Spatial-Temporal Transformer for Dynamic Scene Graph Generation

Yuren Cong, Wentong Liao, Hanno Ackermann, Bodo Rosenhahn, Michael Ying Yang

Presenter: Çağhan Köksal Tutor: Ege Özsoy

Motivation

Motivation and Contributions

Motivation

• Most of the previous works **omit temporal domain**

Goal

- Generating dynamic scene graphs from videos.
- Leveraging temporal domain to model dynamic relationships between objects

• Contributions

- They create a **novel framework**, Spatial-Temporal Transformer (STTran).
- **Multi-label classification** is used in a relationship classification task.
- Novel thresholding strategy to select additional confident relations between objects
- **Extensive experiments and ablation studies** to show the effectiveness of the model to use temporal information.

Related Works

Image Retrieval using Scene Graphs

- Novel framework for Semantic Image Retrieval
- Scene Graphs as a query
 - Retrieve similar images
 - More precise semantic description
- CRF reason about groundings of scene graphs
- Likelihoods as a ranking
- Novel dataset of 5000 scene graphs
- Scene graphs
 - Objects
 - Man
 - Boat
 - Relationships between objects
 - Man "standing" on boat
 - Attributes of objects
 - Boat is white

man holding fish and wearing hat on white boat

(a) Results for the query on a popular image search engine.

(b) Expected results for the query.

Figure 1: Image search using a complex query like "man holding fish and wearing hat on white boat" returns unsatisfactory results in (a). Ideal results (b) include correct *objects* ("man", "boat"), *attributes* ("boat is white") and *relationships* ("man on boat").

Scene Graph Generation by Iterative Message Passing

Motivation

• Relations between interacting objects

Figure: Two semantically different images have the same representation

- Novel Scene Graph Generation method
- Learns to improve it's predictions
 - Iterative message passing algorithm
- Contextual information

Scene Graph Generation by Iterative Message Passing

- Object Proposal Network
- Graph Inference Network
 - Input :
 - Features of object regions
 - **Output:**
 - Categories of object
 - Relationship types between object pairs

Figure: overview of the model

Xu, D., Zhu, Y., Choy, C. B., & Fei-Fei, L. (2017). Scene graph generation by iterative message passing. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 5410-5419).

Graph R-CNN for Scene Graph Generation

- Goal: Reduce quadratic complexity of pairwise relationships
- Solution: Relation Proposal Network (RePN)

Contributions

- Contextual representation with Attentional Graph Convolutional Networks
- Relation Proposal Networks
- More realistic evaluation metric

Graph R-CNN for Scene Graph Generation

Attention Is All You Need

- Main building block of the modern systems.
- Encoder Decoder Architecture
- Fully Attentional Networks
- Self Attention
 - Contextualized representation
- Parallelizable architecture
- SOTA results on NLP

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

- Transformers limited use in vision
- Sequence of image patches
- Good performance on image classification
- Large amount of training data is needed

Figure: Vision Transformer Architecture

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*.

End-to-End Object Detection with Transformers(DETR)

- Object detection as set prediction
- Remove NMS
- Set based loss via bipartite matching
- Learned object queries

Figure: DETR Architecture

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020, August). End-to-end object detection with transformers. In *European conference on computer vision* (pp. 213-229). Springer, Cham.

Video Action Transformer Network

- Recognize and Localize human actions
- Spatiotemporal context
- Learns to track individual people
- Pick up on semantic context from the actions of others.
- Attention on hands and faces

Figure: Overview of Video Action Transformer Network

Girdhar, R., Carreira, J., Doersch, C., & Zisserman, A. (2019). Video action transformer network. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 244-253).

End-to-End Video Instance Segmentation with Transformers

- Video instance segmentation (VIS)
 - Classification
 - Segmentation
 - Object Tracking
- Input:
 - Sequence of images
- Output
 - Sequence of masks for each instance

Figure: Architecture Overview

Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., & Xia, H. (2021). End-to-end video instance segmentation with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8741-8750).

