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a b s t r a c t 

After recalling the first Brillouin zone (BZ) and the first irreducible Brillouin zone (IBZ) of a lattice in 

terms of its plane crystallographic group, we investigate the danger of restricting a band-gap detection 

to the contour of the IBZ, instead of its full IBZ. Based on hundreds of porous phononic crystal simula- 

tions, we provide for the 17 plane crystallographic groups (i) statistics of the band-gap localizations, (ii) 

probabilities to get non-full band-gaps, and (iii) averages of the bandwidth error made when only the 

IBZ contour is considered. It is found that for phononic crystals, the IBZ contour provides accurate results 

only for highly symmetric lattices. 

© 2017 Elsevier Ltd. All rights reserved. 
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i An update to this article is included at the end
1. Introduction 

For time independent harmonic systems, the properties of a

wave propagating along an axis do not depend on its sense

( Brillouin, 1946 ). For this reason, the irreducible Brillouin zone

(IBZ) is half of the Brillouin zone (BZ), and can be even reduced

when the unit cell possesses some internal symmetries. For in-

stance, for a square or a hexagonal unit cell with its bisectors

and diagonals mirror symmetric, the first IBZ is reduced to a tri-

angle covering an eighth or a twelfth of the first BZ, respec-

tively ( Kittel, 2007 ). These two crystallographic groups ( p4mm and

p6mm ) are the most common ones in literature, and the first IBZ is

most of the time correctly addressed (see for instance Phani et al.,

2006 ). However, for periodic structures with symmetries of lower

order, the first IBZ differs from these two previous examples and

is often wrongly addressed, as attested by a literature review over

the past decade presented in Table 1 . 

The reason of this misunderstanding could be that the theory

for the plane crystallographic group ( Cracknell, 1974 ) and the space

group ( Shmueli, 2008 ) is addressed to group theory experts, while

massive developments of non-symmetric structures are driven by

the potentials of metamaterials, and are often covered by non-
∗ Corresponding author at : KU Leuven, Department of Mechanical Engineering, 
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hysicists (e.g. engineers). It is our first goal in Section 2 to recall

he strategy to identify the plane crystallographic group of a given

attice and then, provide the first BZ and IBZ for each plane crys-

allographic group (since only the first BZ and IBZ are considered

n this manuscript, the term “first” is removed next for a sake of

revity). Note that for quasi-one and quasi-two dimensional waves

ropagating in two and three-dimensional glide or screw symmet-

ic structures, a reduction of the unit cell size is also possible. In-

eed, one can take advantage of the glide or the screw periods, in-

tead of the (longer) translational periodicity ( Maurin, 2016; Mau-

in et al., 2017 ). 

In Section 3 , the localization of the band-gap extrema is inves-

igated with respect to the IBZ. Indeed, the band-gap detection is

ften restricted to the IBZ contour, whereas some counterexamples

xist for non-symmetric periodic lattices ( Nojima and Kamakura,

008; Harrison et al., 2007; Farzbod and Leamy, 2011 ) and for lat-

ices with a mirror reflection ( Harrison et al., 2007; Gorshkov et al.,

017 ). Some additional cases that exhibit similar band-gap proper-

ies but for which the symmetry order of the lattice is higher are

rovided in this manuscript. Moreover, examples are also provided

or which band-gaps observed on the IBZ contour are not full (no

mnidirectional band-gap). 

Finally, hundreds of different porous phononic crystals (plane

train aluminum with periodic vacuum holes) are simulated, and

or each plane crystallographic group, we provide statistics of the

and-gap localization, probabilities that a band-gap detected on

https://doi.org/10.1016/j.ijsolstr.2017.11.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.11.006&domain=pdf
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Table 1 

Some references using the IBZ, ranked according to the plane crystallographic group (PCG) of the investigated lattice. See Section 2 for the nomenclature. By misdefined, 

it is meant that what is stated as the IBZ is not correct, but this might have no influence on the results. Note that in Bigoni et al. (2013) , Zhao and Wang (2016) , 

Bacigalupo and Gambarotta (2016) , Baravelli and Ruzzene (2013) , C.-L.Yang et al. (2017) , Zhu et al. (2014) , Spadoni et al. (2009b) and Tallarico et al. (2017) , the definition 

of the IBZ (the area) is wrong, but its contour is correct. 

