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Motivation and Contributions

e Motivation
o  Most of the previous works omit temporal domain

e Goal
o  Generating dynamic scene graphs from videos.
o Leveraging temporal domain to model dynamic relationships between objects

e Contributions
o They create a novel framework, Spatial-Temporal Transformer (STTran).
o Multi-label classification is used in a relationship classification task.
o Novel thresholding strategy to select additional confident relations between objects
@)

Extensive experiments and ablation studies to show the effectiveness of the model to use
temporal information.
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Image Retrieval using Scene Graphs

Novel framework for Semantic Image Retrieval

Scene Graphs as a query
o Retrieve similar images
o More precise semantic description

CRF reason about groundings of scene graphs
Likelihoods as a ranking

Novel dataset of 5000 scene graphs

Scene graphs

o Objects
(] Man
m Boat

o Relationships between objects
m Man “standing” on boat

o Attributes of objects
m Boatis white

man holding fish and wearing hat on white boat m

(a) Results for the query on a popular image search engine.
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(b) Expected results for the query.

Figure 1: Image search using a complex query like “man holding
fish and wearing hat on white boat” returns unsatisfactory results
in (a). Ideal results (b) include correct objects (“man”, “boat”),
attributes (“boat is white”) and relationships (“man on boat”).

Johnson, J., Krishna, R., Stark, M., Li, L. J., Shamma, D., Bernstein, M., & Fei-Fei, L. (2015). Image retrieval using

scene graphs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
3668-3678).




Scene Graph Generation by lterative Message Passing

Motivation
e Relations between interacting objects

man

object
detection

Figure: Two semantically different images have the same representation

e Novel Scene Graph Generation method
e Learns to improve it’s predictions

o Iterative message passing algorithm
e Contextual information
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Scene Graph Generation by lterative Message Passing

image object proposal scene graph

e Object Proposal Network
e  Graph Inference Network
o Input:
m Features of object regions

o  Output:
m  Categories of object

m  Relationship types between object L o ,
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Figure: overview of the model

T=0 edge message pooling T=1 T=2 Tl
(@) . o © )
5 Figure: Detailed Model

Xu, D., Zhu, Y., Choy, C. B., & Fei-Fei, L. (2017). Scene graph generation by iterative message passing. In

Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5410-5419).



Graph R-CNN for Scene Graph Generation

e (Goal: Reduce quadratic complexity of pairwise relationships

¥

e Solution: Relation Proposal Network (RePN)

Contributions
e Contextual representation with Attentional Graph Convolutional Networks
e Relation Proposal Networks
e More realistic evaluation metric

Yang, J., Lu, J., Lee, S., Batra, D., & Parikh, D. (2018). Graph r-cnn for scene graph generation. In Proceedings
of the European conference on computer vision (ECCV) (pp. 670-685)




Graph R-CNN for Scene Graph Generation

Region Proposal Networks Attentional Graph Convolutional Networks

Fastgr—RCNN detects all All Possible RePN prunes -> (AGQN) ->
possible nodes Relationships sparser graph Przdlclza;c)esl and
node labels
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Yang, J., Lu, J., Lee, S., Batra, D., & Parikh, D. (2018). Graph r-cnn for scene graph generation. In Proceedings
of the European conference on computer vision (ECCV) (pp. 670-685)



Attention Is All You Need

Main building block of the modern systems.

Encoder - Decoder Architecture
Fully Attentional Networks
Self Attention

o Contextualized representation
Parallelizable architecture
SOTA results on NLP

Output
Probabilities
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Figure: Transformer Architecture

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you need.
Advances in neural information processing systems, 30.



AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE
RECOGNITION AT SCALE

Vision Transformer (ViT) Transformer Encoder

MLP
Head

e Transformers limited use in vision

e Sequence of image patches

e (Good performance on image
classification

e lLarge amount of training data is

ded '
neede P Embedding . ™ @ﬁ 4‘ @IS

* Extra learnable

Transformer Encoder
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Figure: Vision Transformer Architecture

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.




End-to-End Object Detection with Transformers(DETR)

Object detection as set prediction
Remove NMS

Set based loss via bipartite matching
Learned object queries

backbone H encoder

|
set of image features:I

| |
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Figure: DETR Architecture
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Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020, August). End-to-end object detection with
transformers. In European conference on computer vision (pp. 213-229). Springer, Cham.



Video Action Transformer Network

Recognize and Localize human actions
Spatiotemporal context

Learns to track individual people

Pick up on semantic context from the actions
of others.

e Attention on hands and faces

Input Video Clip Context Embeddings  Person-specific self-attention
keyframe

SSB[ uonor

t=-T/2 t

0 t=T/2

/(I"\ Figure: Overview of Video Action Transformer Network

Girdhar, R., Carreira, J., Doersch, C., & Zisserman, A. (2019). Video action transformer network. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (pp. 244-253).