Two-Stream Convolutional Networks for Action Recognition in Videos

- Goal
 - Action Recognition in video
- Appearance + Motion
- Two-stream ConvNet architecture
- Competitive results with SOTA when it is published

Se.		Spatial stream ConvNet								
	single frame	conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax	cla
		Temporal stream ConvNet							sc fus	
		conv1 7x7x96 stride 2	conv2 5x5x256 stride 2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1	full6 4096 dropout	full7 2048 dropout	softmax	
input video	multi-frame	norm. pool 2x2	pool 2x2			pool 2x2	Lipour	lipour		

Figure: Two stream CNN architecture

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. Advances in neural information processing systems, 27.

Dataset

Action Genome

Motivation:

Events : hierarchically structured to be perceived by humans.

Figure: Action Genome Dataset Sample

Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of spatio-temporal scene graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 10236-10247).

Action Genome

Motivation:

No datasets includes dynamic changes in the relationships between objects to depict the event.

Goal: Understand action dynamics -> relationship between object-subject pairs

- 9848 videos annotated with action labels and spatio-temporal scene graph labels
- **1.7 million human-object relations instances of 25 categories**
- **583K bounding boxes** of interacted objects of 35 classes.
- **265K frames** in the videos are labeled.

Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of spatio-temporal scene graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 10236-10247).

Action Genome

Relationships in Action Genome are splitted into 3 categories:

- Attention
- Spatial
- Contact

attention	spatial	contact					
looking at not looking at unsure	in front of behind on the side of above beneath in	carrying drinking from have it on the back leaning on not contacting standing on twisting wiping	covered by eating holding lying on sitting on touching wearing writing on				

Table : Relationship types in Action Genome

- Attention relationships
 - Possible or ongoing interaction
- Spatial relationships
 - Spatial location
- Contact relationships

Ο

2

Type of interaction

Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of spatio-temporal scene graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 10236-10247).

Methodolgy

Input

Video Representation

Consists of several frames

- \circ Each frame of the video at the timestamp t is represented as I_t
- Video with T frames is represented as $V = [I_1, I_2, I_3, \dots, I_t]$

Relationship Representation

- FasterRCNN
 - generates bounding boxes.
 - extracts features of bounding boxes.
- For each frame at timestamp t, object detector proposes N(t) object proposals.
- Feature representations are depicted as :

$$[v_t^1, \dots, v_t^{N(t)}]$$
 where $\{v_t^1, \dots, v_t^{N(t)}\} \in \mathbb{R}^{2048}$

Relationship Representation

- Between N(t) object proposals at the timestamp t,
 - There are K(t) relations :

°
$$R_t = \{r_t^1, r_t^2, \dots, r_t^{K(t)}\}$$

• The representation vector x_t^k of the relation r_t^k represents the relationship between i-th and j-th objects proposals. $b_t^i, b_t^j \in \mathbb{R}^4 \to BBoxes$

Spatio-Temporal Transformer

- Spatial Encoder
- Frame Encoding
- Temporal Decoder

Figure: Spatio-Temporal Transformer Model Architecture

Spatial Encoder

Goal: Learning spatial context within a frame **Architecture**: Classic Transformer Encoder Layer

No positional embeddings is used

 $X_t = \{oldsymbol{x}_t^1, oldsymbol{x}_t^2, \dots, oldsymbol{x}_t^{K(t)}\}$ Input : \mathbb{R}^{1936}

Number of Relationships at timestamp t

Figure: Spatial Encoder Architecture

$$\boldsymbol{X}_{t}^{(n)} = Att_{enc.} (\boldsymbol{Q} = \boldsymbol{K} = \boldsymbol{V} = \boldsymbol{X}_{t}^{(n-1)})$$