PCG IBZ correctly addressed IBZ misdefined 

p1 H.-W.Dong et al. (2014) , Nojima and Kamakura (2008) , 

Meng et al. (2017) , Shim et al. (2015) , Harrison et al. (2007) 

Gao et al. (2016) 

p2 Wang et al. (2015) , Liu2017a 

p4 Wang et al. (2014) Bigoni et al. (2013) , Zhao and Wang (2016) , Bacigalupo and Gambarotta (2016) , 

Baravelli and Ruzzene (2013) , C.-L.Yang et al. (2017) , Liu et al. (2017) 

p1m1 Lardeau et al. (2016) , Harrison et al. (2007) Liu et al. (2009) 

p1g1 

p2mm Spadoni et al. (2009a) , Andreassen et al. (2015) , Chen and 

Elbanna (2016) , Wang et al. (2016b) , Piccolroaz et al. (2017) 

p2mg Chen and Elbanna (2016) 

p2gg Shim et al. (2015) 

c1m1 Gonella and Ruzzene (2008) , Gorshkov et al. (2017) , 

Ahmed et al. (2017) 

Claeys et al. (2016) , Wang et al. (2016a) , H.-W.Dong et al. (2014) 

c2mm Zhu and Deng (2016) , Celli and Gonella (2015) , Casadei and 

Rimoli (2013) 

Wang et al. (2014) 

p3 Zhu et al. (2014) , Tallarico et al. (2017) 

p6 Liu et al. (2011) Reda et al. (2017) , Bacigalupo and Gambarotta (2016) , Spadoni et al. (2009b) 

p4mm H.-W.Dong et al. (2014) , Zhao and Wang (2016) , Trainiti et al. (2016) , 

Wang et al. (2014) , Zhu and Deng (2016) , Craster et al. (2012) , 

Hladky-Hennion et al. (2008) , Palermo and Marzani (2016) , 

Hedayatrasa et al. (2016) , Huang et al. (2017) , Li et al. (2015) ; 

Liu et al. (2009) , Miniaci et al. (2016) , Collet et al. (2011) , 

Meng et al. (2017) , Bacigalupo and Gambarotta (2016) , 

Phani et al. (2006) 

p4gm Trainiti et al. (2016) , Reda et al. (2017) , Shim et al. (2015) 

p3m1 Schaeffer and Ruzzene (2015) , Tallarico et al. (2017) Wang et al. (2016a) 

p31m 

p6mm Gorshkov et al. (2017) , Yilmaz et al. (2007) , Phani et al. (2006) , 

Casadei and Rimoli (2013) , Meng et al. (2017) , Bacigalupo and 

Gambarotta (2016) 
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Table 2 

Direct and reciprocal basis vectors for the 5 Bravais lattices. 

e 1 e 2 e 1 e 2 

Obl. a (1, 0) b (cos θ , sin θ ) 1 
a 
(1 , − tan −1 θ ) 1 

b 
(0 , sin 

−1 θ ) 

Rec. a (1, 0) b (0, 1) 1 
a 
(1 , 0) 1 

b 
(0 , 1) 

Rho. a (1, 0) a (cos θ , sin θ ) 1 
a 
(1 , − tan −1 θ ) 1 

a 
(0 , sin 

−1 θ ) 

Squ. a (1, 0) a (0, 1) 1 
a 
(1 , 0) 1 

a 
(0 , 1) 

Hex. a (1, 0) a ( 1 
2 
, 

√ 
3 

2 
) 1 

a 
(1 , − 1 √ 

3 
) 1 

a 
(0 , 2 √ 

3 
) 
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he IBZ contour is not full, and estimates of the bandwidth error

hen the band-gap detection is restricted to the IBZ contour. Con-

lusions follow. 

