
Interim Demo
In this document we want to describe our reasoning and progress during the development
and showcase what we achieved.

Roller Coaster Movement
One of the main features of the game is the chaotic movement of the train. We wanted it to
be as extreme as possible, while maintaining a feeling of control for the player and without
breaking the AI trained enemies completely. Finding the right balance between fun and
frustration will be a challenge, but we hope to get some good feedback in playtesting in order
to tweak it to perfection.

Implementation
For implementation we had two different ideas we wanted to explore. The first one was to
move the roller coaster like a real roller coaster and see how gravity and rigid body physics
affects the objects inside the roller coaster block. The hope was that it already works pretty
well and we can use unity physics to our advantage. The second option was to have a static
level that doesn’t move at all, but at fixed times we apply a strong force to all objects inside
the level to mimic an extreme movement. Since we had a feeling that the first option had the
potential to fail, we kept this option in our backhand, in case something went wrong, but first
focused on testing and implementing the first option. In a later stage we also thought about
combining the two options in case the real movement has too little effect on the movable
objects inside the roller coaster.

Real Roller Coaster Movement
There are multiple advantages of implementing the roller coaster movement as close to
reality as possible. First of all it is easier to design a level with visual feedback of the tracks
for the movement. Furthermore we can use the movement as visual cues to tell the player
we are moving and implement immersion way easier by simply adding a nice background
and implementing windows. And lastly we hope by doing so the physics affecting the player
and enemies stay as close to reality as possible, too. But how did we implement it? For now
we used splines aka cubic bezier curves to model the roller coaster track. A cubic bezier
curve in its simplest form is a set of nested linear interpolations between 4 points in space.
Picture 1:



In Picture 1 for example you see a basic example of a cubic bezier curve. First you
interpolate on the three lines between P0, P1, P2 and P3. A interpolates between P0 and
P1, B between P1 and P2 and C between P2 and P3. Then you connect those three points
and interpolate between those. Here for example D then interpolates between A and B and
E interpolates between B and C. Finally you add a Point interpolating between those last two
point D and E, which gives you P. P then can describe any curve depending on the positions
of P0-P3. Now adding tangents and normals to the points gives you a complete spline with
roation/orientation, so you don’t just make objects follow a path but also adjust their rotation
according to the spline. Luckily we didn’t have to implement all of this logic ourselves. That
alone would have taken a big portion of our development time. We found a Path Creator tool
(credits to Sebatsiona Lague and his project) that we used to create our roller coaster track.
We had to modify it a bit to our needs and had some bugs we fixed, but basically we had a
finished tool to help us create the tracks. So now we needed to model them and add a Level
to it that would follow the path and the orientation of it. For that we first used a simple cube
with some balls inside to mimic movable objects/enemies and let it follow the path. We then
tested how the curvatures impacted the ball movement and then created multiple prototypes
of curves we could use as level. In order to have a basic working level that can be used for
training of the enemies we made one with fairly simple movement, to make the training
easier. In the future we want to go crazy with it, but we need to find a way to efficiently train
the enemies in such an environment without the training taking multiple days. But more on
that in the ML-Agents section. Her an example of an intermediate development step:

Basic Level Design
To make designing the levels fast and easy, we opted out to use mainly the ProBuilder
package of Unity. Additionally, to make the manipulation of objects created with Probuilder
easier, we used ProGrids. This allowed us to precisely control the placements of the objects,
their heights, widths and lengths. When, for example, an object such as a cylinder is being
resized, ProGrids allows the user to increase the height by 1 unit precisely in the chosen

https://github.com/SebLague/Path-Creator


axis. This is especially important for our project as the ml-agents package and machine
learning in general requires very precise and controlled environments for successful training
(no accidental small gaps, same orientation etc.). PolyBrush is used to manipulate objects
and textures in a way similar to painting which again makes prototyping easier and faster.
One of the most useful tools of PolyBrush is UV painting which allows the user to paint
different textures to objects.

Using these tools, we build a complex and a simple level to train our ml-agents in. These are
as follows.

Simple level:

Complex level:

The challenges of working with ProBuilder is that while it is good for rapid prototyping, it is
difficult to make precise and detailed levels with it. Also, it has a steep learning curve as
things get more complicated and erratic if you try to push its limit. It took 10 - 15 hours to be
able to learn it well enough to properly use it. Due to its limited capabilities, it requires a lot of



hacks to get certain things right and it is difficult to learn these tricks since documentation is
very lackluster. The challenges of working with PolyBrush are again very similar and the
challenges of working with ProGrids mainly come from the fact that it is no longer officially
supported and left in a limbo even though it is required to create precise levels.

Regarding the initial plan, we finished the basic level design and are currently improving it by
detailing it out. We are currently testing moveable objects with rigidbody physics to see how
they fit in our gameplay and how to implement them the best way. Due to the difficulties of
using ProBuilder while creating precise and complex objects and structures, we decided to
use Blender for that purpose in order to create ornaments such as a chandelier etc. We plan
to use ProBuilder only for rough level design and then export it to Blender to detail it out.

