ight)^{0.25}$

10.3.3 Rohrbündel, querangeströmt (D: Rohraußendurchmesser)

 $2 \times 10^3 < \text{Re}_m < 4 \times 10^4$: $\text{Nu} = 0,32 \, \text{Re}_m^{0,61} \, \text{Pr}^{0,31} \, K_A \, K_R$ mit $\text{Re}_m = \frac{u_m \, D}{\nu}$

Versetzt

Fluchtend

Korrekturfaktor K_A für Anordnung der Rohre								
		$\frac{S_l}{D} = 1,25$		$\frac{S_l}{D} = 2,0$				
	$\frac{S_q}{D} =$			$\frac{S_q}{D} =$				
Re _m	1,2	2,0	2,8	1,2	2,0	2,8		
Fluchtend								
2000	1,11	0,73	0,67	1,11	0,98	0,95		
8000	1,09	0,83	0,80	1,03	1,00	0,99		
20000	1,04	0,90	0,91	0,98	1,01	1,02		
Versetzt								
2000	1,21	1,22	1,30	1,07	1,12	1,18		
8000	1,12	1,12	1,20	1,02	1,04	1,10		
20000	1,10	1,08	1,15	1,01	1,01	1,10		

Korrekturfaktor K_R für Rohr-Reihenzahl N									
N	1	2	3	4	6	8	≥ 10		
Fluchtend									
	0,64	0,80	0,87	0,90	0,94	0,98	1,0		
Versetzt									
	0,64	0,75	0,83	0,89	0,95	0,98	1,0		

Kapitel 12

Kennzahlen & Ähnlichkeitstheorie

Zum Begriff der Ähnlichkeit 12.1

Physikalische Ähnlichkeit zweier Systeme "1" und "2" setzt voraus

1. Geometrische Ähnlichkeit, also proportionale Höhen / Breiten / Längen $h \sim b \sim l$:

-

$$\frac{h_1}{h_2} = \frac{b_1}{b_2} = \frac{l_1}{l_2}$$

2. Ähnlichkeit der physikalischen Effekte und Phänomene, z.B. Zeitskalen, Geschwindigkeiten, Temperaturen, Kräfte, Potentialunterschiede, diffusive oder konvektive Transportphänomene, Flüsse

und somit gleiche Werte $\Pi_1 = \Pi_2$ entsprechender *Kennzahlen* (" Π -gruppen")

$$\Pi_i \sim \frac{\text{Effekt A}}{\text{Effekt B}}$$

Wichtige Kennzahlen

Biot-Zahl Bi	$\equiv \frac{\alpha L}{\lambda}$	\sim	Wärmeleitwiderstand Wärmedurchgangswiderstand
Reynolds-Zahl Re	$\equiv \frac{uL}{\nu}$	\sim	Trägheit Reibung
Prandtl-Zahl Pr	$\equiv \frac{\nu}{a}$	\sim	Impulsdiffusion Wärmediffusion
Mach-Zahl Ma	$\equiv \frac{u}{c}$	\sim	Strömungsgeschwindigkeit Schallgeschwindigkeit
Fourier-Zahl Fo	$\equiv \frac{at}{L^2}$	\sim	$\left(rac{\text{thermische Diffusionslänge}}{\text{geometrisches Längenmaß}} ight)^2$
Nusselt-Zahl Nu	$\equiv \frac{\alpha L}{\lambda}$	~ ~	Längenmaß der Strömung thermische Grenzschichtdicke dimensionsloser Wandtemperaturgradient

12.2 Kennzahlen aus (Differential)Gleichungen

Relevante Kennzahlen eines Systems erhält man durch Entdimensionieren der Gleichungen, die das System beschreiben.

Beispiele in diesem Kurs: kritischer Radius, Wärmeleitung mit Quellen, instationäre Wärmeübertragung, durchströmte Systeme, Wärmeübertrager, konv. Wärmeübergang

12.3 Dimensionsanalyse & Π -Theorem

Mit der Methode nach Ipsen [11] kann ein Satz Kennzahlen identifiziert werden – selbst wenn eine Gleichung für das vorliegende Problem nicht bekannt ist. Man muss allerdings wissen, welche physikalischen Effekte und welche damit verbundenen Größen relevant sind. Die Methode wird vorgestellt am Beispiel der *Instationären Wärmleitung mit RB3*.

1) zuerst werden die relevanten Einflussgrößen [und deren Einheiten] aufgelistet, hier $T - T_{\infty}$ [K], x [m], t [s], L [m], ΔT [K], ρc [J/m³K], λ [W/mK], $\alpha [\frac{W}{m^2 K}]$

2) dann werden die Kennzahlen des Problems durch sukzessives Eliminieren von Einheiten identifiziert:

$$\underbrace{T - T_{\infty}}_{\mathsf{K}} = fn\left(\underbrace{x}_{\mathsf{m}}, \underbrace{t}_{\mathsf{s}}, \underbrace{L}_{\mathsf{m}}, \underbrace{\Delta T}_{\mathsf{K}}, \underbrace{\rho c}_{\mathsf{J/m^{3}K}}, \underbrace{\lambda}_{\mathsf{W/mK}}, \underbrace{\alpha}_{\mathsf{W/m^{2}K}}\right)$$

$$\underbrace{\frac{T - T_{\infty}}{\Delta T}}_{-} = fn\left(\underbrace{x}_{\mathsf{m}}, \underbrace{t}_{\mathsf{s}}, \underbrace{L}_{\mathsf{m}}, \underbrace{\rho c \Delta T}_{\mathsf{J/m^{3}}}, \underbrace{\lambda \Delta T}_{\mathsf{W/m}}, \underbrace{\alpha \Delta T}_{\mathsf{W/m^{2}}}\right)$$

$$\underbrace{\theta}_{-} = fn\left(\underbrace{\xi}_{-}, \underbrace{t}_{\mathsf{s}}, \underbrace{\rho c \Delta T L^{3}}_{\mathsf{I/W}}, \underbrace{\lambda \Delta T L}_{\mathsf{W}}, \underbrace{\alpha \Delta T L^{2}}_{\mathsf{W}}\right)$$

$$\underbrace{\theta}_{-} = fn\left(\underbrace{\xi}_{-}, \underbrace{\frac{\lambda \Delta T L t}{\rho c \Delta T L^{3}}}, \underbrace{\frac{\alpha \Delta T L^{2}}{\mathsf{W}}}\right)$$

$$\underbrace{\theta}_{-} = fn\left(\underbrace{\xi}_{-}, \underbrace{\frac{\lambda \Delta T L t}{\rho c \Delta T L^{3}}}, \underbrace{\frac{\alpha \Delta T L^{2}}{\mathsf{W}}}\right)$$

 \Rightarrow Die Temperatur θ hängt ab vom Ort sowie den Fourier- und Biot-Zahlen: $\theta = \theta(\xi, Fo; Bi)$

$\Pi\text{-}{\rm Theorem}$ von Buckingham

$$\left. \begin{array}{c} n \text{ (Einfluss)Größen} \\ m \text{ Dimensionen} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} n-m \text{ dimensionslose } \Pi\text{-Gruppen:} \\ \Pi_1 = fn(\Pi_2, \dots, \Pi_{n-m}) \end{array} \right.$$

m ist hier die kleinstmögliche Anzahl von Dimensionen bzw. Einheiten, die ausreichen das Problem zu beschreiben. Es müssen *nicht* SI-Grundeinheiten sein.

(c) W. Polifke, TUM

12.4 Auslegung von Modellversuchen

Bei der Auslegung von Modellversuchen ist darauf zu achten, das die relevanten Kennzahlen von Modell und Original jeweils identische Werte annehmen.

12.5 Darstellung experimenteller Ergebnisse

Experimentelle Ergebnisse stellt man nicht mit den primitiven Variablen, sondern kompakt und allgemeingültig mittels der relevanten Kennzahlen dar.

12.4 Reynolds - Analogie

Für Pr = 1 stimmen die entdimensionierten Erhaltungsgleichungen und Randbedingungen für Impuls- und Wärmeübertragung überein!

- \Rightarrow identische Geschwindigkeits- und Temperaturverteilungen $\tilde{u}(\tilde{x}, \tilde{y})$ bzw. $\tilde{T}(\tilde{x}, \tilde{y})$
- \Rightarrow Reibungsbeiwert c_f und Nußelt-Zahl Nu stehen in Beziehung zueinander

für
$$\Pr = 1$$
:

$$\begin{aligned} & \text{für } \Pr \neq 1, dp/dx \neq 0: \\ & \frac{1}{2}c_f \operatorname{Re}_L = \operatorname{Nu}_L. \end{aligned}$$

$$\begin{aligned} & \frac{1}{2}c_f \operatorname{Re}_L \operatorname{Pr}^{1/3} = \operatorname{Nu}_L. \end{aligned}$$

Korrelation von Chilton-Colburn für Re $>10000;\ 0,7<{\rm Pr}<160;\ L/D_H>60$

Kapitel 13

Freie Konvektion

Freie Konvektion bei Umströmung 13.1

0,002 < Pr < 8000 $T_W = \text{const.}$

Allgemeine Gleichungen für Platte, Zylinder und Kugel

 $T_{bez} = \frac{T_W + T_\infty}{2}$ Bezugstemperatur für Stoffwerte

 $\mathsf{Nu} = \frac{\alpha \, L}{\lambda}$ Mittlere Nußelt-Zahl

Grashof-Zahl

$$\mathsf{Gr} = \frac{g\,\beta_p\,L^3\left(T_W - T_\infty\right)}{\nu^2}$$

Thermischer Ausdehnungskoeffizient $\beta_p = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_{p=const,T=T_{\infty}}$ $\beta_p = \frac{1}{T_{\infty}}$ für ein ideales Gas gilt

Ra = Gr PrRayleigh-Zahl $3\times 10^8 < \mathsf{Ra}_k < 2\times 10^9$ Übergang laminar→turbulent

13.1.1 Senkrechte Platte, Zylinder und Kugel

Laminare Strömung

 $\begin{array}{l} 10^4 < {\rm Ra} < 10^9 \\ {\rm Nu} = {\rm Nu}_0 + {\rm 0,668} \ K_F \ f({\rm Pr}) \ {\rm Ra}^{\frac{1}{4}} \end{array}$

Turbulente Strömung

 $\begin{array}{l} 10^9 < {\rm Ra} < 4 \times 10^{14} \\ {\rm Nu} = 0{,}15 \ f({\rm Pr})^{\frac{4}{3}} \ {\rm Ra}^{\frac{1}{3}} \end{array}$

Prandtl-Faktor

$$f(\Pr) = \left[1 + (2\Pr)^{-\frac{9}{16}}\right]^{-\frac{4}{9}}$$

Pr	0,1	0,5	0,7	1	3	7	10	100	1000	∞
f(Pr)	0,575	0,735	0,765	0,795	0,871	0,913	0,927	0,978	0,994	1