. Irreducible Brillouin zone in terms of the plane 

rystallographic group 

Wave propagation in quasi-two-dimensional periodic structures 

s investigated with the Bloch theorem, restricting the analysis to

 single unit cell, and taking advantage of periodic boundary con-

itions ( Brillouin, 1946 ). We denote r P the position of the point P

ithin the reference cell, and by ρP = r P + n 1 e 1 + n 2 e 2 the same

osition P relative to the { n 1 n 2 }th unit cell, where e 1 and e 2 are

he basis vectors of the direct lattice. The reciprocal basis vectors

re denoted e i ( i = 1 , 2 ) and are given by e i e 
j = δi j . Assuming a

armonic wave with angular frequency ω and amplitude ˆ u , the

ave displacement u ( r P , t ) at time t and position r P is given by

 ( r P , t) = ˆ u e k ·r P −i ωt , (1)

here i 2 = −1 , k = μ1 e 
1 + μ2 e 

2 is the wave vector, and μ1 = k · e 1 
nd μ2 = k · e 2 are the complex propagation constant components.

he wave at the point ρP yields 

 ( ρP , t) = u ( r P , t) e 
n 1 μ1 + n 2 μ2 . (2)

The unit cells are parallelograms which can take 5 different

hapes (the 5 two-dimensional Bravais lattices), namely oblique,
ectangular, rhombic, square, and hexagonal ( Kittel, 2007 ). The di-

ect and reciprocal vectors for each cell are given in Table 2 and are

llustrated in Fig. 1 . Instead of representing the BZ by a parallelo-

ram, one should use a hexagon, as shown in Fig. 1 . The hexag-

nal representation of the BZ is preferred to the parallelogram

ne, since the longest possible wave-length can be used when all

he directions are considered ( Brillouin, 1946 ). Note that rectangles

nd squares are particular hexagons for which two opposite sides

ave a length null. 

In addition to its various shapes, a unit cell can possess addi-

ional rotational, glide and mirror reflection symmetries, forming

he 17 different plane crystallographic groups, also called the plane

ymmetry groups or the wallpaper groups (see Fig. 2 ). But before

ts description, another group is introduced: the point group. 
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Fig. 1. The oblique (a), rectangular (b), rhombic (c), square (d), and hexagonal (e) unit cells with corresponding BZ. The symbol � indicates that the IBZ in gray, corresponding 

to the groups p1 or p2 , can be arbitrarily rotated around the center �. 

Fig. 2. BZ and IBZ for the 17 plane crystallographic groups. The Bravais lattices are given for the most general configurations, see Table 4 for all compatible ones. For sake 

of clarity, the direct and reciprocal basis vectors are omitted here, but are reported in Fig. 1 . The glide reflection axes are also omitted for p3m1, p31m , and p6mm . 
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Table 3 

The plane crystallographic group of a lattice in terms of its highest order of rotational symmetry and 

its reflection axis ( Radaelli, 2011 ). 

Table 4 

Plane crystallographic group (PCG), point group (PG), possible unit cell shape, IBZ definition and its 

contour, and BZ/IBZ size ratio r . d and r stands for the direct and reciprocal spaces, respectively. 
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The point group of a two-dimensional unit cell is composed by

wo families, the cyclic point group denoted C n , when only rota-

ions are involved, and the dihedral point group, D n , for which the

nit cell possesses at least one mirror or glide reflection symme-

ry. The subscript n indicates the highest order of the rotational

ymmetry (rotation by 360 °/ n ). 
The plane crystallographic group describes periodic lattices and