Player Movement

Implementation

We decided early on that a character controller based on forces and impulses would be
preferable based on the nature of the game. This way the player can interact in a more
natural way with the highly chaotic environment. Currently a simple controller which allows
for moving, jumping, controlling the camera and shooting is implemented. It is currently in a
functional state, but the exact values will require more fine-tuning as we go on in the
development of the game. We think that the ability of the player to control the character well
and precisely will be essential to them being able to navigate the chaotic environment
without becoming highly frustrated.

Additionally, the current implementation only works for keyboard and mouse, but since it
uses Unity’s Input system, it becomes fairly simple to implement functionality for gamepads
as well.

Challenges

One big challenge became immediately apparent when trying to merge the controller and the
moving map, it became extremely difficult to control with the camera and player character
not moving as expected. It turned out that character controllers usually work with the
assumption that the world is static and that the down direction remains the same throughout
the game, which is definitely not the case for our game. On top of that, we became aware of
this issue later in the milestone as the controller and the map were developed separately
and then brought together, leaving us little time to address this issue.

While not perfect right now, we were able to solve the issue in a relatively good way. Now
the camera aligns with the level and its current rotation, making it much easier to see and
keep track of what is going on in the level. The movement also aligns with the level, so the
player and camera can be controlled well. In case we want to implement full rotations of the
map this would need to be modified somewhat, but we do not anticipate this to be a very big
issue.



Weapons and Gunplay

Our main goal is that each weapon the player can use feels unique and can be used either
to disrupt the enemies or move around the level with ease, preferably both. Currently we
have 2 functional weapons implemented into the game, with tools in place to easily create
more from a technical perspective. There are no graphics implemented yet, only placeholder
shapes which will be changed later.

First is our main weapon, which launches a projectile at high speed. This can deal damage
directly to enemies but also will displace them by applying a force upon impact. It also
applies a force to the player, pushing them in the opposite direction, which can be used for
retreats or super jumps. One defining feature of this weapon is that it can be charged by
holding the button. It can gain up to 2 levels of charge depending on how long it was held,
each increasing the size, damage and forces of the projectile.

Our second weapon fires a burst of 5 small projectiles that are not affected by gravity. They
move a bit slower and do not deal damage on impact. However, when they hit an object or
enemy they will stick to it and, after a small delay, they will detonate, dealing damage and
pushing the object hit away. This weapon has a delay before having an effect and is
currently somewhat imprecise with shooting, but it can deal high amounts of damage if all
projectiles hit an enemy.

AI-Part

As a reminder, our main goal is to design a physically based "mannequin" or virtual robot for
the enemies that responds properly to changes in the map (map rotation, acceleration, etc.).

We modeled two different enemy characters from scratch in Blender to have full control over
limb splitting (for later use in limb separation) and body anatomy. Due to a lack of experience
in building a flexible pipeline for iterating the character, we decided to make the 3D model as
good as possible from the start (as opposed to a simpler model, but that would require a
similar amount of refinement in Unity anyway).

The modeling process was very tedious (again, we lacked experience with Blender).

The problem was the use of Blender itself and the lack of know-how about good modeling
techniques: so simple tasks became time consuming:

- How to apply a change to all selected vertices?

- Forgot to apply "Apply Transform" before adding to Unity, resulting in unexpected behavior
(inconsistent scaling + rotation creates a shear matrix for the children that deforms them in
strange ways).

- How to foreground reference art and make it opaque (amazingly, this took us about 30
minutes).

Basically, every step had to be looked up, but using simple primitives was not an option due
to our intended art style.



We managed to create a character that fit our intended concept art. Feedback from our
playtesters was also positive about the aesthetics of our model.

At 250,000 triangles, the model is considered high-poly and would need some retopologizing
to reduce the number of vertices (perhaps combined with normal backing to preserve detail).

The Enemy Spider has a DoF of 48, so it is quite flexible.

A second Enemy, simpler in terms of DoF and polycount, was introduced to simplify
prototyping (16 DoF), using the same script for logical handling.

The first step, the "Hello World of Virtual Robots" so to speak, is to test the rig to see if it can
move to a certain position on a flat plane by applying torque to its joints. For this, we use and
optimize Unity's existing script.

The virtual robot receives as input the position, the local rotation of the joint (relative to its
parent concatenated joint), and several rays searching the ground. The configurable Unity
joints use a PD controller to achieve the desired rotation. In our tests, the custom PID
controller provided no advantage because the motion is very fast (so the integral part can't
build up anyway).

For our first opponent, we used an insect-like rag doll with four legs and 2 joints each,
moving on a flat plane. The reward is to move at a certain speed (between 0.1-20 m/s) and
keep your head gaze on the target. The two reward functions (which are both between 0
and 1) are multiplied to force optimization of both functions.

One study has shown (https://arxiv.org/abs/1812.07035) that in motion matching
applications, 6 parameters instead of quaternions for the rotation representation lead to
better results; we will further test if this will help our case.