Form-Faktor

Form	Länge $L =$	Nu_0	Korrektur K_F
Senkrechte Platte	Höhe H	0,68	1,0
Senkrechter Zylinder	wie Senkrechte	Platte,	wenn $\frac{D}{H} \ge 35 \operatorname{Gr}_{H}^{-\frac{1}{4}}$ erfüllt ist.
Waagrechter Zylinder	Durchmesser D	0,36	$\left(\frac{2}{\pi}\right)^{\frac{1}{2}} \approx 0.8$
Kugel	Durchmesser D	2	$\left(\frac{2}{\pi}\right)^{\frac{1}{4}} \approx 0.9$

13.1.2 Waagerechte Platte [8]

Länge $L = \frac{A}{O}$ (A: Wärmeübertragende Fläche, O: Umfang der äußeren Umrandung)

Oberseite der Platte beheizt oder Unterseite gekühlt

$$f_1(\mathsf{Pr}) = \left[1 + (0,322/\mathsf{Pr})^{\frac{11}{20}})\right]^{-\frac{20}{11}}$$

Laminare Strömung:

Ra $f_1(\mathsf{Pr}) \leq 7 \times 10^4$ $0 < \mathsf{Pr} < \infty$

 $Nu = 0,766 (f_1(Pr) Ra)^{\frac{1}{5}}$

Turbulente Strömung:

Ra $f_1(Pr) \ge 7 \times 10^4$ Nu = 0,15 $(f_1(Pr) \text{ Ra})^{\frac{1}{3}}$

Oberseite der Platte gekühlt oder Unterseite beheizt

Laminare und turbulente Strömung:

 $\begin{array}{ll} 10^3 < {\rm Ra} \ f({\rm Pr}) < 10^{10} & \mbox{0,001} < {\rm Pr} < \infty \\ {\rm Nu} = 0.15 \ (f({\rm Pr}) \ {\rm Ra})^{\frac{1}{3}} \end{array}$

Hinweis: Für f(Pr) ist die Korrekturfunktion aus 13.1.1 zu verwenden.

13.2 Freie Konvektion in Schichten

Der erhöhte Wärmetransport in zylindrischen oder ebenen Schichten mit Spaltweite s aufgrund freier Konvektion wird durch eine "scheinbare Wärmeleitfähigkeit" λ_s berücksichtigt. Den übertragenen Wärmestrom berechnet man mit den Formeln der reinen Wärmeleitung.

Allgemeine Beziehung für Schichten verschiedener Orientierung

$$\frac{\lambda_s}{\lambda} = 1 + \frac{m \operatorname{Ra}^r}{\operatorname{Ra} + n}$$

Gültigkeitsbereich:

 ${\rm Ra}={\rm Gr}\,{\rm Pr}<10^8$

Grashof-Zahl (Charakteristische Länge: Spaltweite s)

Bezugstemperatur für Stoffwerte

$$T_{bez} = \frac{T_{W_1} + T_{W_2}}{2}$$
$$\beta_p = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_{p=const.T=T_{\infty}}$$

 $\mathsf{Gr} = \frac{g \,\beta_p \, s^3 \left(T_{W_1} - T_{W_2} \right)}{\nu^2}$

Thermischer Ausdehnungskoeffizient

Die dimensionslosen Größen m, n, r hängen von der Schichtgeometrie und der Richtung des Wärmestromes ab:

 $\begin{array}{ccc} \dot{q} & m = 0,119 \\ n = 1,45 \times 10^4 \\ r = 1,270 \\ \hline \\ & m = 0,070 \\ n = 0,32 \times 10^4 \\ r = 1,333 \\ \hline \\ & m = 0,0236 \\ n = 1,01 \times 10^4 \\ r = 1,393 \\ \hline \\ & m = 0,043 \\ n = 0,41 \times 10^4 \\ r = 1,360 \\ \hline \\ & m = 0,025 \\ n = 1,30 \times 10^4 \\ r = 1,360 \end{array}$

 $\downarrow \mathbf{g}$

Anhang A

Anhang

A.1 Einheiten, Konstanten, Größen

A.1.1 Basis- und abgeleitete Einheiten

Größe	Einheit			
Name	Zeichen	Name	Zeichen	
Länge	I	Meter	m	
Masse	m	Kilogramm	kg	
Zeit	t	Sekunde	S	
Elektr. Stromstärke	I	Ampere	А	
Temperatur	Т	Kelvin	К	
Stoffmenge	n	Mol	mol	
Lichtstärke	J	Candela	cd	
Kraft	F	Newton	$N=kgm/s^2$	
Energie	E	Joule	J=Nm	
Leistung	Р	Watt	W=Nm/s	
Druck	р	Pascal	$Pa = N/m^2$	

A.1.2 Wesentliche Kenngrößen

deutsche Bezeichnung	englische Bezeichnung	Einheit
Fläche A	area	m ²
Temperaturleitfähigkeit a	thermal diffusivity $lpha$	m^2/s
Wärmeeindringfähigkeit b	thermal effusivity e	$\frac{W\sqrt{s}}{m^2 K}$
lsobare spez. Wärmekapazität c_p	specific heat at const. pressure	J/(kgK)
lsochore spez. Wärmekapazität c_v	specific heat at const. volume	J/(kg K)
Diffusionskoeffizient D_{AB}	binary diffusion coefficient	m^2/s
Energie E	energy	J
spezifische Energie e	specific energy	m^2/s

deutsche Bezeichnung	englische Bezeichnung	Einheit
Kraft F	force	N
Fallbeschleunigung g	gravitational acceleration	m^2/s
Enthalpie H	enthalpy	J
spez. Enthalpie h	specific enthalpy	m^2/s
molare Masse M	molar mass	kg/kmol
Masse m	mass	kg
Massenstrom \dot{m}	mass flow rate	kg/s
Stoffmenge n	amount of substance	mol
Leistung P	power	W
Druck p	pressure	Pa(bar)
Wärmestrom \dot{Q}	heat transfer rate	W
Wärmestromdichte \dot{q}	heat flux	W/m^2
universelle Gaskonstante R_m	universal gas constant	J/(mol K)
spezifische Gaskonstante R	specific gas constant	J/(kg K
spez. Phasenänderungsenthalpie Δh	specific enthalpy of phase change	J/kg
Entropie S	entropy	<u>J</u>
Temperatur T	temperature	K(C)
Zeit t	time	S
Innere Energie U	internal energy E	J
Spez. innere Energie u	specific internal energy e	m^2/s
Volumen V	volume	m ³
Spez. Volumen v	specific volume	m ³ /kg
Arbeit W	work	J
Wärmequellendichte $\dot{\omega}$	rate of energy generation per unit volume	W/m^3
Geschwindigkeit $\vec{w} = (w_1, w_2, w_3)$	velocity	m/s
Wärmeübergangskoeffizient $lpha$	convection heat transfer coefficient h	$W/(m^2 K)$
Stoffübergangskoeffizient β	convection mass transfer coefficient	m/s
lsobarer Ausdehnungskoeffizient eta_p	volumetric thermal expansion coefficient	1/K
Dynamische Viskosität η	dynamic viscosity μ	$N s/m^2$
Wärmeleitfähigkeit λ	thermal conductivity k	W/(m K)
Kinematische Viskosität $ u$	kinematic viscosity $ u$	m^2/s
Dichte ρ	mass density	kg/m^3

A.1.3 Wesentliche Konstanten

Boltzmann-Konstante	k	=	1,38054	10^{-23}	J K
Planck-Konstante	h	=	6,6256	10^{-34}	Js
Stefan-Boltzmann-Konstante	σ	=	5,6697	10^{-8}	$\frac{W}{K^4 m^2}$
Avogadro-Konstante	Ν	=	6,02252	10^{23}	$\frac{1}{mol}$
Molare Gaskonstante	R_m	=	8,3143		$\frac{J}{molK}$
Normdruck (1atm)	р	=	1,01325	10^{5}	Pa
Normtemperatur	Т	=	273,15		K
Normvolumen	V	=	22,4136		$\frac{m^3}{kmol}$
Normfallbeschleunigung	g	=	9,80665		$\frac{m}{s^2}$

A.1.4 Kenngrößen der Wärme- und Stoffübertragung

$Biot-Zahl\; (\lambda = \lambda_{Festk\"{orper}})$	Bi =	$\frac{\alpha L}{\lambda}$
Fourier-Zahl	Fo~=~	$\frac{at}{L^2}$
Grashof-Zahl	Gr=	$\frac{g\beta_p\DeltaTL^3}{\nu^2}$
Jakob-Zahl	Ja =	$\frac{c_p \Delta T}{\Delta h_V}$
Lewis-Zahl	$Le\ =$	$\frac{a}{D}$
Nußelt-Zahl ($\lambda=\lambda_{Fluid}$)	Nu =	$\frac{\alpha L}{\lambda}$
Peclet-Zahl	Pe=	Re Pr
Prandtl-Zahl	Pr =	$\frac{\nu}{a}$
Rayleigh-Zahl	Ra =	Gr Pr
Reynolds-Zahl	${\sf Re}=$	$\frac{w L}{\nu}$
Schmidt-Zahl	Sc=	Le Pr
Stanton-Zahl	St =	Nu Pe
Temperaturleitfähigkeit	a =	$\frac{\lambda}{\varrho c_{p}} \left[\frac{m^2}{s}\right]$

A.2 Stoffwerte

A.2.1 Feststoffe

A.2.1.1 Metalle und Legierungen

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$\times 10^{-6} \frac{m^2}{s}$	$\frac{W\sqrt{s}}{Km^2}$
Aluminium 99,99%	20	2700	0,945	238,4	93,27	24663
Antimon	0	6690	0,209	230,23	164,5	17941
Beryllium (gesintert)	20	1877	1,779	154,88	46,41	22741
Blei	20	11341	0,131	35,25	23,55	7236
Bronze (6 Sn, 9 Zn, 84 Cu, 1 Pb)	20	8800	0,377	61,7	18,6	14307
Chrom	20	6900	0,457	69,07	21,88	14757
Duraluminium (94-96 Al; 3-5 Cu;	20	2700	0,912	165	67,0	20156
0,5 Vg)						
Eisen						
Cr-Ni-Stahl (X 12 CrN; 18,8)	20	7800	0,502	14,65	3,57	7573
Cr-Al-Stahl (X 10 Cr Al 24) (hitze-	20	7600	0,50	16,74	4,41	7975
beständig)						
V2A-Stahl vergütet	20	8000	0,477	15	3,93	7565
Cr-Stahl (X 8 Cr 17) (rost- und	20	7700	0,46	25,11	7,09	9430
säurebeständig)						
Kesselblech H III	20	7900	0,47	52,3	14,1	13935
Gold (rein)	20	19290	0,128	295,11	119,46	26993
Iridium	20	22400	0,133	146,51	49,0	20892
Kadmium	100	8640	0,246	94,19	44,22	14149
Kobalt	20	8780	0,427	69,06	18,27	16090
Konstantan (Cu Ni 44)	20	8900	0,410	22,6	6,03	1081
Kupfer (rein)	20	8960	0,385	393,9	114,21	36861
Kupfer (Handelsware)	20	8300	0,419	372	107	35968
Magnesium	20	1740	1,046	159,07	87,36	17015
Mangan ($lpha$ -Mn)	20	7430	0,477	20,93	5,64	8612
Manganin (84 Cu, 4 Ni, 12 Mn)	20	8400	0,406	21,86	6,33	8634
Messing (Ms 58)	20	8440	0,376	113,02	35,29	18938
Messing (Ms 60)	20	8400	0,376	113,02	35,77	18893
Molybdän	20	10200	0,272	146,51	53,2	20161