s denoted by two or four characters for the cyclic and dihedral

oint group, respectively ( Hahn, 2002; Grubaum and Shephard,

013; Radaelli, 2011 ). If no mirror or glide reflection is present, the

omenclature is pn and is equivalent to C n , except that pn is re-

tricted to the description of periodic lattice. When mirror or glide

eflections are present, the crystallographic denotation is pnxy or

nxy . The first letter “p ” or “c ” holds for a primitive or centered

nit cell, respectively. The two last letters indicate symmetries rel-

tive to the main axis of the lattice (the main axis is arbitrarily

hosen between the two translation axes, except if only one of

hem (being the main one) is perpendicular to a mirror axis). The

etters “x ” and “y ” can take the values “m”, “g”, or “1”, holding

or mirror reflection, glide reflection, or none, respectively. More-

ver, “x ” indicates symmetry of axis perpendicular to the main axis

hereas “y ” indicates if the symmetry axis is parallel or tilted by

80 °/ n with respect to the main axis. For instance, p4gm means

hat the lattice has 4-fold rotations, a glide reflection perpendicu-

ar to the main axis, and a mirror axis at 45 °. Once the periodicity

f the lattice is identified, Tables 3 and 4 and Fig. 2 can be used to

etermine the plane crystallographic group of the considered lat-

ice. 
Based on the work of Cracknell (1974) and assuming time-

nvariant media, the IBZ are illustrated for the 17 plane crystallo-

raphic groups in Fig. 2 , and information on the IBZ are tabulated

n Table 4 . 

For unit cells belonging to the cyclic groups, the corresponding

Z are also in the cyclic group. It means that the IBZ can be arbi-

rarily rotated around � (no mirror symmetry) and this justify the

resence of the symbol � on the BZ. Consequently, there is an infi-

ite number of possible polygons for the IBZ, and two of them are

llustrated in Fig. 3 a. However, it is more convenient to use the IBZ

or which the corners correspond to the points X, M, Y, N etc., and

e arbitrary define the first side of the polygon by �X for primi-

ive unit cells and by �Ō for centered unit cells, the other corners

f the polygon being defined in the counter clockwise direction. 

The contour of the IBZ is now discussed. For the reciprocal

pace with mirror symmetries, the choice of IBZ is unique and the

ontour of the IBZ is defined as the boundaries of the IBZ. For the

yclic groups, since the IBZ can be arbitrarily rotated, the definition

f the IBZ contour does not really exist (there is an infinite number

f possible contour that covers the full BZ). 

However, as the goal of the present paper is to provide prob-

bilities of band-gap extrema to be on a given path, a contour is

onstructed artificially by considering the bisectors and the diag-

nals inside the IBZ. Taking advantage of the cyclic rotation and

he translational periodicity of the BZ, some portions are found re-

undant, and a possible minimum path is highlighted in dashed

lack lines for each IBZ (see Figs. 2 and 3 ). This artificial path that

oes not correspond to any possible contour is refereed next as the
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Fig. 3. BZ and IBZ for square unit cells with reciprocal space of symmetry p4 (a), p2mm (b), c2mm (c), and p4mm (d). Note that in (a), the IBZ is not unique and can be 

arbitrarily rotated. 

Fig. 4. Periodic Sierpinski right-angled isosceles triangles with a porosity of 40% (a), and a detailed discretized unit cell (b). Dispersion curves at the contour of the IBZ (c) 

and dispersion surfaces for the full BZ (d). The band-gap, in gray, is not omnidirectional. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

i  

t

 

n  

o

3

 

t  

a  

2  

2  

s  

t  
virtual IBZ contour. For instance, in the reciprocal space of sym-

metry p4 , if the square �XMY � is considered as the IBZ, the path

following the contour and its diagonal is defined by the polyline

�XM �YM �. However, the cyclic group of the BZ is C 4 meaning

that the dispersion curves on the segment �X will be identical as

the one on �Y (the following notation is introduced to denote this

equality: ω 

−→ 

�X 
= ω 

−→ 

�Y 
). For the same reason, ω 

−→ 

MY 
= ω 

−→ 

O ̄X 
, and due to

the periodicity of the reciprocal space, ω 

−→ 

O ̄X 
= ω 

−→ 

MX 
such that one

get ω 

−→ 

MY 
= ω 

−→ 

MX 
. Consequently, the virtual IBZ contour for the re-

ciprocal space of symmetry p4 is the polyline �XM �. 