End-to-End Video Instance Segmentation with
Transformers

no object
e \ideo instance segmentation
(IS) .
o Classification N E
o Segmentation u
o  Object Tracking i g
e Input: CNN " ,| transformer | O
o Sequence of images encoder-decoder 8
e Output i o
o  Sequence of masks for P g
each instance | o
sequence sequence of multiple sequence of object
of images image features predictions

Figure: Architecture Overview

Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., & Xia, H. (2021). End-to-end video instance segmentation with transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8741-8750).




Two-Stream Convolutional Networks for Action
Recognition in Videos

e (Goal

o Action Recognition in video Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 | full6 full7 ||softmax
7x7x96 |[5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
single frame pool 2x2 || pool 2x2

e Appearance + Motion

e Two-stream ConvNet architecture

e Competitive results with SOTA when
it is published

Temporal stream ConvNet

‘ conv1 || conv2 || conv3 || conv4 || conv5 | fullé full7 ||softmax|
7x7x96 |[5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

" norm. ||pool 2x2 pool 2x2
multi-frame |50 250

optical flow

PRy T e
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input
video

Figure:Two stream CNN architecture

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in videos. Advances in neural information
processing systems, 27.
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Action Genome

Motivation:
Events : hierarchically structured to be perceived by humans.

Action: “Sitting on a sofa” time

Sitting on a sofa

l

Person is next to
the sofa

\N person ————— person = — - - person
Y
iS i f t of sitting o
Person is in front of nextto Co w
beneath
sofa = =

beneath
the sofa
sofa = sofa
. Figure: Action Genome Dataset Sample
Person is sitting on

the sofa

&

Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of spatio-temporal scene graphs. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10236-10247).




Action Genome

Motivation:
No datasets includes dynamic changes in the relationships between objects to depict the event.

Goal: Understand action dynamics -> relationship between object-subject pairs

9848 videos annotated with action labels and spatio-temporal scene graph labels
1.7 million human-object relations instances of 25 categories

583K bounding boxes of interacted objects of 35 classes.

265K frames in the videos are labeled.

Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of spatio-temporal scene graphs. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10236-10247).




Action Genome

attention spatial contact
Relationships in Action Genome are looking flt mn fr‘ont o carrying coxfered by
splitted into 3 cateqories: not looking at  behind drinking from eating
P 9 ' unsure on the side of  have it on the back  holding
, above leaning on lying on
e  Attention ; o
_ beneath not contacting sitting on
* Spatial in standing on touching
e Contact twisting wearing
wiping writing on

Table : Relationship types in Action Genome

e Attention relationships
o  Possible or ongoing interaction

e  Spatial relationships
o  Spatial location

e Contact relationships

o  Type of interaction
ﬁb
h 3
<
(9]

)

Ji, J., Krishna, R., Fei-Fei, L., & Niebles, J. C. (2020). Action genome: Actions as compositions of spatio-temporal scene graphs. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10236-10247).



Methodolgy

'|'|_|'|'| &@9 JOHNS HOPKINS

WHITING SCHOOL
Technische Universitat Miinchen of ENGINEERING



Input

Video Representation

Consists of several frames
o Each frame of the video at the timestamp t is represented as I
o Video with T frames is represented as V = [I1, 5, 1s,..., ]

Relationship Representation
e FasterRCNN
o generates bounding boxes.
o extracts features of bounding boxes.

e For each frame at timestamp t, object detector proposes N(t) object proposals.
e Feature representations are depicted as :

0!, ..., oNO] wee {p),.....,0N?} € R2#8

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (pp. 16372-16382).



Relationship Representation =
e Between N(t) object proposals at the timestamp t, —
o The_re are K(t) relathns : g
O [=]
el a2 K() .
e The representation vector zF of the relation ¥ represents the |
relationship between i-th and j-th objects proposals. ;', bl € R* —» BBozxes

Word2vec
.7 representation

:Bf = S'UZ:, Wo’Ut , Wu(p(’u,t] S fboa:( ;:, b:Z)))’ S'Z, St of class labels

R200
\ : I~ Convert

Element-wise

e Bounding 256277
multiplication R
W W c RMMBXSH 2 RM 48 flatten boxes to
S o ij 256x7x7
u, €R
Feature Vector of Wy € R12344512 Feature map of the union
object proposals i of the bounding boxes

~\ : that is computed with
/d.._ : and ROI Align.
! 2
<
(9]

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Relationship Representation

w? = stta ovt fbox(l i,bi))),si,s{
x L

256x7x7=12544

W, W, c Rzmsxsuz 256x7x7=12544
S
Wy € R12544x512 | fiatten Element-wise
multiplication