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	kJ kg K	W Km	$ imes 10^{-6} rac{m^2}{s}$	$\frac{W\sqrt{s}}{Km^2}$
Monel 505	20-100	8360	0,544	19,67	4,18	9458
Natrium	20	970	1,234	133,9	111,11	12660
Nickel 98,7%	0	8847	0,418	69,06	18,67	15980
Niob	20	8570	0,267	52,33	22,72	10942
Palladium	20	11970	0,242	71,16	24,51	14357
Platin (sehr rein)	20	21500	0,133	71,16	24,82	14264
Rhenium	20	21020	0,138	48,14	16,54	11817
Rhodium	20	12500	0,246	150,7	48,78	21526
Silber	20	10497	0,234	407,72	165,69	31646
Tantal	20	16500	0,142	54,4	23,2	11289
Titan	20	4505	0,522	15,49	6,38	6035
Uran 238 gesintert 99,9%	500	18000	0,174	30,3	9,67	9741
UO_2	600	11000	0,313	4,18	1,21	3797
UO_2	1400	10900	0,339	2,3	0,62	2915
UO_2	1000	10960	0,326	3,05	0,85	3301
Vanadin	0-100	6120	0,498	30,97	10,16	9715
Wismut	20-100	9798	0,125	7,62	5,72	3054
Wolfram	20	19000	0,138	129,76	49,2	18445
Wood?sche Legierung	20	1056	0,1473	12,77	82,0	1407
(50 Zn; 25 Pb; 12,5 Cd; 12,5 Sn)						
Zink	20	7130	0,385	113,02	41,16	17603
Zinn (weißes $\beta - Zinn$)	20	7290	0,221	62,79	39,1	10057
Zirkonium	20-125	6490	0,290	16,74	8,5	5613

A.2.1.2 Bau- und Isolierstoffe

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	kJ kg K	W Km	$ imes 10^{-6} \ {m^2\over s}$	$\frac{W\sqrt{s}}{Km^2}$
Kiesbeton (lufttrocken)	20	2200	0,879	1,279	0,661	1572
Mörtel	20	1900	0,8	0,93	0,612	1189
Ziegelmauerwerk	20	1400-	0,836	0,58-0,81	0,495-0,538	823,9-1104
(lufttrocken)		1800				
Verputz	20	1690	0,8	0,793	0,586	1035
Asphalt	20	2120	0,92	0,70	0,358	1168

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ {m^2\over s}$	$\frac{W\sqrt{s}}{Km^2}$
Asbestplatten	20	2000	0,79	0,70	0,443	1051
Ziegelstein (trocken)	20	1600-	0,84	0,38-0,52	0,28-0,34	714-886
		1800				
Gips	20	1000	1,09	0,51	0,468	745
Buche (längs der Faser; 20%	30	700	2,021	0,35	0,247	703,6
H_2O)						
Kork (roh)	0	240	1,67-	0,16-0,30	0,399-0,598	253,2-387,9
			2,09			
Zement (Portland, frisch,	20	3100-	0,75	0,298	0,12-0,13	845
trocken)		3200				
Eiche (radial)	20	600-	2,39	0,17-0,25	0,11-0,13	493-691
		800				
Tanne / Fichte (radial)	20	410-	2,72	0,14	0,12	395
		420				
Asbestpappe	30	770	0,815	0,116	0,184	269,8
Asbestfaser	50	470	0,815	0,11	0,287	205,3
Schlackenwolle	25	200	0,8	0,05	0,312	89,4
Mineralwolle	50	200	0,92	0,046	0,250	92
Korkplatten	30	190	1,88	0,041	0,114	121
Glaswolle	0	200	0,66	0,037	0,280	69,88

A.2.1.3 Mineralien und Gläser

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ {m^2 \over s}$	$\frac{W\sqrt{s}}{Km^2}$
Erdreich (grobkiesig)	20	2040	1,84	0,59	0,157	1488
Schamottsteine	100	1700-	0,84	0,5-1,2	0,33-0,69	844-1419
		2000				
Tonboden	20	1450	0,88	1,28	1,0	1277
Quarz	20	2100-	0,78	1,40	0,717-0,854	1514-1652
		2500				
SiC-Steine (85% SiC)	700	2720	1,05	1,56	0,564	2110
Schiefer	20	2700	0,75	1,83	0,903	1925
(senkrecht zur Schichtung)						

Stoff	Т	ho	c_p	λ	a	b
	°C	kg m ³	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ {m^2\over s}$	$\frac{W\sqrt{s}}{Km^2}$
Sandstein	20	2150-	0,71	1,6-2,1	1,0-1,3	1562-1851
		2300				
Kalkstein	20	2000-	0,741	2,2	0,989-1,48	1805-2211
$(CaCO_3, Kreide)$		3000				
Marmor	20	2500-	0,808	2,8	1,28-1,38	2378-2471
		2700				
Granit	20	2750	0,892	2,9	1,18	2667
Schiefer	20	2700	0,75	2,9	1,43	2423
(parallel zur Schichtung)						
Steinsalz	0	2100-	0,917	6,98	3,46-3,62	3666-4000
		2500				
Spiegelglas	20	2700	0,8	0,76	0,35	1281
Bleiglas	20	2890	0,679	0,7-0,93	0,347-0,461	1172-1350
Thermometerglas	20	2580	0,779	0,965	0,48	1392
$(Jena16^{III})$						
Pyrexglas	20	2240	0,774	1,058	0,61	1354
Fensterglas	20	2480	0,7-	1,163	0,504-0,669	1420-1637
			0,93			
Quarzglas	20	2210	0,728	1,395	0,867	1498

A.2.1.4 Kunststoffe

Stoff	Т	ρ	c_p	λ	a	b
	°C	kg m ³	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ { extsf{m}^2 \over extsf{s}}$	$\frac{W\sqrt{s}}{Km^2}$
Aminoplaste	20	1500	1,67	0,348	0,138	933
Polyethylen	20	920	2,3	0,348	0,164	858
(Lupolen)						
Polyurethan	20	1200	2,09	0,324	0,129	901
Polyamide	20	1130	2,3	0,278-0,30	0,106-0,115	850-883
Polyvinylcarbazol	20	1190	1,25	0,255	0,171	615
(Luvican)						
Bakelit	20	1270	1,59	0,233	0,11	685
Buna	20	1150	1,967	0,23	0,101	721
Zelluloid	20	1380	1,67	0,23	0,099	728

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ {m^2\over s}$	$\frac{W\sqrt{s}}{Km^2}$
Polytetrafluorethylen	20	2200	1,04	0,23	0,1	725
(Teflon)						
Gummi (weich)	20	1100	1,67	0,16-0,23	0,087-0,125	542-650
Palatal	20	1100	1,75	0,185	0,096	596
(ungesättigte						
Polyesterharze)						
Acrylglas (Plexiglas)	20	1180	1,44	0,184	0,108	559
Phenolgießharze	20	1330	1,46	0,174	0,089	581
Vulkanfiber	20	1100-	1,67	0,174	0,07-0,095	565-649
		1450				
Hartgummi (Ebonit)	20	1150	1,42	0,16	0,098	511
Polyvinylchlorid (PVC)	20	1380	0,96	0,15	0,113	445
Polystyrol	20	1050	1,25	0,139	0,105	427
Anilinpreßharz	20	1200	1,67	0,116	0,058	482
Schaumgummi	20	400-	1,67	0,07-0,092	0,104-0,112	216-277
		500				
Iporka-Schaumstoffe	20	5-15	1,37	0,031-0,042	2,04-4,52	14,6-29,4
Styropor-Schaumstoffe	20	15-	1,25	0,029-0,045	0,36-1,54	23,3-75
		100				

A.2.1.5 Verschiedene Stoffe

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ {m^2\over s}$	$\frac{W\sqrt{s}}{Km^2}$
Wolle	20	100	1,72	0,036	0,209	78,7
Rohseide	35	100	1,33	0,049	0,368	80,7
Baumwolle	30	81	1,15	0,059	0,633	74,1
Baumrinde	25	337	1,26	0,074	0,174	177
Kohlenstaub	30	730	1,3	0,12	0,13	337
Papier (gewöhnlich)	20	700	1,2	0,12	0,142	317
Leder (trocken)	20	860	1,49	0,12-0,15	0,09-0,12	392-438
Fett	20	910-	1,93	0,17	0,09-0,096	546-561
		960				
Steinkohle	20	1200-	1,26	0,26	0,1-0,2	626-700
		1500				

Stoff	Т	ρ	c_p	λ	a	b
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$ imes 10^{-6} \ {m^2\over s}$	$\frac{W\sqrt{s}}{Km^2}$
Schwefel	20	2070	0,723	0,265	0,177	629
Paraffin	30	870-	2,9	0,24-0,27	0,09-0,1	778-851
		925				
Schnee	0	560	2,09	0,05-0,2	0,396	730
Zucker (fein)	0	1600	1,25	0,58	0,290	1077
Hochofenschlacke	20	2500-	0,836	0,57	0,227-0,274	1091-1195
		3000				
Porzellan	95	2400	1,08	1,03	0,397	1633
Ton (wenig Sand; 49%	20	1450	0,88	1,28	1,0	1277
feucht)						
Eis	0	917	1,93	2,02	1,243	1973
Carborund SiC	100	1500	0,62	58,2	62,58	7357
Graphit (fest, Natur)	20	2000-	0,6094	155	101,7-127	13740-15361
		2500				

A.2.2 Flüssigkeiten

A.2.2.1 Gesättigtes Wasser

Fluid, g: Gas)
Temperatur
Druck
spezifisches Volumen
Verdampfungsenthalpie
spezifische Wärmekapazitäten
dynamische Viskosität
Wärmeleitfähigkeit
Prandtl-Zahl
${\it W\"armeausdehnungskoeffizient}$