For those groups, the fact that the virtual contour differs from

the IBZ boundary is a common source of confusion (see Table 1 ).

For instance, for square unit cells, the group p4 ( Fig. 3 a) the vir-

tual contour is the same as the IBZ contour of the group p4mm

( Fig. 3 d), whereas the IBZ area is two times larger and can be the

one of the group p2mm ( Fig. 3 b) or the group c2mm ( Fig. 3 c). An-
ther common source of error for centered unit cells (e.g. Fig. 3 c)

s the fact that their IBZ orientations is shifted by 45 ° with respect

o the ones of some primitive unit cells (e.g. Fig. 3 b). 

Now that the IBZ and its contour are defined, the goal of the

ext section is to see for the 17 lattices what are the consequences

f restricting the band-gap analysis to the IBZ contour. 

. Band-gaps and IBZ contours 

In the literature, the band-gap detection is often restricted to

he IBZ contour, while it has been shown for the groups p1 ( Nojima

nd Kamakura, 2008; Harrison et al., 2007; Farzbod and Leamy,

011 ), p1m1 ( Harrison et al., 2007 ), and c1m1 ( Gorshkov et al.,

017 ) that band-gap extrema can be located inside the IBZ. In this

ection, the probability of occurrence of such an event for each of

he 17 plane crystallographic groups will be provided. But before, a
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Fig. 5. Examples of a p4mm square (a) and a p6mm hexagonal (b) discretized unit cell. 

Fig. 6. Examples of a band-gap (a,b) and dispersion curves intersection (c). The large circles and small dots represent coarse and fine discretization of the wave vectors, 

respectively. For (b), the band-gap is detected with the fine discretization, but not with the coarsest one. For dispersion surfaces, the detection is done in the 4 directions 

(d). 
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tructure already investigated in the literature is revisited, to show

hat the band-gaps observed on the IBZ contour are not always

ull. In this section, all numerical computations are performed us-

ng Matlab . 

.1. Band-gap present on the IBZ contour, but not full 

In this example, the Sierpinski triangle fractal porous phononic

rystal investigated in Wang et al. (2016a) is revisited. We focus

n the case of the first fractal level of the right-angled isosceles

riangle ( Fig. 4 a) with a porosity of 40%. The unit cell, of length

 = 0 . 02 m, is divided into a grid of 30 × 30, and each pixel of this

rid is divided into two right-angled isosceles triangle finite ele-

ents, as shown in Fig. 4 b. As in Wang et al. (2016a) , the pore

re vacuum, and the plane strain matrix material is aluminum,

f density ρ = 2700 kg m 

−3 , and first and second Lamé coeffi-

ient λ = 68 . 3 GPa and μ = 28 . 3 GPa, respectively. The normal-

zed frequency is ω 0 = 2 πc t /l, where c t = 

√ 

E/ρ/ 2 / (1 + ν) , E =
(3 λ + 2 μ) / (μ + λ) and ν = λ/ 2 / (μ + λ) . 

The square unit cell has one of its diagonals mirror symmetric;

he group is c1m1 , and the IBZ is the triangle �Ō XM�. The disper-

ion curves for this path are provided in Fig. 4 c and a band-gap can

e observed around ω/ω = 0 . 36 . However, when the dispersion
0 
urfaces over the full IBZ are considered ( Fig. 4 d), no full band-

ap is obtained. The band-gap is not omnidirectional. This can be

 problem experimentally, where a predicted wave attenuation will

ot be observed. The next part investigates the probability of oc-

urrence of such an event for each plane crystallographic groups. 

.2. Band-gaps, IBZ contours and statistics 

The goal of this part is to answer to the three following ques-

ions: 

• For full band-gaps, what is the probability that an extremum is

not located on the IBZ contour, but inside? 

• When the analyses is restricted to the IBZ contour, what is the

probability that the observed band-gap is not full? 

• When the analyses is restricted to the IBZ contour, what is the

averaged bandwidth error? 

