
SS23 Proximity

Firebreath Forest
Alpha Release

Johannes Madest

Mingyang Li

Bassant Elnaggar

Task Progress
Excitement Minigame:

The excitement minigame scene as well as the accompanying game logic have been

finished. In Addition, the UI has been upgraded to incorporate our assets. The

only missing part is the Dragon chasing the player, which will be done during

our next milestone. Furthermore, another aspect that will be focused on

improving the adaptive difficulty to offer an adequate challenge.

Anticipation Minigame:

The Scene for the Anticipation minigame has been finished. In addition, the

game logic is in a complete state with the implementation of the dragon’s

behavior as well as a time limit represented by the sunrise.

In general, the main focus regarding the minigames moving forward will be

revolving around iterative testing and fine tuning.

Main Scene:

The terrain design and fundamental functionalities of the main scene have been

finished. Moving forward, our next focus is to fine-tune the terrain details

1



to complement the roller coaster tracks. Additionally, optimizing the frame

rate will be a crucial aspect of our development process.

If time permits, we also plan to enhance the realism of the rollercoaster

experience by implementing physical calculations for speed adjustments during

uphill and downhill sections.

Implementation
Excitement Minigame:

The Cart the player rides in follows a path created with a Spline Animation.

Yet, this type of component is not particularly designed for situations like

ours, in which the speed of the animated object is dynamic. The Spline

Animator works by defining either a constant speed or a completion time to

calculate the object's traversal. Altering either one of those mid-animation

leads to unwanted behaviors, as the altered value will be treated as if they

have been set from the start, causing large jumps in position.

To circumvent this issue, the progression of this animation is controlled

manually by converting the cart's varying speed values to increases in the

animation's progression.

The UI has been upgraded to incorporate our assets. A dictionary has been used

to access the needed asset for the respective requested button inputs. In

addition, an indicator panel has been added to highlight the currently active

button prompt.

Anticipation Minigame:

The main focus during this milestone in regards to implementation is the

behavior of the dragon. In its current state, the dragon will cycle through

multiple states: Deep, Light and disturbed sleep as well as awake. If the

player keeps their distance, the dragon will transition from deep to light to

awake to deep again on a fixed timer. The dragon’s state can be influenced by

the player making noise. Each action the player takes has a noise level

attached to them. Depending on the player’s noise as well as the current

distance to the dragon, a noise value is calculated. If this value exceeds a

certain threshold during the dragon’s normal sleep phase, it will transition

2



to the disturbed sleep state, after which the dragon will awake shortly after.

Once the dragon is awake, it will look around and check whether it can see the

player. If the player remains in the dragon's vision for too long, they will

be considered detected and the game will end.

To limit the total amount of time the player has to collect gold, we

implemented a sunrise. In its current state, it functions by locking the

dragon's state to awake after a certain time has passed, which is indicated by

a constantly increasing light intensity.

Roller Coaster and Railroad Tracks (Main Scene)

Since our last milestone, we have made the decision to utilize the Spline

package from Unity to create the rollercoaster's route and enable it to follow

along. As we progress to the next phase, our focus is now on placing the

tracks along this route. After numerous attempts, we have discovered that

utilizing the Spline Instantiate component provides us with the most

convenient method. However, we have encountered a challenge: the track pieces

generated by this method do not fit seamlessly along the path.

One of the main reasons for this issue is that the Spline Instantiate

component does not generate a mesh that adheres precisely to the path.

Instead, it positions prefab objects along the spline. This becomes

particularly problematic when we enlarge the track pieces, as they fail to

combine smoothly, especially in curved sections(see figure below).

3



When we reduce the size of the track pieces to create a smoother appearance,

we encounter an issue: it increases the rendering cost, subsequently leading

to lower frame rates. This can create performance problems that need to be

addressed.