Т	p	v_f	v_g	Δh_{fg}	$c_{p,f}$	$c_{p,g}$	η_f	η_g	λ_f	λ_g	Pr_{f}	Pr_g	β_f	σ
к	bar	$\cdot 10^{-3} rac{\mathrm{m}^3}{\mathrm{kg}}$	$\frac{m^3}{kg}$	kJ kg	_k kg	: <u>J</u> ; K	·10 ⁻	-6 <u>N s</u> m ²	·10 ⁻	-3 <u>W</u> m K	-	_	$\cdot 10^{-6} \frac{1}{\mathrm{K}}$	mN m
273,15	0,00611	1,000	206,3	2502	4,217	1,854	1750	8,021	569	18,2	12,99	0,815	-68,05	75,5
275	0,00697	1,000	181,7	2497	4,211	1,855	1652	8,09	574	18,3	12,22	0,817	-32,74	75,3
280	0,00990	1,000	130,4	2485	4,198	1,858	1422	8,29	582	18,6	10,26	0,825	46,04	74,8
285	0,01387	1,000	99,4	2473	4,189	1,801	1225	8,49	590	18,9	8,81	0,833	114,1	74,3
290	0,01917	1,001	69,7	2401	4,184	1,804	1080	8,09	598	19,3	7,50	0,841	174,0	13,1
295	0.02617	1 002	51 94	2449	4 181	1 868	959	8 89	606	195	6.62	0.849	227 5	72.2
300	0.03531	1 003	39 13	2438	4 179	1 872	855	9.09	613	19.6	5.83	0.857	276.1	71 7
305	0,04712	1,005	29,74	2426	4,178	1,877	769	9,29	620	20,1	5,20	0.865	320,6	70.9
310	0,06221	1,007	22,93	2414	4,178	1,882	695	9,49	628	20,4	4,62	0,873	361,9	70,0
315	0,08132	1,009	17,82	2402	4,179	1,888	631	9,69	634	20,7	4,16	0,883	400,4	69,2
320	0,1053	1,011	13,98	2390	4,180	1,895	577	9,89	640	21,0	3,77	0,894	436,7	68,3
325	0,1351	1,013	11,06	2378	4,182	1,903	528	10,09	645	21,3	3,42	0,901	471,2	67,5
330	0,1719	1,016	8,82	2366	4,184	1,911	489	10,29	650	21,7	3,15	0,908	504,0	66,6
335	0,2167	1,018	7,09	2354	4,186	1,920	453	10,49	656	22,0	2,88	0,916	535,5	65,8
340	0,2713	1,021	5,74	2342	4,188	1,930	420	10,69	660	22,3	2,66	0,925	566,0	64,9
0.45	0.0070	1 00 4	1.000	0000	4 1 0 1	1.041	200	10.00			0.45	0.000	505.4	
345	0,3372	1,024	4,683	2329	4,191	1,941	389	10,89	668	22,6	2,45	0,933	595,4	64,1
350	0,4103	1,027	3,840	2317	4,195	1,954	305	11,09	671	23,0	2,29	0,942	624,2	63,2
355	0,5100	1,030	3,180	2304	4,199	1,908	343	11,29	674	23,3	2,14	0,951	052,3 607.0	61.4
365	0,0209	1,034	2,045	2291	4,203	1,905	306	11,49	677	23,7	2,02	0,900	707.1	60 F
303	0,7514	1,050	2,212	2270	4,209	1,999	500	11,09	011	24,1	1,91	0,909	101,1	00,5
370	0.9040	1.041	1.861	2265	4.214	2.017	289	11.89	679	24.5	1.80	0.978	728.7	59.5
373.15	1.0133	1.044	1.679	2257	4.217	2.029	279	12.02	680	24.8	1.76	0.984	750.1	58.9
375	1,0815	1,045	1,574	2252	4,220	2,036	274	12.09	681	24,9	1,70	0,987	761	58,6
380	1,2869	1,049	1,337	2239	4,226	2,057	260	12,29	683	25,4	1,61	0,999	788	57.6
385	1,5233	1,053	1,142	2225	4,232	2,080	248	12,49	685	25,8	1,53	1,004	814	56,6
390	1,794	1,058	0,980	2212	4,239	2,104	237	12,69	686	26,3	1,47	1,013	841	55,6
400	2,455	1,067	0,731	2183	4,256	2,158	217	13,05	688	27,2	1,34	1,033	896	53,6
410	3,302	1,077	0,553	2153	4,278	2,221	200	13,42	688	28,2	1,24	1,054	952	51,5
420	4,370	1,088	0,425	2123	4,302	2,291	185	13,79	688	29,8	1,16	1,075	1010	49,4
430	5,699	1,099	0,331	2091	4,331	2,369	173	14,14	685	30,4	1,09	1,1		47,2
440	7 222	1 110	0.261	2050	1.26	2.46	160	14 50	602	21 7	1.04	1 1 2		45.1
440	0.310	1,110	0,201	2039	4,30	2,40	162	14,50	678	32.1	1,04	1,12		45,1
460	11 71	1 1 1 3 7	0,200	1080	4 44	2,50	143	15 10	673	34.6	0,99	1 17		40.7
470	14 55	1 152	0 136	1951	4 48	2,00	136	15.54	667	36.3	0,92	12		38.5
480	17,90	1,167	0,111	1912	4,53	2,94	129	15,88	660	38,1	0,89	1,23		36,2
490	21,83	1,184	0,0922	1870	4,59	3,10	124	16,23	651	40,1	0,87	1,25	-	33,9
500	26,40	1,203	0,0766	1825	4,66	3,27	118	16,59	642	42,3	0,86	1,28	-	31,6
510	31,66	1,222	0,0631	1779	4,74	3,47	113	16,95	631	44,7	0,85	1,31		29,3
520	37,70	1,244	0,0525	1730	4,84	3,70	108	17,33	621	47,5	0,84	1,35	-	26,9
530	44,58	1,268	0,0445	1679	4,95	3,96	104	17,72	608	50,6	0,85	1,39	-	24,5
E 40	F0.00	1 00 4	0.0275	1000	F 00	4.07	101	10.1	F04	F 40	0.00	1.40		00.1
540	52,38	1,294	0,03/5	1022	5,08	4,21	101	10,1	594	54,0	0,80	1,43		22,1
550	71 00	1,323	0,0317	1/00	5,24	4,04	97	10,0	562	62 7	0,87	1,47		17.2
570	82.16	1,300	0,0209	1/20	5,45	5,09	94 01	10.7	5/2	76.7	0,90	1,52		15.0
580	02,10	1 /22	0,0220	1252	6.00	6.40	88	20 /	528	76.7	0,94	1.59		12.8
300	54,51	1,400	0,0193	1333	0,00	0,40	00	20,4	520	10,1	0,99	1,00		12,0
590	108.3	1,482	0,0163	1274	6,41	7.35	84	21.5	513	84.1	1.05	1.84		10.5
600	123,5	1,541	0,0137	1176	7,00	8,75	81	22,7	497	92,9	1,14	2,15		8,4
610	137,3	1,612	0,0115	1068	7,85	11,1	77	24,1	467	103	1,30	2,60	-	6,3

T	p	v_f	v_g	Δh_{fg}	$c_{p,f}$	$c_{p,g}$	η_f	η_g	λ_f	λ_g	Pr_{f}	Pr_g	β_f	σ
к	bar	$\cdot 10^{-3} rac{\mathrm{m}^3}{\mathrm{kg}}$	$\frac{m^3}{kg}$	<u>kJ</u> kg	_k kg	: <u>J</u> ;K	·10	$-6 \frac{Ns}{m^2}$	·10 ⁻	3 <u>W</u> m K	-	-	$\cdot 10^{-6} \frac{1}{\mathrm{K}}$	mN m
620	159,1	1,705	0,0094	941	9,35	15,4	72	25,9	444	114	1,52	3,46	-	4,5
625	169,1	1,778	0,0085	858	10,6	18,3	70	27,0	430	121	1,65	4,20	-	3,5
630	179,7	1,856	0,0075	781	12,6	22,1	67	28,0	412	130	2,0	4,8	-	2,6
635	190,9	1,935	0,0066	683	16,4	27,6	64	30,0	392	141	2,7	6,0	-	1,5
640	202,7	2,075	0,0057	560	26	42	59	32,0	367	155	4,2	9,6	-	0,8
645	215,2	2,351	0,0045	361	90	-	54	37,0	331	178	12	26	-	0,1
647,3	221,2	3,170	0,0032	0	∞	∞	45	45,0	238	238	∞	∞	-	0,0

A.2.2.2 Verschiedene Flüssigkeiten

Stoff	Т	ρ	c_p	λ	β	η	ν	a	Pr	p_s	σ
	°C	kg m ³	<u>kJ</u> kg K	W Km	$10^{-3} \frac{1}{K}$	$10^{-6} \frac{\mathrm{N}\mathrm{s}}{\mathrm{m}^2}$	$10^{-6} \frac{m^2}{s}$	$10^{-6} \frac{m^2}{s}$	_	bar	mN m
Aceton C_3H_6O	20	790,4	2,21	0,180	1,43	322	0,407	0,103	3,88	-	24,0
Äthylalkohol	20	789,2	2,432	0,180	1,1	1190	1,508	0,092	16,32	-	-
Äthylenglykol	20	1113	0,382	0,250	0,64	21317	19,15	0,094	203	-	48,4
$C_2H_4(OH)_2$											
Äthylenglykol	100	1056	2,742	0,263	0,67	2403	2,27	0,091	24,9	-	41,3
$C_2H_4(OH)_2$											
Ammoniak	20	610	4,77	0,494	2,44	220	0,361	0,17	2,12	-	-
NH_3											
Benzol C_6H_6	20	879,1	1,738	0,154	1,06	650	0,740	0,10	7,33	-	-
Chlorophorm	20	1489	0,979	0,121	1,26	570	0,383	0,085	4,505	-	-
$CHCl_3$											
Diphyl	20	1061,5	1,59	0,140		5835,2	5,5	0,080	68,75	-	-
(73,5%											
Diphenyloxid,											
26,5%											
Diphenyl)											
Flugmotorenöl	60	868	2,01	0,141	0,70	71240	81,89	0,081	1011	-	-
Frigen 11	0	1534	0,879	0,098		541,5	0,353	0,073	4,84	0,4	-
$CFCl_3$											
Frigen 12	20	1394	0,934	0,084		292,62	0,209	0,064	3,28	3,08	-
CF_2Cl_2											
Frigen 13	20	1119	1,21	0,058		220	0,193	0,042	4,2	19,7	-
CF_3Cl											
Frigen 22	0	1285	1,18	0,098		242,9	0,189	0,06	3,16	5	-
CHF_2Cl											

