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Copernicus Satellites S5P and S4

Sentinel-5 Precursor (S5P) and Sentinel-4 (S4) are passive earth observation satellites (with UV/VIS
spectrometers) of the Copernicus programme:

S5P: S4:
- Launched in october 2017 - Launch date due 2023 ' "
- Geostationary J .

- Sun-synchronous orbit at ~ 824 km

CTP coT =

Challenges:

- Large amouts of data

- Near real time requirements (NRT)

—> Application of machine learning techniques to improve performance compared to classical algorithms



Application of neural networks

Observed and fitted spectrum

Problem: o= Nl
Find parameters x that minimize residual ||F(x) — y||, between A A
a known vector y and the mapping of the parameters F(x) | /\ 4 N
— where F is a predefined function fww\\/

for remote sensing: I

x: State of atmosphere, y: Measured spectrum, F: Radiative transfer model (RTM)

Two approaches:
Inversion with RTM as Forward Model Inversion with NN as Forward Model

1. NN as forward model of a spectral fitting algorithm: S v v
« F:X - Y state of atmosphere — spectrum e 2
*  substitutes and approximates the RTM
« gradients (w.r.t to retrieval pamareters)
usually need to be provided for solver ____ Sover o 1 L sover o |
« called in each iteration |

2. NN fordirectinversion:
« F LY - X, spectrum - state of atmosphere ..
- F~lis generally unknown, Siraco momation
can only be inferred through samples
* No gradients needed after learnnig

« called only once

Outputs:
cloud parameters
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NN as forward model

How to get from RTM to NN?

- NN Lifecycle chain:
General procedure to replace RTM
of an inversion algorithm by a NN

m+ntimes

Finding optimal NN configuration
is challenging, aspects:

- NN topology

activation functions

- dataset sampling
- learning algorithm

NN performances for different topoloqgies

Training a NN from the RTM

Smart sampling
from the input space

= training
= Vvalidation
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the NN
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Operational S5P NN performance

Error Histograms for operational S5P CLOUD product neural networks

rel. error clear-sky median: 0.141 %

B clear sky (5-100-160-167)
rel. error cloudy median: 0.6953 %

wem fully cloudy (7-100-100-107)
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Spectral fitting challenges

Residuals between forward model and input spectrum
urface he (gh( 0 “Jlk sur albedo: 0.342,
ith angle: 42 43! vie ith angle: 67 108°, relative azimuth angle: 92.8°

minimum
= reference

With a NN as forward model, a spectral fitting algorithm : x reieat] W,
can be used for the retrieval of the atmospheric parameters

log residual

However, this is still challenging:

cloud top height

 spectral fitting problem is generally ill-posed
- local minima
* real data contains noise in measurements » - TR—_ - 5°

cloud optical thickness

Residual map for an ,easy” problem with a well defined global minimum

- ROCINN algorithm (part of the operational S5P CLOUD product) uses Tikhonov Inversion, which adds
a regularization term to the optimization problem

For difficult cases, good a-priori values for the retrieval parameters are still important

Residuals between forward model and 1nput spectrum Residuals between forward model and input spectrum
surface height: 0.756km, surface albedo: 0.9 surface he.Lght 0.0615km, surface albedo: 0.573,
solar zenith angle: 72.182°, viewing zenith angle: 26.62° rel.at.we azimuth angle: 36.6° solar zenith angle: 88.355°, viewing zenith angle: 56.289°, relative azimuth angle: 40.8°
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NN for direct Inversion

NN for direct inversion can avoid some of the issues of the spectral fitting:
- no fine adjustment of the retrieval algorithm (e.g. regularization parameter, tolerances for convergence, etc.), all

settings via the hyperparameters and training of the network
- no a-priori necessary
- not as affected by local minima
- not as affected by local minima

Input: spectra, viewing geometry, surface parameters, Output: cloud parameters
evaluation for comparison with forward model NN in spectra fitting for validation dataset:
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topologies: NN as forward model:

NN fo
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Error Histograms for retrieved cloud top height
16000 validation samples
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Error Histograms for retrieved cloud optical thickness
10600 validation samples
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- Better results for direct inversion NN: CTH: 0.96% vs 2.46%, COT: 11.92% vs. 17.06% (med. abs. rel. error)



Bayesian Neural Networks

Drawback: No indication for the quality of the results for the direct inversion NN (,blackbox®)
In contrast to the spectral fitting with e.q. iterations, convergence, residual, etc.

—~>Bayesian neural networks (BNN):

 learns uncertainties in model parameters
« output is a probability distribution e
« more complex and are harder to train gm
Evaluation: 200
1. Overall, BNN performs slightly worse than the

conventional NN (taking the means as output) 0

2.

learning is harder (much slower),
current results are likely not optimal

for many deep topologies (> 3 hidden ™ «

layers) learning is not successful

Standard deviation of ouptuts allows
definition of a confidence interval

reference values are mostly inside
- reliable quantification of errors

BNN cloud top height predictions
with 954 contidence interval
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BNN Relative Errors

5 spectra components as input, (20, 20, 20) hidden layers, 10000 validation samples

cth rel. error abs median: 4.068 %
cot rel. error abs median: 10.866 %
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Conclusions and Outlook

1. NN as forward models:

- can improve speed of existing retrieval algorithms by orders of magnitude through substitution of existing radiative
transfer model (RTM)

- many properties from classical retrieval algorithms are inherited:
- retrieval diagnostics
- difficulties with ill posed problems, local minima

2. NN for direct inversion:
- easy to apply, good initial performance, no a-priori needed
- conventional NNs are ,black boxes®, no error quantification
- BNNSs as a possibility to overcome this:

- provide error quantifications

- more complex and harder to train

—->NNs for direct inversion, especially when using BNNs with error quantification, have great potential for retrieving
cloud properties for S4 / S5P as an alternative to the current approach that uses NNs as forward models

- Further investigations in hyperparameter selction and learning have to be made
- Invertible neural networks (INN), that learn forwards and backwards and can also provide distributions are

another interesting approach that should be followed

For further guestions, please contact me: Fabian.Romahn@dlr.de