To give an answer to the questions raised above, the mono-

aterial phononic crystal used in the previous example is recon-

idered, although the results might strongly depend on the physics

Bragg/resonance scattering, EM/ED waves...). The aim of this work

s to highlight the differences on the above questions for the dif-

erent symmetries. 
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Fig. 7. Localization in the BZ of 300 randomly selected full band-gap extrema, for the different plane crystallographic groups possessing square ( �) or hexagonal ( ) BZ. 

The scale indicates the percentage of times a position of the IBZ is targeted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1. Problem description 

To get such statistics, hundreds of different geometries have

to be simulated. To this end, two unit-cell types are considered;

square and hexagonal ones, allowing to test the 17 symmetries (see

two examples in Fig. 5 ). The square unit cell is modeled by a grid

of size n × n , where each pixel can take the value 0 (vacuum) or

1 (matter, presence of one element). This give 2 (n 2 ) possible com-

binations, but most of them are not valid. Indeed, the following

constraints have to be respected: 
• All the elements should form a single group. Two elements are

considered grouped if they share an edge. Note that connec-

tions at the corner are considered in the physical model (see

an example in Fig. 5 a), but are not accounted for when detect-

ing the groups to avoid freely rotating elements. 

• To fulfil the periodic boundary conditions, the matter should

join each edge of the unit cell. Moreover, there should be at

least one element by edge mirror symmetric with its opposite

edge. 



F. Maurin et al. / International Journal of Solids and Structures 135 (2018) 26–36 33 

Fig. 8. Averaged orientation of the full band-gaps extrema, for the different plane crystallographic groups possessing square ( �) or hexagonal ( ) BZ. 
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• The unit cell has to respect the desired symmetry group: it is

necessary to check that the unit cell is the minimum one, and

that there are no higher symmetries embedded in the unit cell.

For example, for a p2mm pattern, the bisectors are mirror axes,

but if the diagonals are also mirror axes, the resulting group is

p4mm . 

For a grid of 8 × 8, there are 1.8 × 10 19 possible combinations,

ut the configurations that fulfil the above requirements are too

ew to be detected in a reasonable computational time. In order

o reduce the number of grids to be tested, the symmetry is im-

osed first. This is possible for all the groups except for p1 (no

ymmetry to be imposed), for which the grid is reduced to 6 × 6.

t the end, there are 150 possible grids having the group p4mm ,

hereas for the other symmetries, a subset of around 200 differ-

nt geometries is selected. Note that the subset is not composed by
he 200 first grids, but the selected patterns are spread among all

alid combinations. Indeed, in the way we implement it, only one

ixel changes between two consecutive combinations such that a

ubset formed by consecutive combinations would not be repre-

entative. 

For hexagonal unit cells, the idea is strictly identical, except that

he grid is sheared and inclined by an angle of π /3, and each ele-

ent is cut in two, resulting to an equilateral triangular mesh. The

rid is 8 × 8 for p2, c1m1, c2mm and p6mm , whereas it is 6 × 6 for

1, p3, p6, p3m1 and p31m . 

For a given pattern, each element is then split into 9 (3 by

irections) to generate smaller finite elements. Indeed, the mesh

ize h has to be smaller than 1/8 of the minimum wavelength.

onsequently, the considered frequencies are smaller than w max =
 0 L/ 8 /h . 
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Fig. 9. (a) Fifteenth and sixteenth dispersion surfaces in the IBZ for the unit cell presented in Fig. 5 a. Note that a full band-gap is present between both bands, with the 

maximum of the fifteenth band (circle marker) inside the IBZ. Fifteenth and sixteenth dispersion curves around the IBZ (b) and dispersion bands in the BZ (c) for the unit 

cell presented in Fig. 5 b. Note that the band-gap in gray (b) is not full (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

For the 17 plane crystallographic groups (PCG) with square ( �) and 

hexagonal ( ) unit cells, statistics of the band-gap (BG) localizations, 

probabilities to get non-full band-gaps, and averages of the bandwidth 

(BW) error made when only the IBZ contour is considered. 