Stoff	Т	ρ	c_p	λ	β	η	ν	a	Pr	p_s	σ
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$10^{-3} \frac{1}{\mathrm{K}}$	$10^{-6} \frac{\mathrm{N}\mathrm{s}}{\mathrm{m}^2}$	$10^{-6} \frac{\mathrm{m}^2}{\mathrm{s}}$	$10^{-6} \frac{\mathrm{m}^2}{\mathrm{s}}$	_	bar	mN m
Frigen 113	0	1621	0,909	0,080		928,8	0,573	0,054	10,62	0,15	-
$C_2F_3Cl_3$											
Frigen 114	0	1530	0,94	0,076		470,3	0,307	0,053	5,8	0,86	-
$CF_2ClCFCl_2$											
Glycerin	20	1260,4	2,43	0,27	0,49	14990	11,89	0,0916	129,8	-	-
$C_3H_5(OH)_3$											
Olivenöl	60	920	1,97	0,16	0,68	80800	87,82	0,088	998	-	-
Paraffin (liquid)	20	~ 900	2,13	0,26	0,76	12800	14,22	0,135	205,34	-	-
Schwefelsäure	10	1834	1,414	0,544	0,57	27000	14,7	0,215	68,37	-	-
H_2SO_4											
Siliconöl	25	970	1,465	0,168		242500	250	0,118	2118	-	-
AK 250											
Sole 20% MgCl	-20	1184	2,99	0,392	1,0	12959	10,94	0,11	98,8	-	-
Spindelöl	60	845	2,02	0,142	0,75	4179	4,94	0,083	59,4	-	-
Terpentin	0	860	1,719	0,14	0,90	1460	1,69	0,094	18,06	-	-
Tetrachlor-	20	1595	0,841	0,105	1,22	970	0,608	0,077	7,86	-	-
kohlenstoff											
CCl_4											
Toluol	20	866	1,7	0,140	1,08	586	0,676	0,095	7,12	-	-
$C_6H_5CH_3$											
Transformator-	60	842	2,09	0,122	0,70	7318	8,7	0,069	126	-	-
Öl											
Wasser	20	998,2	4,183	0,598	0,2	1002	1,006	0,142	7,03	-	72,8

A.2.2.3 Flüssige Metalle und Legierungen

Stoff	Т	ρ	c_p	λ	β	η	ν	a	Pr
	°C	kg m ³	<u>kJ</u> kg K	W Km	$\cdot 10^{-3} \frac{1}{\mathrm{K}}$	$\cdot 10^{-6} \ \tfrac{\rm Ns}{\rm m^2}$	$\cdot 10^{-6}~\frac{\mathrm{m^2}}{\mathrm{s}}$	$\cdot 10^{-6} \frac{m^2}{s}$	_
Kalium	200	795	0,791	45,82	0,29	341,7	0,429	72,86	0,0059
Rubidium	39	1475	0,382	21,57		484,4	0,328	38,3	0,0085
Cäsium	28,5	1840	0,251	13,57		475,3	0,258	29,4	0,0086
Natrium	100	927	1,385	85,84	0,280	705	0,760	66,85	0,011
Zinn	300	6940	0,255	31,55	0,10	1672	0,241	17,82	0,0135
Wismut	300	10030	0,150	14,61		1662	0,166	9,71	0,0176
Na-K-Legierung	100	847	0,941	23,2		529	0,624	29,1	0,021
(22% Na)									

Stoff	Т	ρ	c_p	λ	β	η	ν	a	Pr
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$\cdot 10^{-3} \frac{1}{K}$	$\cdot 10^{-6} \frac{\mathrm{Ns}}{\mathrm{m}^2}$	$\cdot 10^{-6} \frac{m^2}{s}$	$\cdot 10^{-6} \ \frac{\mathrm{m^2}}{\mathrm{s}}$	_
Blei	400	10590	0,147	15,08	0,120	2116	0,199	9,69	0,0217
Quecksilber	20	13550	0,139	8,02	0,181	1550	0,114	4,25	0,0266
Blei-Wismut-	200	10486	0,146	11,71		2548	0,243	7,6	0,0322
Legierung									
(44,5% Pb)									
Lithium	200	515	4,14	45,93	0,18	569,4	1,10	21,51	0,0514

A.2.3 Gase

A.2.3.1 Reine anorganische Gase (Dämpfe)

Stoff	Т	ρ	c_p	λ	η	ν	a	Pr
	°C	kg m ³	<u>kJ</u> kg K	W Km	$\cdot 10^{-6} \frac{\mathrm{Ns}}{\mathrm{m}^2}$	$\cdot 10^{-6} \frac{m^2}{s}$	$\cdot 10^{-6} \frac{m^2}{s}$	_
Ammoniak NH_3	100	0,551	2,232	0,030	13,0	23,6	24,9	0,97
Argon	0	1,78	0,524	0,018	22,2	16,1	24,8	0,65
Chlor	0	3,22	0,502	0,008	12,3	3,82	4,96	0,77
Kohlendioxid CO_2	50	1,648	0,875	0,0178	16,2	9,8	12,6	0,80
Helium	20	0,1785		0,1436	18,6	104,2		
Kohlenmonoxid CO	0	1,250	1,051	0,022	16,6	13,28	16,74	0,794
Luft (760 Torr)	20	1,2045	1,005	0,0257	18,2	15,11	21,19	0,713
Neon	0	0,90	1,03	0,046	29,8	33,5	50,2	0,668
Sauerstoff O_2	0	1,428	0,915	0,026	20,3	18,4	25,7	0,716
Schwefeldioxid	0	2,89	0,624	0,0084	11,6	4,0	4,76	0,86
Stickstoff N_2	0	1,25	1,042	0,024	16,6	13,26	18,3	0,725
Stickstoffoxid NO	0	1,34	1,009	0,023	17,9	13,38	17,3	0,774
Wasserdampf	100	0,589	2,135	0,029	12,85	21,7	19,61	1,12
Wasserstoff H_2	50	0,075	14,36	0,202	9,42	126	191	0,67

A.2.3.2 Reine organische Gase (Dämpfe)

Stoff	Т	ρ	c_p	λ	η	ν	a	Pr
	°C	$\frac{\text{kg}}{\text{m}^3}$	<u>kJ</u> kg K	W Km	$\cdot 10^{-6} \frac{\mathrm{Ns}}{\mathrm{m}^2}$	$\cdot 10^{-6} \ \tfrac{\mathrm{m^2}}{\mathrm{s}}$	$\cdot 10^{-6} \frac{m^2}{s}$	-
Aceton C_3H_6O	0	0,792	1,45	0,0096	6,6	8,33	8,36	0,996
Acetylen C_2H_2	0	1,17	1,641	0,018	9,6	8,2	9,38	0,874

Stoff	Т	ρ	c_p	λ	η	ν	a	Pr
	°C	$\frac{\text{kg}}{\text{m}^3}$	kJ kg K	W Km	$\cdot 10^{-6} \ \tfrac{\rm Ns}{\rm m^2}$	$\cdot 10^{-6} \frac{m^2}{s}$	$\cdot 10^{-6} \frac{m^2}{s}$	_
Ethan	0	2,05	1,667	0,018	8,6	4,19	5,27	0,797
Benzol C_6H_6		4,0	1,09	0,01	7,4	1,85	2,29	0,807
Chlorophorm $CHCl_3$		5,28	0,607	0,007	10	2,45	2,82	0,869
Methan CH_4		0,55	2,25	0,033	10,8	19,47	26,67	0,730
Frigene								
bei Sättigungsdruck								
Frigen 11 $CFCl_3$	0	2,481	0,549	0,0077	10,2	4,1	6,0	0,71
Frigen 12 CF_2Cl_2	0	17,65	0,547	0,0097	11,8	0,68	0,99	0,69
Frigen 13 CF_3Cl	0	134	0,620	0,0115	13,6	0,1	0,16	0,77
Frigen 22 CHF_2Cl	0	21,45	0,587	0,0107	12,0	0,56	0,8	0,7
Frigen 114 CF_2ClCF_2Cl	20	9,59	0,653	0,0109	11,2	1,17	2,5	0,47

A.2.3.3 Trockene Luft bei niedrigen Drücken

							bei 1 atm	
Т	c_p	c_v	γ	η	λ	Pr	ρ	ν
K	<u>kJ</u> kg K	<u>kJ</u> kg K		$\cdot 10^{-5} \ {\rm kg \over m s}$	$\cdot 10^{-2} \frac{W}{mK}$		$\frac{\text{kg}}{\text{m}^3}$	$\cdot 10^{-5} \frac{m^2}{s}$
175	1,0023	0,7152	1,401	1,182	1,593	0,744	2,017	0,586
200	1,0025	0,7154	1,401	1,329	1,809	0,736	1,765	0,753
225	1,0027	0,7156	1,401	1,467	2,020	0,728	1,569	0,935
250	1,0031	0,7160	1,401	1,599	2,227	0,720	1,412	1,132
275	1,0038	0,7167	1,401	1,725	2,428	0,713	1,284	1,343
300	1,0049	0,7178	1,400	1,846	2,624	0,707	1,177	1,568
325	1,0063	0,7192	1,400	1,962	2,816	0,701	1,086	1,807
350	1,0082	0,7211	1,398	2,075	3,003	0,697	1,009	2,056
375	1,0106	0,7235	1,397	2,181	3,186	0,692	0,9413	2,317
400	1,0135	0,7264	1,395	2,286	3,365	0,688	0,8824	2,591
450	1,0206	0,7335	1,391	2,485	3,710	0,684	0,7844	3,168
500	1,0295	0,7424	1,387	2,670	4,041	0,680	0,7060	3,782
550	1,0398	0,7527	1,381	2,849	4,357	0,680	0,6418	4,439
600	1,0511	0,7640	1,376	3,017	4,661	0,680	0,5883	5,128
650	1,0629	0,7758	1,370	3,178	4,954	0,682	0,5430	5,853
700	1,0750	0,7879	1,364	3,332	5,236	0,684	0,5043	6,607
750	1,0870	0,7999	1,359	3,482	5,509	0,687	0,4706	7,399
800	1,0987	0,8116	1,354	3,624	5,774	0,690	0,4412	8,214
850	1,1101	0,8230	1,349	3,763	6,030	0,693	0,4153	9,061

							bei 1 atm	
Т	c_p	c_v	γ	η	λ	Pr	ρ	ν
K	<u>kJ</u> kg K	<u>kJ</u> kg K		$\cdot 10^{-5} \frac{\text{kg}}{\text{ms}}$	$\cdot 10^{-2} \frac{\text{W}}{\text{m K}}$		kg m ³	$\cdot 10^{-5} \frac{{\rm m}^2}{{ m s}}$
900	1,1209	0,8338	1,344	3,897	6,276	0,696	0,3922	9,936
950	1,1313	0,8442	1,340	4,026	6,520	0,699	0,3716	10,83
1000	1,1411	0,8540	1,336	4,153	6,754	0,702	0,3530	11,76
1050	1,1502	0,8631	1,333	4,276	6,985	0,704	0,3362	12,72
1100	1,1589	0,8718	1,329	4,396	7,209	0,707	0,3209	13,70
1150	1,1670	0,8799	1,326	4,511	7,427	0,709	0,3069	14,70
1200	1,1746	0,8875	1,323	4,626	7,640	0,711	0,2941	15,73
1250	1,1817	0,8946	1,321	4,736	7,849	0,713	0,2824	16,77
1300	1,1884	0,9013	1,319	4,846	8,054	0,715	0,2715	17,85
1350	1,1946	0,9075	1,316	4,952	8,253	0,717	0,2615	18,94
1400	1,2005	0,9134	1,314	5,057	8,450	0,719	0,2521	20,06
1500	1,2112	0,9241	1,311	5,264	8,831	0,722	0,2353	22,36
1600	1,2207	0,9336	1,308	5,457	9,199	0,724	0,2206	24,74
1700	1,2293	0,9422	1,305	5,646	9,554	0,726	0,2076	27,20
1800	1,2370	0,9499	1,302	5,829	9,899	0,728	0,1961	29,72
1900	1,2440	0,9569	1,300	6,008	10,233	0,730	0,1858	32,34
2000	1,2505	0,9634	1,298	-	-	-	0,1765	-
2100	1,2564	0,9693	1,296	-	-	-	0,1681	-
2200	1,2619	0,9748	1,295	-	-	-	0,1604	-
2300	1,2669	0,9798	1,293	-	-	-	0,1535	-
2400	1,2717	0,9846	1,292	-	_	-	0,1471	-
2500	1,2762	0,9891	1,290	-	-	_	0,1412	-
2600	1,2803	0,9932	1,289	-	-	-	0,1358	-
2700	1,2843	0,9972	1,288	_	_	_	0,1307	-
2800	1,2881	1,0010	1,287	-	_	_	0,1261	-
2900	1,2916	1,0045	1,286	-	_	_	0,1217	-
3000	1,2949	1,0078	1,285	_	–	_	0,1177	—