Output of n-th encoder layer Query Key Value Output of (n-1)th encoder layer

Frame Encodings

- Motivation:
 - Transformers are unaware of temporal dependencies
 - Model should leverage positional information
- Goal :
 - Inject the temporal position to the relationship representations
- Used only in the Temporal Decoder
- Custom learned embeddings
- Same size as relation representation vectors
- Number of embedding vectors is fixed and equal to sliding windows size

Temporal Decoder

- Goal:
 - Capture temporal dependencies between frames
- Sliding Window approach is used
 - Batch adjacent frames
 - Motivation
 - Reducing Memory consumption
 - Irrelevant information from far frames involves
- No masked decoder layer unlike original transformer decoder

Figure: Spatial Decoder Architecture

Figure: Decoder Sliding Window Approach

Decoder Attention Computation

$$oldsymbol{Q} = oldsymbol{K} = oldsymbol{Z}_i + oldsymbol{E}_f,$$
 $oldsymbol{V} = oldsymbol{Z}_i,$
 $\hat{oldsymbol{Z}}_i = Att_{dec.}(oldsymbol{Q},oldsymbol{K},oldsymbol{V}).$

Loss

- Predication Classification
 - Different linear transformations are applied to each relationship type

$$L_p(r, \mathcal{P}^+, \mathcal{P}^-) = \sum_{p \in \mathcal{P}^+} \sum_{q \in \mathcal{P}^-} max(0, 1 - \phi(r, p) + \phi(r, q))$$
Subject-Object
Pair
Annotated Predicates set of the predicates not in the annotation
Computed score of pth predicate

Relationship Types

- Attention
- Spatial
- Contacting

- Classification Loss
 - Object distribution -> two fully-connected layers with a ReLU activation and a batch normalization in between.
 - Cross entropy loss.

 $L_{total} = L_p + L_o$

Scene Graph Generation Strategies

- With Constraint
 - Only one predicate can be assigned to object-subject pair.
 - → Assess predicting

- the most important relationship.
- Without Constraint
 - → Multiple predicates can be assigned to object-subject pairs.
 - Possibility of adding noise and wrong information to the graph.

standing	0.88
holding	0.21
eating	0.72
Predicate	Confidence

Predicate	Confidence
eating	0.72
holding	0.21
standing	0.88

Scene Graph Generation Strategies

Semi Constraint

- Novel strategy
- Multiple predicates can be assigned to the subject-object pair.
 - \circ $\,$ the person (object), and food(subject) pair $\,$
 - extended content
 - erson "holding" food>
 - Threshold confidence of the predicates
 - Confidence > threshold -> Positive Predicate

Experiments

Evaluation Metrics

- Predicate Classification (PREDCLS)
 - Ground Truth Bounding Boxes and class information is given to model.
 - Model predict
 - Predicate labels
- Scene Graph Classification (SGCLS)
 - Ground Truth Bounding Boxes are given.
 - Model predicts :
 - Predicate labels
 - Class information of bounding boxes
- Scene Graph Detection (SGDET)
 - Model detects bounding boxes
 - Class Information of the bounding boxes
 - Predicate Labels
- R@k: Recall for top k confident predictions (e.g. R@20, R@50)