For full BG, If restricted to IBZ contour, % of 

PCG % on IBZ contour non-full BG the BW error 

p1 ( �/ ) 23.75/30.85 38.26/29.84 62.01/46.83 

p2 ( �/ ) 40.60/41.86 62.80/62.93 71.52/68.53 

p4 ( �) 66.11 41.90 47.02 

p1m1 ( �) 90.93 4.11 8.26 

p1g1 ( �) 76.45 5.49 14.30 

p2mm ( �) 94.46 8.71 9.99 

p2mg ( �) 87.05 31.19 33.94 

p2gg ( �) 85.50 24.19 27.67 

c1m1 ( �/ ) 84.28/81.98 4.01/6.52 9.24/10.78 

c2mm ( �/ ) 91.07/91.80 17.16/12.07 18.41/13.18 

p3 ( ) 59.36 7.44 16.11 

p6 ( ) 61.42 38.94 44.26 

p4mm ( �) 99.43 3.30 3.30 

p4gm ( �) 97.86 2.09 2.70 

p3m1 ( ) 99.69 3.65 3.65 

p31m ( ) 99.21 0.26 0.30 

p6mm ( ) 10 0.0 0 0.42 0.42 
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s  
When discrete dispersion curves or surfaces are obtained, one

should distinguish between band-gaps and curve/surface intersec-

tions. Given two dispersion curves, the angles α and β are com-

puted at a given discrete wavenumber as illustrated in Fig. 6 . If

α > β , the curves are intersecting ( Fig. 6 c). A band-gap is present

if α < β for all the discrete points of the curve ( Fig. 6 a). Moreover,

the second derivative of the point before in the lower band has to

be negative, whereas the second derivative of the point after in the

upper band has to be positive. Using this method, some band-gaps

can be miss-detected, as shown in Fig. 6 b, but the quality of the

detection improves when the discretization is refined (see zoomed

area). A balance between the quality of the results, and the com-

putation time has to be find. In the present work, the two recip-

rocal vectors are both discretized by 120 steps, and it has been

checked visually for a sample of simulations that the detection is

properly processed. Band-gaps between two surfaces are detected

by investigating band-gaps between two curves along four direc-

tions, as illustrated in Fig. 6 d. Note that the proposed method does

not guaranty that some curves intersect in some other directions,

but better solutions are unknown to the author’s knowledge. Nev-

ertheless, this method seems to work while inspecting some dis-

persion bands. 

3.2.2. Results 

When full band-gaps are present, positions of the extrema rel-

ative to the BZ are plotted in Fig. 7 , for the plane crystallographic

groups possessing square and hexagonal BZ. The first overall obser-

vation is that the extrema are more located on the mirror axes of

the BZ, if present (no mirror axis for the cyclic group). Moreover,

the more there are reflection axes, the less extrema are inside the

IBZ. However, there are some portions of the IBZ contour for which

the probability is low: 

• For the two groups possessing centered square unit cells ( c1m1,

c2mm ), almost no extrema are located on the segments com-

posing the BZ contour (e.g. ] XM [ or ] X Ō [ ). It is explained by the

fact that these axes are not mirror axes. Consequently, when

the analysis is restricted to the IBZ contour, these portions can

be avoided. However, the probability at the middle of the edges

(i.e. X ) is important, and since the band-gap detection cannot

be operated from a single point, at least one segment should

be kept. 

• For the groups p1g1, p1m1, p2gg, p2mg, p2mm and p4mg , some

portions of the BZ contour are without extrema, but we don’t

have proper explanations for these cases. 

As a consequence of the absence of extremum at some portions

of the IBZ contour, the band-gaps are more present in some direc-

tions. This is highlighted by the polar plots of the band-gap ori-

entations provided in Fig. 8 . For instance p4gm will be more direc-

tional than p4mm . As also expected, when the lattice has no mirror
xis, all the directions are targeted even if some peaks are present

t multiples of 45 ° for the square unit cells and 30 ° for the hexago-

al ones. Indeed, several band-gaps can share a same location (see

he color scale of Fig. 7 ), being especially true at the positions in-

icated by letters (e.g. �, X, M ). If one is looking for a unit cell

ith some required band-gap directions, these wind roses can be

sed to fix the unit cell symmetry at an early stage of the design

rocess. 