Für die Zusammenstellung der Stoffwerte wurden folgende Quellen benützt: [12], [7], [1], [27], [5], [2], [9], [13], [14], [17], [18], [21], [20], [25], [6], [10]

A.3 Mathematische Grundlagen

A.3.1 Ableitung und Entwicklung einer Funktion

A.3.1.1 Definition

Die Ableitung einer Funktion einer Veränderlichen y = f(x) ist eine neue Funktion.

$$f'(x) = \frac{dy}{dx}$$

Die erste Ableitung f'(x) entspricht der Steigung der Funktion f(x) an der Stelle x und ergibt sich aus der Differenz zweier Funktionswerte bei infinitesimal kleinem Abstand.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \tan \alpha$$

Die zweite Ableitung f''(x) einer Funktion f(x) folgt aus der nochmaligen Ableitung der Funktion f'(x).

$$f''(x) = \frac{d}{dx} \left(f'(x) \right) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

Der Ausdruck d^2y ist das Differential des Differentials dy mit der Dimension von y. Dagegen ist dx^2 das Quadrat des Differentiales dx mit der Dimension von x^2 .

Die partielle Ableitung einer Funktion mehrerer Veränderlicher u = f(x, y, z, t)nach der Variablen x wird durch folgende Gleichung definiert:

$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z, t) - f(x, y, z, t)}{\Delta x}$$

Das vollständige Differential der Funktion u = f(x, y, z, t) folgt aus den einzelnen partiellen Ableitungen.

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz + \frac{\partial u}{\partial t} dt$$

(c) W. Polifke, TUM

A.3.1.2 Taylor'sche Reihe

Taylor'sche Reihe 1.: Entwicklung einer Funktion über eine differentielle Länge

Der Funktionswert $y(x + \Delta x)$ einer stetigen Funktion f(x) ergibt sich aus der Funktion und deren Ableitungen an der Stelle x und dem Restglied R_n (Taylor'sche Reihe).

$$y(x + \Delta x) = y(x) + \frac{\Delta x}{1!} \frac{\partial y}{\partial x} + \frac{\Delta x^2}{2!} \frac{\partial^2 y}{\partial x^2} + \dots + R_n$$

Mit dem Übergang zu infinitesimal kleinen Differenzen Δx und Vernachlässigung von kleinen Größen zweiter und höherer Ordnung folgt

$$y(x + \Delta x) = y(x) + \frac{\partial y}{\partial x} \Delta x$$

Taylor'sche Reihe 2.: Abschätzung einer Funktion in einem Intervall

Stetige Funktionen f(x), die für x=a alle Ableitungen besitzen, können oftmals mit Hilfe der Taylorreihe in einem Intervall um diesen Punkt a als Summe einer Potenzreihe dargestellt werden:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_{n+1}(x)$$

Beispiel:

$$\begin{aligned} \sin(x)|_{x=\pi/2} &\approx & \sin(\frac{\pi}{2}) + \frac{\cos(\frac{\pi}{2})}{1}(x - \frac{\pi}{2}) + \frac{-\sin(\frac{\pi}{2})}{2}(x - \frac{\pi}{2})^2 = 1 - \frac{1}{2}(x - \frac{\pi}{2})^2 \\ &\approx & -\frac{1}{2}x^2 + \frac{\pi}{2}x + (1 - \frac{\pi^2}{8}) \end{aligned}$$

Gebräuchliche Näherungsformeln

 \dots für kleine x

$$(1+x)^n \approx 1 + nx + n(n-1)\frac{x^2}{2} + \dots$$
$$\ln(1+x) \approx x - \frac{x^2}{2} + \dots$$
$$\exp x \approx 1 + x + \frac{x^2}{2} + \dots$$
$$\sin x \approx x - \frac{x^3}{6} + \dots$$
$$\cos x \approx 1 - \frac{x^2}{2} + \dots$$
$$\tan x \approx x + \frac{x^3}{3} + \dots$$
A.3.1.3 Differentiationsregeln

Funktion	Ableitung der Funktion
y(x) = u(x) + v(x)	$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$
y(x) = C u(x)	$\frac{dy}{dx} = C \frac{du}{dx}$
y(x) = u(x) v(x)	$\frac{dy}{dx} = \frac{du}{dx}v + \frac{dv}{dx}u$
$y(x) = \frac{u(x)}{v(x)}$	$\frac{dy}{dx} = \frac{\frac{du}{dx}v - \frac{dv}{dx}u}{v^2}$
y = u(v); v = f(x)	$\frac{dy}{dx} = \frac{du}{dv} \frac{df(x)}{dx}$
$y \neq f(x)$	$\frac{dy}{dx} = 0$
$y = x^n \ (n \neq 0)$	$\frac{dy}{dx} = n x^{n-1}$
$y = \ln x \ (x > 0)$	$\frac{dy}{dx} = \frac{1}{x}$
$y = e^x$	$\frac{dy}{dx} = e^x$
$y = a^x$	$\frac{dy}{dx} = a^x \ln a$
$y = \sin x$	$\frac{dy}{dx} = \cos x$
$y = \cos x$	$\frac{dy}{dx} = -\sin x$
$y = \sinh x$	$\frac{dy}{dx} = \cosh x$
$y = \cosh x$	$\frac{dy}{dx} = \sinh x$
$y = \tanh x$	$\frac{dy}{dx} = \frac{1}{\cosh^2 x}$

A.3.1.4 Differentiation unter dem Integralzeichen

Für das partielle Differential eines Integrals der Funktion f(x, y) zwischen den Kurven a(x) und b(x) gilt:

$$\frac{\partial}{\partial x} \int_{a(x)}^{b(x)} f(x,y) \, dy = \int_{a(x)}^{b(x)} \frac{\partial f(x,y)}{\partial x} \, dy + b'(x) \cdot f(x,b(x)) - a'(x) \cdot f(x,a(x))$$

A.3.2 Integration einer Funktion und Mittelwert

A.3.2.1 Definition

Als Stammfunktion einer gegebenen Funktion f(x) bezeichnet man eine Funktion F(x), deren Ableitung gleich der Funktion f(x) ist:

$$\frac{dF(x)}{dx} = f(x)$$

Das unbestimmte Integral einer Funktion f(x) ergibt sich aus der Stammfunktion F(x) und einer beliebigen Konstanten C:

$$\int f(x)dx = F(x) + C$$

Das bestimmte Integral der Funktion f(x) im Bereich $a \le x \le b$ ist gleich der Differenz der zwei Stammfunktionen an der Stelle x = b und x = a:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Dieses Integral entspricht dem Zahlenwert der Fläche A(abcd) und ergibt sich aus der Summe der Funktionswerte $y = f(x_i)$ bei infinitesimal kleiner Schrittweite $\Delta x = x_i - x_{i-1}$:

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x \to 0} \Delta x \sum_{i=1}^{n} f(x_i) = A(abcd)$$

Mittelwert einer Funktion

Der Mittelwert \bar{y} einer Funktion f(x,y,z) im Volumen V ist definiert durch die Beziehung

$$\bar{y} = \frac{\int\limits_{0}^{V} f(x, y, z) dV}{\int\limits_{0}^{V} dV} = \frac{1}{V} \int\limits_{0}^{V} f(x, y, z) dV$$

A.3.2.2 Integrationsregeln

Funktion	Integral der Funktion
y = C u(x)	$\int y dx = C \int u dx$
y = u(x) + v(x) $du(x)$	$\int y dx = \int u dx + \int v dx$
$y = \frac{\frac{1}{dx}}{u(x)}$	$\int y dx = \ln(u(x)) + C$
$y = u(x)\frac{dv(x)}{dx}$	$\int_{b} y dx = u v - \int_{\beta=f(b)} v \frac{du(x)}{dx} dx$
$y = u(x), v = f(x), x = \bar{f}(v)$	$\int_{a} y dx = \int_{\alpha=f(a)} y dv d\bar{f}(v) dv$
$y = C_1$	$\int y dx = C_1 x + C_2$
$y = x^n$; $n \neq -1$	$\int y dx = \frac{1}{n+1} x^{n+1} + C$
$y = \frac{1}{x}; x > 0$	$\int y dx = \ln x + C$
$y = e^x$	$\int y dx = \mathbf{e}^x + C$
$y = a^x$	$\int \int y dx = \frac{1}{\ln a} a^x + C$
$y = \sin x$	$\int y dx = -\cos x + C$
$y = \cos x$	$\int y dx = \sin x + C$
$y = \sinh x$	$\int y dx = \cosh x + C$
$y = \cosh x$	$\int y dx = \sinh x + C$
$y = \tanh x$	$\int y dx = \ln \cosh x + C$

A.3.3 Lösen von Differentialgleichungen

A.3.3.1 Gewöhnliche Differentialgleichung 1. Ordnung

Als allgemeine Lösung einer Differentialgleichung $f\left(\frac{dy}{dx}, y, x\right)$ folgt durch Integration eine Funktion g(y, x, C). Mit der Bestimmung der Konstanten C über eine Randbedingung (bzw. Anfangsbedingung) ergibt sich die spezielle Lösung y(x). Elementar integrierbare Differentialgleichungen: Separierbare DGL:

 $\frac{dy}{dx} + u(x)v(y) = 0$ Trennung der Variablen

$$\int \frac{dy}{v(y)} + \int u(x)dx = C$$

Ähnlichkeits-DGL:

$$\frac{dy}{dx} + u\left(\frac{y}{x}\right) = 0$$

Substitution mit $z := \frac{y}{x}$ $\frac{dz}{dx} + \frac{1}{x}(z+u(z)) = 0$

 $\rightarrow y = z x$ anschließend: Trennung der Variablen (siehe Separierbare DGL)

Inhomogene lineare DGL:

$$\frac{dy}{dx} + u(x) \, y = v(x)$$

Zugehörige homogene DGL

 $\frac{dy}{dx} + u(x)y = 0$

 $y_p = C(x) g(x)$

Lösung der homogenen DGL durch Trennung der Variablen $y_h = C g(x)$

 \rightarrow Allgemeine Lösung durch Variation der Konstanten: C = C(x)