Comparison to State of the art Single Image Based Methods

				Wi	th Constra	aint				No Constraint								
Method	ί n	PredCLS			SGCLS		SGDET			PredCLS		SGCLS			SGDET			
	R@10	R@20	R@50	R@10	R@20	R@50	R@10	R@20	R@50	R@10	R@20	R@50	R@10	R@20	R@50	R@10	R@20	R@50
VRD	51.7	54.7	54.7	32.4	33.3	33.3	19.2	24.5	26.0	59.6	78.5	99.2	39.2	49.8	52.6	19.1	28.8	40.5
Motif Freq	62.4	65.1	65.1	40.8	41.9	41.9	23.7	31.4	33.3	73.4	92.4	99.6	50.4	60.6	64.2	22.8	34.3	46.4
MSDN_	65.5	68.5	68.5	43.9	45.1	45.1	24.1	32.4	34.5	74.9	92.7	99.0	51.2	61.8	65.0	23.1	34.7	46.5
VCTREE	66.0	69.3	69.3	44.1	45.3	45.3	24.4	32.6	34.7	75.5	92.9	99.3	52.4	62.0	65.1	23.9	35.3	46.8
RelDN	66.3	69.5	69.5	44.3	45.4	45.4	24.5	32.8	34.9	75.7	93.0	99.0	52.9	62.4	65.1	24.1	35.4	46.8
GPS-Net	66.8	69.9	69.9	45.3	46.5	46.5	24.7	33.1	35.1	76.0	93.6	99.5	53.6	63.3	66.0	24.4	35.7	47.3
STTran	68.6	71.8	71.8	46.4	47.5	47.5	25.2	34.1	37.0	77.9	94.2	99.1	54.0	63.7	66.4	24.6	36.2	48.8

Table : Comparison of STTran with SOTA Models

- Result:
 - STTRan overperforms all other image based SOTA methods by using temporal relationships between frames.

Hypothesis: Is using temporal relationship easy?

- Setup: Add LSTM/RNN on top of SOTA models.
- **Goal:** Using temporal information with LSTM/RNN
- **Result:** All methods improve their scene graph generation capability by leveraging temporal aspects.

Method	PredCLS-R@20					
inite uno d	original	+LSTM				
Motif Freq	65.1	65.2				
MSDN	68.5	68.8				
RelDN	69.5	69.7				
GPS-Net	69.9	70.4				

Table : Comparison of methods after adding LSTM on top.

Hypothesis: Does model leverage temporal dependencies?

- Setup: Shuffle or reverse ¹/₃ of training instances
- Idea: If model uses temporal information, adding noise to training samples will degrade the performance.
- **Result**: adding noise to the temporal information lowers the performance of the STTran.

Normal Video	Processed Video	Processing	PredCLS-R@20
2/3	1/3	shuffle	70.6
2/3	1/3	reverse	71.0
1	-	-	71.8

Table : Results of when 1/3 of training instances are shuffled or reversed

(a) spatial encoder only

(b) complete STTran

Ablation Study

Spatial	Temporal	Frame	PredCI	LS-R@20	SGDET-R@20		
Encoder	Decoder	Encoding	With	Semi	With	Semi	
\checkmark	-9	<u>-</u>	69.6	78.7	32.9	35.1	
-	\checkmark	-	71.0	82.2	33.7	35.5	
\checkmark	\checkmark	-	71.3	82.7	33.8	35.6	
\checkmark	\checkmark	sinusoidal	71.3	82.8	33.9	35.7	
\checkmark	\checkmark	learned	71.8	83.1	34.1	35.9	

Table : Ablation Study

- Only Spatial Encoder w/o frame encodings -> similar performance to image-based models.
- Temporal decoder w/o frame encoding > only spatial encoder
- Spatial Encoder & Temporal Decoder -> Performance increase
- Learned embeddings > sinusoidal embeddings.

Qualitative Results

Green boxes in the ground truth represent the objects that can **not be found** by the object detector.

Gray colors are **false positive detections** and therefore their relations are false positive.

The melons are the true positive boxes and correct relationships are represented with light blue.

Figure: Qualitative results of the model on the video where the woman tries to reach the medicine while sitting on the bed.

Take Home Message

Take Home Message

- Temporal information helps to understand the relationship between the objects and subjects in the videos.
- Using temporal information leads to create more accurate scene graphs
- Multi-Label Visual Relationship Prediction
- SOTA results on dynamic Scene Graph Generation
- Having hypotheses and examining them with experiments make the paper more convincing.
- Qualitative experiments always gets the attraction and makes the paper more engaging.
- Ablations helps to understand the contributions of each modality.
- Why STTran does not overperform SOTA in some relations (holding) ?
- What might be the annotation problems that they mention in the supplementary material? And why they did not elaborate?

Thank you for listening ...