The probability that a full band-gap extremum is located on the

ontour is given in Table 5 (although it has been shown that some

ortions of the IBZ have a really low probability to have extrema,

oth real or virtual full contours are considered, for conservative

easons). It is found that this probability increases with the sym-

etry order of the lattice, in agreement with the previous obser-

ations. However, contrary to what is often stated in the literature,

or the fully symmetric square unit cell p4mm , the probability is

ot 100% (see the point in the middle of the IBZ in Fig. 7 ). The

nit cell design resulting to this result is shown in Fig. 5 a and de-

ails on the dispersion surfaces are shown in Fig. 9 a. For p6mm ,

onsidering our simulations, the probability is 100%. This does not

uaranty the nonexistence of contradictory examples, but it can be

aid that for this group, the band-gap extrema are located on the

BZ contour. 

Based on these results, one could think that restricting to the

ontour to retrieve band-gaps is sufficient, but this does not mean

hat the band-gaps are full. Indeed, the probability of occurrence of

uch an event is not null, even for the case p6mm , as also shown
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n Table 5 . This non-null percentage results from one unit cell de-

ign shown in Fig. 5 b and for which, the dispersion curve and sur-

aces are shown in Fig. 9 b and c. In conclusion, even with highly-

ymmetric porous phononic crystals, when looking for band-gaps,

ne can first consider the contour to see if band-gaps are possible,

ut then, the omnidirectionality has to be confirmed considering

he full IBZ as proceeded for instance in Bacigalupo et al. (2017) . 

Finally, when the analysis is restricted to the IBZ contour, the

andwidth relative error is given by 

= 

BW IBZcont − BW IBZ 

BW IBZcont 

, (3) 

here the band-gap bandwidth measured on the IBZ contour and

he one from the full surface are denoted by BW IBZcont and BW IBZ ,

espectively. From this equation, if a band-gap extremum is located

n the IBZ contour, the error will be 0% whereas if the band-gap

s not full, the error will be 100%. Band-gap extrema located in-

ide the IBZ will result to intermediate values. It is found that the

andwidth relative error is slightly larger than the percentage of

on-full band-gaps, meaning that when restricting the analysis to

he IBZ contour, the main error will be induced by the detection of

on-full band-gaps. 

As a last comment, for a crystallographic group having both a

quare and a hexagonal representations, their respective probabil-

ties are close, meaning that the results are not so influenced by

he geometry, but more by its symmetries. 

. Conclusions 

When investigating periodic structures, it is primordial to know

he crystallographic group of the considered unit cell, and the first

art of this manuscript reviews how to identify it. The group sym-

etry of a lattice provides the IBZ, avoiding the analysis over the

ull BZ. The second part of the manuscript gives indications on the

onsequences of restricting the analysis to the IBZ contour. If the

attice possesses only rotational symmetries, without any reflection

xis, the probability that extrema are not located on the contour or

hat the band-gaps are not full is high. This probability decreases

ith the number of reflection axes added, and relative good results

an be obtained for the fully symmetric square or hexagonal unit

ells. Although this can be sufficient at an early stage of the de-

ign process, it does not provided a full guaranty that a band-gap

s full or located on the IBZ contour. Consequently, one can use the

BZ contour to pre-detect band-gaps, but their omnidirectionalities

ave to be confirmed considering the full IBZ. 

While this work has been conducted for porous phononic crys-

als, statistics for different physics would deserve additional inves-

igations. 
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The authors regret to have wrongly defined in their code the input to generate figure 4. The consequence is that the dispersion curves

provided in figure 4 does not correspond to the contour for which they are stated. This does not affect the rest of the manuscript and its

conclusions. 

The authors would like to apologise for any inconvenience caused. 
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