 \rightarrow Ableitung bilden

- - $\frac{dy_p}{dx} = \frac{dC(x)}{dx}g(x) + C(x)\frac{dg(x)}{dx}$

 \rightarrow Einsetzen in die inhomogene DGL C(x) muss herausfallen!

$$\rightarrow \text{Auflösen nach } \frac{dC(x)}{dx}$$

$$\rightarrow \text{Integrieren}$$
und einsetzen
$$y_p = C(x) g(x)$$

$$\Rightarrow \text{Allgemeine Lösung:} \qquad y = y_b + y_p$$

Bernoulli-DGL:

$$\frac{dy}{dx} + u(x)y = v(x)y^n$$

Substitution mit $y = z^{\frac{1}{1-n}}$

$$\frac{1}{1-n}\frac{dz}{dx} + u(x)z = v(x)$$

 \rightarrow Lineare DGL, Weiter siehe unter Inhomogene lineare DGL

A.3.3.2 Lineare Differentialgleichung 2. Ordnung

Als allgemeine Lösung einer Differentialgleichung $f\left(\frac{d^2y}{dx^2}, \frac{dy}{dx}, y, x\right)$ folgt eine Funktion $g(y, x, C_1, C_2)$. Mit der Bestimmung der Konstanten C_1 und C_2 über 2 Randbedingungen ergibt sich die spezielle Lösung y(x)

Homogene lineare Differentialgleichung 2. Ordnung

$$rac{d^2y}{dx^2} - arac{dy}{dx} \pm \delta^2 y = 0$$
 (a beliebig, $\delta^2 \ge 0$)

Zugehörige charakteristische Gleichung mit

$$\frac{d^2y}{dx^2} \longrightarrow k^2 \qquad \frac{dy}{dx} \longrightarrow k \qquad \text{und } y \longrightarrow 1$$
$$\implies k^2 - ak \pm \delta^2 = 0$$

Lösung der charakteristischen Gleichung:

$$k_{1/2} = \frac{a}{2} \pm \sqrt{\frac{a^2}{4} \mp \delta^2}$$

Allgemeine Lösung der DGL:

$$y = C_1 \, \mathrm{e}^{k_1 \, x} + C_2 \, \mathrm{e}^{k_2 \, x}$$

Spezialfall: a = 0

$$\frac{d^2y}{dx^2} \pm \delta^2 y = 0 \qquad (\delta^2 > 0)$$

Bei **positivem Vorzeichen** bei δ^2 folgt wegen $k_{1/2} = \sqrt{-\delta^2} = \pm i\delta$ mit der Euler´schen Formel für rein imaginäre Exponenten die allgemeine Lösung:

$$y = B_1 \sin(\delta x) + B_2 \cos(\delta x)$$

Bei **negativem Vorzeichen** folgt wegen $k_{1/2} = \pm \delta$ die allgemeine Lösung :

$$y = C_1 \,\mathrm{e}^{+\delta x} + C_2 \,\mathrm{e}^{-\delta x}$$

Unter Verwendung der Hyperbelfunktionen

$$\sinh(\delta x) = \frac{e^{+\delta x} - e^{-\delta x}}{2}$$
 und $\cosh(\delta x) = \frac{e^{+\delta x} + e^{-\delta x}}{2}$

lautet die allgemeine Lösung:

$$y = A_1 \sinh(\delta x) + A_2 \cosh(\delta x)$$

Die Verwendung dieser Form der allgemeinen Lösung ist besonders günstig, wenn das betrachtete Gebiet ein beidseitig geschlossenes Intervall ist. Außerdem sind die Differentiationsregeln für die Hyperbelfunktionen sehr einfach.

Inhomogene lineare Differentialgleichung 2. Ordnung

$$\frac{d^2y}{dx^2} - a\frac{dy}{dx} - \delta^2 y = s(x) \qquad \text{(a beliebig, } \delta^2 > 0\text{)}$$

Die allgemeine Lösung setzt sich in der Form $y = y_h + y_p$ zusammen, mit

$$y_h$$
: Lösung der homogenen DGL $\frac{d^2y_h}{dx^2} - a\frac{dy_h}{dx}$

$$\frac{d^2y_h}{dx^2} - a\frac{dy_h}{dx} - \delta^2 y_h = 0$$

 y_p : Partikulärlösung .

Das allgemeingültige Verfahren zur Bestimmung der Partikulärlösung ist das Verfahren der Variation der Konstanten.

In den meisten Fällen ist es jedoch möglich, verbleibende Konstanten in einem Lösungsansatz y_p nach der Art des Störgliedes durch Koeffizientenvergleich zu ermitteln. Variation der Konstanten:

© W. Polifke, TUM

Allgemeine Lösung der homogenen DGL: (s.o.)

$$y_h = c_1 y_1(x) + c_2 y_2(x)$$

Ansatz für eine spezielle Lösung:

$$y_p = c_1(x) y_1(x) + c_2(x) y_2(x)$$

Zur Bestimmung der Koeffizienten $c_1(x)$ und $c_2(x)$ muß man folgendes Gleichungssystem lösen:

$$y_1(x) c'_1(x) + y_2(x) c'_2(x) = 0$$

$$y'_1(x) c'_1(x) + y'_2(x) c'_2(x) = r(x)$$

Anschließend ermittle man $c'_1(x)$ und $c'_2(x)$.

Durch Integration bestimme man **irgendwelche** Stammfunktionen von $c'_1(x)$ und $c'_2(x)$:

$$c_1(x) = \int c'_1(x) dx$$
$$c_2(x) = \int c'_2(x) dx.$$

Die spezielle Lösung der y_p der DGL lautet somit:

$$y_p = c_1(x) y_1(x) + c_2(x) y_2(x)$$

Störgliedansatz:

Hat die Störfunktion r(x) die Gestalt

$$r_1(x) = e^{\alpha x} \cos \beta x P(x)$$

$$r_2(x) = e^{\alpha x} \sin \beta x P(x)$$

oder bei Summen aus $r_1(x)$ und $r_2(x)$,

dann kann der Störgliedansatz verwendet werden. P(x) ist dabei ein Polynom der Form

$$P(x) = A_0 + A_1 x + A_2 x^2 + \dots$$

Aus der folgenden	Tabelle ist	nun ein	Ansatz	auszuwählen:
-------------------	-------------	---------	--------	--------------

Störfunktion $r(x)$	lst s eine Lsg. der	Ansatz für y_p
	charakt. Gleichung?	
$e^{sx} P(x)$	$s \neq k_1$ oder k_2	$y_p = e^{sx} Q(x)$
	s m-fache Lsg.	$y_p = x^m \mathrm{e}^{sx} Q(x)$
$e^{\alpha x} \cos \beta x P(x)$	$s = \alpha + i\beta$ nicht Lsg.	$y_p = \mathbf{e}^{\alpha x} \left(Q(x) \cos \beta x + R(x) \sin \beta x \right)$
	$s = \alpha + i\beta m$ -fache Lsg.	$y_p = x^m e^{\alpha x} \left(Q(x) \cos \beta x + R(x) \sin \beta x \right)$
$e^{\alpha x} \sin \beta x P(x)$	$s = \alpha + i\beta$ nicht Lsg.	$y_p = \mathbf{e}^{\alpha x} \left(Q(x) \cos \beta x + R(x) \sin \beta x \right)$
	$s = \alpha + i\beta m$ -fache Lsg.	$y_p = x^m e^{\alpha x} \left(Q(x) \cos \beta x + R(x) \sin \beta x \right)$

Q(x) und R(x) sind dabei Polynome desselben Grades wie P(x) mit unbestimmten Koeffizienten, also z.B. $Q(x) = a + bx + cx^2 + \dots$

Anschließend bildet man die ersten beiden Ableitungen von y_p und setzt diese dann in die inhomogene DGL ein.

Durch Koeffizientenvergleich erhält man die Koeffizienten der Polynome Q(x) und R(x). Daraus er hält man dann y_p .

Allgemeine Lösung der DGL:

 $y = y_h + y_p$

A.3.3.3 Partielle Differentialgleichungen

Die eindimensionale instationäre Wärmeleitung wird behandelt in [16, 24, 4, 19] (Kap. 14) Eine ausführliche Abhandlung über die Anwendung der Laplace-Transformation für Wärmeleitungsprobleme findet sich bei Tautz [24].

A.3.4 Vektorrechnung

Allgemeine Symbole:

Nabla-Operator:
$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)^T$$
Laplace-Operator: $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ Einheitsvektoren: $\vec{e}_x, \vec{e}_y, \vec{e}_z$ Indexschreibweise: $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = a_i b_i$ (mit Summenkonvention)

10

Vektorrechnung mit Summenkonvention A.3.4.1

Definitionen

Kronecker-Delta:

$$\delta_{ij} = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}$$

Total antisymmetrischer Levi-Civita Tensor:

$$\epsilon_{ijk} = \begin{cases} +1 & \text{gerade Permutation, } \epsilon \in \{(1,2,3), (2,3,1), (3,1,2)\} \\ -1 & \text{ungerade Permutation} \\ 0 & \text{keine Permutation} \end{cases}$$

Kontraktion über den Index des antisymmetrischen Tensors:

$$\epsilon_{ijk}\,\epsilon_{ilm} = \delta_{jl}\,\delta_{km} - \delta_{jm}\,\delta_{kl}.$$

Vektoranalyse mit Summenkonvention

Über gleiche Indizes wird summiert, und damit schreibt man z.B. das Skalarprodukt zweier Vektoren einfach:

$$\vec{a} \cdot \vec{b} = a_i b_i$$

Analog gilt für die Divergenz eines Vektorfeldes:

$$\nabla \cdot \vec{u} = \frac{\partial u_i}{\partial x_i}.$$

Mit der Definition für den antisymmetrischen Tensor folgt für Kreuzprodukt bzw. die Rotation $\vec{\omega}$ eines Vektorfeldes \vec{u} :

$$(\vec{a} \times b)_i = \epsilon_{ijk} a_j b_k,$$

 $\vec{\omega}_i = (\text{rot } \vec{u})_i = (\nabla \times \vec{u})_i = \epsilon_{ijk} \frac{\partial u_k}{\partial x_i}$

Rechenregeln für Vektoranalyse mit Summenkonvention Mit obigen Definitionen lassen sich viele Vektoridentitäten leicht herleiten, z.B.:

$$\nabla \times (\nabla \times \vec{u}) = \nabla (\nabla \cdot \vec{u}) - \nabla^2 \vec{u}.$$

A.3.4.2 Satz von Gauß:

$$\int_{\partial V} \vec{w} \, d\vec{A} = \int_{V} (\nabla \vec{w}) \, dV$$
$$bzw. \quad \int_{\partial V} w_i \, dA_i = \int_{V} \frac{\partial w_i}{\partial x_i} \, dV$$

Für die Zusammenstellung der mathematischen Grundlagen wurde folgende Literatur verwendet: [3], [15], [22], [16].