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Spatio-Temporal Transformer

e Spatial Encoder
e Frame Encoding
e Temporal Decoder

combined

relation
representations

representations

Y
Classifiers
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Figure: Spatio-Temporal Transformer Model Architecture
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Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (pp. 16372-16382).




relation combined
representations representations

Spatial Encoder 4
@ »| Spatial Encoder

Goal: Learning spatial context within a fame &~ & ¢
Architecture: Classic Transformer Encoder Layer v, ‘
e No positional embeddings is used

_ K(t
Input : Xt = {w%,w%,...,wt ()}

/ \ J 7
1936 Number of Relationships at Figure: Spatial Encoder Architecture
R timestamp t
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Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (pp. 16372-16382).



Frame Encodings

e Motivation:
o Transformers are unaware of temporal dependencies
o Model should leverage positional information
e Goal:
o Inject the temporal position to the relationship representations
Used only in the Temporal Decoder
Custom learned embeddings
Same size as relation representation vectors
Number of embedding vectors is fixed and equal to sliding windows size

By = |€i;5s: 5€0);

-

Frame
1936
Encodings e; € R Window size

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




combined
representations

Temporal Decoder =1 ..
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Wolaolr 4
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dynamic scene graph

e Goal: b
o  Capture temporal dependencies between frames '
e Sliding Window approach is used
o Batch adjacent frames
o Motivation Figure: Spatial Decoder Architecture
m Reducing Memory consumption
m Irrelevant information from far frames involves
e No masked decoder layer unlike original transformer decoder

Add & Norm

frame
encodings

Zi — [Xiw"aX’H—n—l]ai = {177T_77+1}
/

I-th generated

input batch Contextualized all _ .
representations in Video Window

/(i"-\g the i-th frame size size
’ <
(9]

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Temporal Decoder Z; =[X;,...,X;p],i€{l,..., T —n+1}
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Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




I-th generated All contextuallzed -
. : . Window
input batch representations in .
. size
the i-th frame

Decoder Attention Computation

V = Z,,

Z; = Attgec.(Q, K, V).

.., T —n+1}

\

Video
size

Window
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Frame
Encodings

Window
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Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Loss
Relationship Types

e Predication Classification e Attention
o Different linear transformations are applied to each e Spatial
relationship type e Contacting

Ly(r,Pt,P7) = Z Z maz(0,1—¢(r,p)+¢(r,q))

/ pEP+ qeP— \
Subject-Object

Pair

Computed score of pth

Annotated Predicates set of the predicates not in the |
predicate

annotation

e Classification Loss L L L
o  Object distribution -> two fully-connected layers with a » total — p -|— 0

RelLU activation and a batch normalization in between.
/(i"\ o Cross entropy loss.

C AN

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (pp. 16372-16382).



Scene Graph Generation Strategies Predicate | Confidence

' 72
e With Constraint eating 0

- Only one predicate can be assigned to holding 0.21
object-subject pair.

-> Assess predicting
€ the most important relationship.

standing 0.88

Predicate Confidence
e Without Constraint

-> Multiple predicates can be assigned to eating 0.72
object-subject pairs.

-> Possibility of adding noise and wrong
information to the graph. standing 0.88

holding 0.21

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Scene Graph Generation Strategies

Semi Constraint

e Novel strategy
e Multiple predicates can be assigned to the subject-object pair.
o the person (object), and food(subject) pair
m <person "eating" food>
m  <person “holding" food>
o  Threshold confidence of the predicates
o  Confidence > threshold -> Positive Predicate

Predicate Confidence Threshold = 0.70

eating 0.72

holding 0.21 /
/d__\ standing 0.88

Bigger than the threshold

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).
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Evaluation Metrics

e Predicate Classification (PREDCLS)
o  Ground Truth Bounding Boxes and class information is given to model.
o Model predict
m Predicate labels
e Scene Graph Classification (SGCLS)
o  Ground Truth Bounding Boxes are given.
o  Model predicts :
m Predicate labels
m Class information of bounding boxes
e Scene Graph Detection (SGDET)
o Model detects bounding boxes
o Class Information of the bounding boxes
o Predicate Labels
e R@k: Recall for top k confident predictions (e.g. R@20, R@50)

&

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).