The reason behind the higher rendering cost is that reducing the track piece

size results in more individual pieces being rendered, increasing the overall

complexity of the scene. Each track piece requires resources and processing

power to render, and when there are a large number of them, it can strain the

system and lead to lower frame rates.

To tackle this problem, we need to find a balance between achieving smooth

track transitions and maintaining optimal performance. One potential solution

is to implement a Level of Detail (LOD) system for the track pieces., which we

will talk about in the future plan section.

Regarding the open forest area, we have employed Unity's Terrain tools to

create a realistic terrain with mountains. The roller coaster track has been

designed to traverse through these mountains in the first-person view.

Following the mountainous region, the rollercoaster enters a vast forest area.

Within the roller coaster car, we have included two buttons that players can

interact with. When a player presses one of these buttons, the cart

accelerates, propelling them toward the corresponding mini-game.

4



Designs and UI
Excitement mini-game:

Instead of placing the tracks manually, which was an inefficient way to

consider, we used a method built-in to the spline package to place the tracks

automatically into the terrain. We added more scenery to this mini-game and

integrated the UI along the level design with the functionalities. The player

is followed by the flying dragon all along, and the shadow of the dragon from

above is visible to the player. The only remaining thing to be added to the

scene is to add an end destination for the player, so they know that the

dragon is no longer chasing them, along with audio to the scene as well.

Anticipation mini-game:

After trying different layouts for the anticipation mini-game, we agreed on

having a centered open field in the forest for the player to go around and

5



allocate the gold piles. The dragon is placed in the middle of this open

field, sleeping initially then wakes up according to the sleeping pattern to

check the field and if the player is allocated then they will die and start

the scene again if not then the game goes on and the player keeps collecting

the gold and the dragon will be back to sleep. This mini-game starts with a

gloomy dark lighting and them is keeps lighting slowly, it will be harder for

the player to hide and easier for the dragon to locate the player. We will be

using post-processing in the next milestone, to make the gold piles shine in

the forest to be identified by the player faster, also the scene will have

more fine-tuning and audio added. Finally, we integrated the UI along with the

level design with the functionalities for the game.

UI:

For the UI screens, we used the same assets that we introduced in the previous

milestones. We added a start scene for the user to either choose to start the

game immediately or to go to the options section. For the options scene, the

user either see the instructions for each mini-games, set the audio settings

(will be done later in the next milestone), or to quit the game. The UIs used

are again following the adventure theme that we picked starting of our game

implementation.

6



Future Plans
Frame Rate Optimization:

Although we have experimented with techniques like incorporating grass and

flower textures instead of placing individual objects, we are still

encountering low frame rates when traversing through the mountains and forests

with the cart. One of the contributing factors is the presence of a large

number of track pieces, reaching tens of thousands. In our next phase, we are

determined to explore potential solutions to enhance the frame rate.

One approach we are considering is consolidating the tracks into a single

object, thereby creating a mesh that encompasses the entire track system. This

consolidation would reduce the overall number of individual elements that need

to be rendered, potentially leading to improved performance and higher frame

rates. By treating the track pieces as a unified entity, we can streamline the

rendering process.

Additionally, we are also investigating ways to optimize the Level of Detail

(LOD) system. By carefully calibrating the transition distances and creating

appropriate LOD versions for the track mesh, we aim to dynamically adjust the

level of detail based on the viewer's proximity. This technique ensures that

only the necessary level of detail is rendered, further optimizing performance

without sacrificing visual quality.

By implementing these measures, we anticipate significant improvements in the

frame rate during cart travel through the mountains and forests. Our team

7



remains dedicated to finding the most effective strategies to enhance the

overall performance and deliver a seamless and enjoyable experience for our

users.

Focusing on the emotions:

As the underlying components of our game near their completion, we will

revisit our main objective: Invoking the emotions tied to rollercoasters with

our minigames. In that regard, we will heavily invest into testing, fine-

tuning and extending our minigames with the goal to further deepen the

connection to their intended emotion.

8