A.3.4.3 Kartesische Koordinaten

Erste Ableitung

Der Gradient eines skalaren Feldes S ist ein Vektor

$$\nabla S = \mathsf{grad}S = \frac{\partial S}{\partial x}\,\vec{e_x} + \frac{\partial S}{\partial y}\,\vec{e_y} + \frac{\partial S}{\partial z}\,\vec{e_z}$$

Der Gradient eines skalaren Feldes S in eine Raumrichtung i ist ein Skalar

$$\left(\nabla S\right)_i = \frac{\partial S}{\partial x_i}$$

Die Divergenz eines vektoriellen Feldes \vec{V} ist ein Skalar

$$\nabla \cdot \vec{V} = \operatorname{div} \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z} = \partial_i V_i$$

Die Rotation eines vektoriellen Feldes \vec{V} ist ein Vektor

$$\nabla \times \vec{V} = \operatorname{rot} V = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \vec{e}_x + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \vec{e}_y + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \vec{e}_z$$

Die 1-fache Ableitung eines tensoriellen Feldes $\vec{\vec{W}}$ ist ein Vektor

$$\nabla \vec{W} = \left(\frac{\partial W_{xx}}{\partial x} + \frac{\partial W_{yx}}{\partial y} + \frac{\partial W_{zx}}{\partial z}\right) \vec{e}_x + \left(\frac{\partial W_{xy}}{\partial x} + \frac{\partial W_{yy}}{\partial y} + \frac{\partial W_{zy}}{\partial z}\right) \vec{e}_y + \left(\frac{\partial W_{xz}}{\partial x} + \frac{\partial W_{yz}}{\partial y} + \frac{\partial W_{zz}}{\partial z}\right) \vec{e}_z$$

Zweite Ableitung

Die zweifache Ableitung eines skalaren Feldes S ist ein Skalar

$$\nabla^2 S = \triangle S = \operatorname{div} \, (\operatorname{grad} S) = \frac{\partial^2 S}{\partial x^2} + \frac{\partial^2 S}{\partial y^2} + \frac{\partial^2 S}{\partial z^2} = \frac{\partial^2}{\partial x_i \partial x_i} S$$

Die zweifache Ableitung eines vektoriellen Feldes \vec{V} ist ein Vektor

$$\begin{aligned} \nabla^2 \vec{V} &= \Delta \vec{V} = \operatorname{grad}^2 \vec{V} \\ &= \left(\frac{\partial^2 V_x}{\partial x^2} + \frac{\partial^2 V_x}{\partial y^2} + \frac{\partial^2 V_x}{\partial z^2} \right) \vec{e_x} + \left(\frac{\partial^2 V_y}{\partial x^2} + \frac{\partial^2 V_y}{\partial y^2} + \frac{\partial^2 V_y}{\partial z^2} \right) \vec{e_y} + \left(\frac{\partial^2 V_z}{\partial x^2} + \frac{\partial^2 V_z}{\partial y^2} + \frac{\partial^2 V_z}{\partial z^2} \right) \vec{e_z} \\ &= \left(\frac{\partial^2 V_i}{\partial x_l \partial x_l}, \frac{\partial^2 V_j}{\partial x_l \partial x_l}, \frac{\partial^2 V_k}{\partial x_l \partial x_l} \right)^T \end{aligned}$$

A.3.4.4 Zylinderkoordinaten:

 $x = r \, \cos(\varphi), y = r \, \sin(\varphi), z = z$

$$gradS = \nabla S = \frac{\partial S}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial S}{\partial \varphi} \vec{e_\varphi} + \frac{\partial S}{\partial z} \vec{e_z}$$
$$div \vec{V} = \nabla \cdot \vec{V} = \frac{1}{r} \frac{\partial (r V_r)}{\partial r} + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

$$\operatorname{rot} \vec{V} = \nabla \times \vec{V} = \left(\frac{1}{r} \frac{\partial V_z}{\partial \varphi} - \frac{\partial V_\varphi}{\partial z}\right) \vec{e_r} + \left(\frac{\partial V_r}{\partial z} - \frac{\partial V_z}{\partial r}\right) \vec{e_\varphi} + \frac{1}{r} \left(\frac{\partial (r \, V_\varphi)}{\partial \varphi} - \frac{\partial V_r}{\partial \varphi}\right) \vec{e_z}$$

A.3.4.5 Kugelkoordinaten:

 $x=r\,\sin(\vartheta)\,\cos(\varphi), y=r\,\sin(\vartheta)\,\sin(\varphi), z=r\,\cos(\vartheta)$

$$\begin{aligned} \operatorname{grad} S &= \nabla S = \frac{1}{r} \frac{\partial S}{\partial \vartheta} \vec{e}_{\vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial S}{\partial \varphi} \vec{e}_{\varphi} + \frac{\partial S}{\partial r} \vec{e}_{r} \\ \operatorname{div} \vec{V} &= \nabla \cdot \vec{V} = \frac{1}{r^{2}} \frac{\partial (r^{2} V_{r})}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta V_{\vartheta})}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial V_{\varphi}}{\partial \varphi} \\ \operatorname{rot} \vec{V} &= \left(\frac{1}{r \sin \vartheta} \frac{\partial V_{r}}{\partial \varphi} - \frac{1}{r} \frac{\partial (r V_{\varphi})}{\partial r} \right) \vec{e}_{\vartheta} + \frac{1}{r} \left(\frac{\partial (r V_{\vartheta})}{\partial r} - \frac{\partial V_{r}}{\partial \vartheta} \right) \vec{e}_{\varphi} + \\ &+ \frac{1}{r \sin \vartheta} \left(\frac{\partial (\sin \vartheta V_{\varphi})}{\partial \vartheta} - \frac{\partial V_{\vartheta}}{\partial \varphi} \right) \vec{e}_{r} \end{aligned}$$

A.4 Weitere thermodynamische Grundlagen

A.4.1 Quasi-eindimensionale Rohr- und Kanalströmung mit veränderlicher Querschnittsfläche

Bilanz am differentiellen Element mit Umfang O:

A.4.1.1 Massenbilanz, Kontinuitätsgleichung:

A.4.1.2 Impulsbilanz, Impulsgleichung

$$\frac{\partial(\rho A w)}{\partial t} = -\frac{\partial(\rho w A w)}{\partial z} - \frac{\partial(p A)}{\partial z} + p\frac{\partial A}{\partial z} - \tau O - \rho A g$$

Mit der Kontinuitätsgleichung

$$\rho A \frac{\partial w}{\partial t} = -\rho w A \frac{\partial w}{\partial z} - A \frac{\partial p}{\partial z} - \tau O - \rho A g$$

A.4.1.3 Energiebilanz, Umformungen und Vereinfachungen

Gesamtbilanz:

Fourierscher Wärmeleitungsansatz:

$$\dot{Q} = -\lambda A \frac{\partial T}{\partial z}$$

$$\frac{\partial \left(\rho A(u+\frac{w^2}{2}+gz)\right)}{\partial t} = -\frac{\partial \left(\rho w A(u+\frac{w^2}{2}+gz)\right)}{\partial z} - \frac{\partial (pwA)}{\partial z} + \frac{\partial}{\partial z} \left(\lambda A \frac{\partial T}{\partial z}\right) + q_u \frac{O}{\cos\beta} + A\dot{\omega}$$
$$\frac{\partial \left(\rho A(u+\frac{w^2}{2})\right)}{\partial t} = -\frac{\partial \left(\rho w A(u+\frac{w^2}{2})\right)}{\partial z} - \rho w Ag - \frac{\partial (pwA)}{\partial z} + \frac{\partial}{\partial z} \left(\lambda A \frac{\partial T}{\partial z}\right) + q_u \frac{O}{\cos\beta} + A\dot{\omega}$$

© W. Polifke, TUM

Literaturverzeichnis

- [1] Farbwerke Höchst AG. Frigen Handbuch. Höchst, Frankfurt, 1961.
- [2] BASF. Handbuch für Kunststoffe. 6.Auflage; BASF, Ludwigshafen, 1963.
- [3] I.N. Bronstein and K.A. Semendjajew. *Taschenbuch der Mathematik*. 12.Auflage; Teubner, 1973.
- [4] H.S. Carslaw and I.C. Jaeger. Conduction of Heat in Solids. Clarendom Press, Oxford, 2005.
- [5] Chemical Rubber Publish Co. Handbook of Chemistry and Physics. 43rd edition, 1960-1961.
- [6] K. Diels and R. Jaeckl. Leybold-Vakuum-Taschenbuch. Springer, 1958.
- [7] E. Eckert. Wärme- und Stoffaustausch. Springer, 1966.
- [8] K. Stephan H.D. Baehr. Wärme- und Stoffübertragung. 4.Auflage; Springer, Berlin/Heidelberg/New York, 2003.
- [9] H.G. Hirschberg. Kältemittel. Verlag C.F. Müller, 1966.
- [10] F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 6.Auflage; John Wiley & Sons, 2007.
- [11] D. C. Ipsen. Units, Dimensions, and Dimensionless Numbers. Mc Graw-Hill, 1960.
- [12] J.D'Ans and E. Lax. Taschenbuch für Chemiker und Physiker. 2.Auflage; Springer, Berlin/Göttingen/Heidelberg, 1949.
- [13] Kutateladse. Liquid Metal Heat Transfer Media. Chapman and Hall Ltd., New York/London, 1959.
- [14] Landolt-Börnstein. Tabellenwerk Zahlenwerte und Funktionen, Band IV. 1966.
- [15] W. Leupold and R. Conrad. Analysis für Ingenieure. 11.Auflage; Verlag Harry Deutsch, Zürich/Frankfurt, 1975.
- [16] G.E. Meyers. Analytical Mathods in Conduction Heat Transfer. McGraw-Hill, New York, 1971.

- [17] M.A. Michejew. Grundlagen der Wärmeübertragung. Technik Verlag, Berlin, 1961.
- [18] W. Pohlmann. Taschenbuch für Kältetechniker. 13.Auflage, 1956.
- [19] W. Polifke and J. Kopitz. Wärmeübertragung. 2.Auflage; Pearson Studium, 2009.
- [20] Rietschel and Raiß. Heiz- und Lüftungstechnik. 1962.
- [21] Riezler-Walcher. Kerntechnik. Teubner, Stuttgart, 1966.
- [22] I.M. Ryschik. Summen-, Produkt- und Integral-Tafeln. VEB Deutscher Verlag der Wissenschaften, Berlin, 1957.
- [23] Peter Stephan, Karlheinz Schaber, Karl Stephan, and Franz Mayinger. Thermodynamik. Springer-Lehrbuch. Springer Berlin Heidelberg, Berlin, Heidelberg, 19 edition, 2013.
- [24] H. Tautz. Wärmeleitung und Temperaturausgleich. Verlag Chemie, Weinheim, 1971.
- [25] Y.S. Touloukian. Thermodynamic and Transport Properties of Gases, Liquids and Solids. McGraw-Hill, 1959.
- [26] VDI. VDI-Wärmeatlas. 10.Auflage; VDI-Verlag, Düsseldorf, 2006.
- [27] VEB. Handbuch des Chemikers. VEB Verlag Technik, Berlin, 1959.