Comparison to State of the art Single Image Based Methods

With Constraint No Constraint

Method PredCLS SGCLS SGDET PredCLS SGCLS SGDET

R@10 R@20 R@50 R@I10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50 R@I0 R@20 R@50
VRD 517 547 547 324 333 333 192 245 260 596 785 992 392 498 526 191 288 405
Motif Freq 624 651 651 408 419 419 237 314 333 T34 924 996 504 606 642 228 343 464
MSDN, 655 685 685 439 451 451 241 324 345 749 927 990 512 618 650 231 347 465
VCTREE 660 693 693 441 453 453 244 326 347 755 929 993 524 620 651 239 353 468
RelDN. 663 695 695 443 454 454 245 328 349 757 930 990 529 624 651 241 354 468
GPS-Net 668 699 699 453 465 465 247 331 351 760 936 995 536 633 660 244 357 473

STTran 686 718 718 464 475 475 252 341 370 779 942  99.1 540 637 664 246 362  48.8

Table : Comparison of STTran with SOTA Models

e Result:
o STTRan overperforms all other image based SOTA methods by
using temporal relationships between frames.

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Hypothesis: Is using temporal relationship easy?

e Setup: Add LSTM/RNN on top of SOTA models.

e Goal: Using temporal information with LSTM/RNN

e Result: All methods improve their scene graph generation capability
by leveraging temporal aspects.

PredCLS-R@20

Method
original +LSTM
Motif Freq 65.1 65.2
MSDN 68.5 68.8
RelDN 69.5 69.7
GPS-Net 69.9 70.4

Table : Comparison of methods after adding LSTM on top.

&

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).



Hypothesis: Does model leverage temporal dependencies?

e Setup: Shuffle or reverse ¥ of training instances

e Idea: If model uses temporal information, adding noise to training
samples will degrade the performance.

e Result: adding noise to the temporal information lowers the
performance of the STTran.

Normal Video Processed Video Processing PredCLS-R @20

2/3 1/3 shuffle 70.6
2/3 1/3 reverse 71.0
1 - - 718

Table : Results of when 1/3 of training instances are shuffled or reversed
(a) spatial encoder only (b) complete STTran

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Ablation Study

Spatial Temporal Frame PredCLS-R@20 SGDET-R@20
Encoder Decoder Encoding With Semi With  Semi

v - - 69.6 78.7 32.9 35.1
- v - 71.0 82.2 33.7 35.5
v v - 71.3 82.7 33.8 35.6
v v sinusoidal  71.3 82.8 33.9 35.7
v v learned 71.8 83.1 34.1 35.9

Table : Ablation Study

e Only Spatial Encoder w/o frame encodings -> similar performance to image-based
models.

e Temporal decoder w/o frame encoding > only spatial encoder

e Spatial Encoder & Temporal Decoder -> Performance increase

e |earned embeddings > sinusoidal embeddings.

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).




Qualitative Results

bed

Frame Ground Truth With Constraint Semi Constraint No Constraint
medicine | | | . N
] ; KT R T LU Green boxes in the ground truth
potlookat) {nfrontot] [bok! otlookat infrontof not contact notlookat  infrontof notcontact notlookat  infrontof  not contact .
— ’ l N E W represent the objects that can not be
not look at. o not look at .
—— <m.m.“.mi ""“’"(m ! m< e | | es==  found by the object detector.
= \wf/ | ] p! .,,\\ | “"‘W"",‘q | i T are false positive
sandwich  notlookat siton o r n botte . . .
- | A ' detections and therefore their relations
| | |
| | | are false positive.
medicine | door bottle I door bottle | door
| \ : P | e e
unsire infrontof  not contact | notldokat  behind  notcontact ! notlookat  behind not contact ! notlookat  behind  not contact 1+1
\/ g i it | WM | W are the true positive boxes
"'“"*"’>»=mn< ] \m | e i mm7m( | — s “T and correct relationships are
s | (m \Bw | || e/ we | | "m"mﬂ\“*“{[ represented with light blue.
atgontat | : nahok\ati/sitnn ,A : \uun ‘ : siton bed
sandwich N"ﬂww i i T~ i bed bed i e touch
| | |
| | |
| I |

Figure: Qualitative results of the model on the video where the woman tries to reach the medicine
while sitting on the bed.

Cong, Y., Liao, W., Ackermann, H., Rosenhahn, B., & Yang, M. Y. (2021). Spatial-temporal transformer for dynamic scene graph generation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (pp. 16372-16382).
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Take Home Message

Temporal information helps to understand the relationship between the objects and
subjects in the videos.
Using temporal information leads to create more accurate scene graphs
Multi-Label Visual Relationship Prediction
SOTA results on dynamic Scene Graph Generation

e Having hypotheses and examining them with experiments make the paper more
convincing.

e Qualitative experiments always gets the attraction and makes the paper more
engaging.

e Ablations helps to understand the contributions of each modality.

e Why STTran does not overperform SOTA in some relations (holding) ?
e What might be the annotation problems that they mention in the supplementary
material? And why they did not elaborate?



Thank you for listening ...
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