Choosing the right reward function

Reinforcement learning finds very creative ways to optimize the reward function or in other
words to “cheat”, making its definition a very tedious task: After each iteration of the code, it
takes about 3 hours on our fastest computer to see a result.

Best slips:

- If you set the penalty for touching the ground too low, the spider will turn on its back and
run this way because it is more stable with this running technique while keeping its eyes on
the target.

- If you set the ground penalty too high, the spider will constantly jump off the cliff/plane
because the drop penalty is too low.

- If the wrong forward vector was accidentally set, it learned to walk backwards.

- When the reward was the reverse of the distance to the target (1 for very close), the spider
moved as close as possible to the target but did not touch it to maximize points. Setting the
reward for reaching the target to “Maxsteps - CurrentStep” solved this problem.



Summary

We have met our goals in the timeline, but only with a severe increase in work time due to
unpredictable bugs.
We have not managed to integrate all parts together in one map (also bc our Git repository
got to big the day of the deadline when we wanted to integrate every part), but are very close
to do so.

Our next steps will be finalizing one map to work and try to make even more complex Enemy
types, weapons, and maps.

Updated Timeline

Updated Task List

Tasks Developer Time

Brainstorming All 10

Game Description Erick 6

Storyline Erick 2

Technical Achievement Matija 4

Bullseye Description Matija 6

Overall Gameplay Description Anil 2

Time/Development Schedule Anil 10



Task List and Timeline Anil 4

Assessment Lorenzo 2

Updating the Wiki Page Lorenzo 2

Presentation Slides Lorenzo 2

One Type of Enemy to Shoot at
that Reacts in Physically
Plausible Way Matija 20

Basic Gun Play Erick 10

Basic Levels Anil 25

Rapid Movement of the
Environment (Only a Few Like
e.g. Rotation) Lorenzo 15

Moveable Objects with
Rigidbody Physics (Level
Design) Anil 7

Keyboard and Mouse Control Matija 15

More Complex Level
Movements (G-force, Free fall,
Sudden Turns, Acceleration) Lorenzo 10

Projectile Weapons (Push
Enemies, Break Things, Cannon
Balls, Spikes etc.) Erick 20

Physically-based Player
Controls (Impulses, Force,
Momentum) Matija 15

Ability to Control Level
Movement (to Some Degree) Anil 10

Mutual Critiques All 1

Determining the Art Style All 10

Determining the Gameplay
Demonstration Content All 2

Prototype Preparation All 4

Feedback Consideration All 1

Iterating over the Game Idea All 2

Prototype Notebook Chapter All 8

Updating Time/Development
Schedule All 4

Updating the Wiki Page Lorenzo 1

Gameplay Demonstration All 1



Presentation Slides All 1

Conduct Playtests All 20

Prepare Playtests Lorenzo 4

Sound Design (Movement of the
Roller Coaster, Music, Weapon
Sounds etc.) Lorenzo 20

Weapons Have Accurate
Knockbacks and Recoils (Such
as Rocket Jumps) Erick 15

Different Enemy Types Matija 30

Water Physics Matija 30

Breakable Objects (Glass,
Boxes, Destructible
Environment) Lorenzo 10

Progress Report Chapter All 5

Updating Time/Development
Schedule All

Updating the Task List and
Timeline All 20

Updating the Wiki Page All 6

Gameplay Demonstration All 10

Presentation Slides All 5

Story and Characters Anil 10

Physics Based Puzzles
(Environmental, Use the
Movement of the Level) Anil 15

More Unique Weapons (Gravity
Gun, Saw Blade, Bombs, etc) Erick 20

Nice Art and Assets Erick 10

Well Trained AI for Bosses Matija 30

Game Controllers (Such as
Xbox and Playstation
Controllers) Matija 5

Alpha Release Chapter All 5

Updating the Task List and
Timeline All 20

Updating the Wiki Page All

Gameplay Demonstration All 1



Cutscenes Anil 10

Multiplayer / Co-op Modes Lorenzo 10

First-player Animations (Arms,
Legs, Doom-like Kills for
Enemies) Anil 25

More Fluid Simulations etc. Matija 20

Shot off Body Parts Move After
They Fall to the Ground etc.
(For Example Like Zombie
Arms). Matija 20

Weapons that Use Fluid
Dynamics Like a Water Jet Gun
etc. Erick 20

Weapon Progression Such as
Adding Mobility Skills to
Weapons (Crossbow Provides a
Hook etc.) Erick 40

Playtesting Notebook Chapter Lorenzo 5

Email to the Supervisors the
Contributions All

Prepare Playtesting Survey Anil 2

Find Playtesters (Minimum of
Five Participants for Playtesting) Lorenzo 2

Updating the Wiki Page All

Presentation Slides All

Conclusion Notebook Chapter All 10

Prepare the Demo Day Poster All 4

Prepare the Compiled Version
of the Game All 5

Prepare the Game Trailer Anil 4

Updating the Task List and
Timeline All 20

Updating the Wiki Page All 1

Demo Day Presentation All 12

Presentation Slides (Final
Release Slides) All 6


