Chest Radiograph Disentanglement for COVID-19 Outcome Prediction

Graph Deep Learning for Medical Applications

Student: Diyorbek Rustamov Tutor: Kamilia Mullakaeva

Outline

- 1. Introduction
- 2. Methodology
- 3. Experimental Design and Results
- 4. Conclusion
- 5. Personal Review and Take-Home Message
- 6. Discussion

Introduction

Motivation

- Chest radiographs (CXRs) are the primary diagnostic tool for COVID-19 pneumonia
- Lung tissue texture may change drastically during hospitalization

AutoEncoder

- Swapping AutoEncoder successful disentanglement model
- LSAE learns a factorized representation of a CXR
- Terms texture and structure

Methodology

Lung Swapping AutoEncoder (LSAE)

- ✤ vanilla SAE:
 - irrelevant textures diminish the effect of the texture transfer
 - irrelevant structure clues may leak into the hybrid image
- LSAE:
 - hypothesize that the out-of-lung irrelevant texture patterns may hinder target texture synthesis in Ihybrid.
 - two new features, in-lung texture supervision and out-of-lung structural distortion suppression

- 1. Two sampled images: Image 1 and Image2
- 2. Encoded: (z1s, z1t) and (z2s, z2t)
- 3. Swapped: (z1s, z2t)
- 4. Decoded: Image hybrid

https://github.com/cvlab-stonybrook/LSAE/raw/main/assets/final_pipeline.png

Lung Swapping AutoEncoder (LSAE)

https://media.springernature.com/lw690/springer-static/image/chp%3A10.1007%2F978-3-030-87234-2_33/MediaObjects/521402_1_En_33_Fig1_HTML.png?as=webp

Experimental Design and Results

Dataset

1. ChestX-ray14

- medical imaging dataset which comprises 112,120 frontal-view X-ray images of 30,805 (collected from the year of 1992 to 2015) unique patients with the text-mined fourteen common disease labels [1]

- training (~70%), validation (~10%), and testing (~20%) [2]

2. COVOC

- multi-institutional COVID-19 outcome prediction dataset, 340 CXRs from 327 COVID-19 patients

- labeled based upon whether the patient required mechanical ventilation

1.https://paperswithcode.com/dataset/chestx-ray14

2. Zhou, Chest Radiograph Disentanglement for COVID-19 Outcome Prediction, 2020

Implementation

- decoder and discriminator architectures follow StyleGAN2
- encoders are built with residual blocks
- optimized by Adam
- PyTorch 1.7

```
1 import math
2 from packaging import version
3
4
    import torch
 5 from torch import nn
 6 from torch.nn import functional as F
8
    from stylegan2.model import StyledConv, Blur, EqualLinear, EqualConv2d, ScaledLeakyReLU
9
    from stylegan2.op import FusedLeakyReLU
10
11
    from models.resnet import resnet50
12
13 class EqualConvTranspose2d(nn.Module):
14
        def __init__(
15
            self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
16
        ):
17
            super().__init__()
18
19
            self.weight = nn.Parameter(
20
                torch.randn(in_channel, out_channel, kernel_size, kernel_size)
21
            )
22
            self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
23
24
            self.stride = stride
25
            self.padding = padding
26
27
            if bias:
28
                self.bias = nn.Parameter(torch.zeros(out_channel))
```

Semantic Prediction in CXRs by Texture Encoder 1

Method	$\underset{\text{SIFID}}{\text{Masked}}\downarrow$	mIoU \uparrow	$rac{ ext{Pixel}}{ ext{Acc}}\uparrow$	Dice \uparrow	Pre- train	Method	Params	$\mathbf{mAUC}\uparrow$
Init	0.0335	0.60	0.82	0.72		CXR14-R50[24]	23M	0.745
SAE	0.0257	0.76	0.91	0.85		ChestNet [23]	60M	0.781
LSAE	0.0245	0.91	0.97	0.95	Cun	CheXNet* [16]	7M	0.789
	1				Sup	Inception v3	22M	0.796
/	/				Unsup	Enc^t	5M	0.790

Semantic Prediction in CXRs by Texture Encoder 2

$BER(\%)\downarrow$	Inception v3	Enc^t in SAE	Enc^t in LSAE
split 1	20.25 ± 1.46	20.25 ± 1.63	19.00 ± 1.84
split 2	19.25 ± 3.67	20.50 ± 1.12	17.75 ± 1.66
split 3	17.75 ± 3.48	14.00 ± 1.85	12.75 ± 2.15
Avg	19.08	18.25	16.50

$\mathrm{mAUC}(\%)\uparrow$	Inception $v3$	Enc^t in SAE	Enc^t in LSAE
split 1	85.45 ± 1.89	89.03 ± 2.16	89.17 ± 0.68
split 2	86.02 ± 1.27	85.63 ± 1.77	87.07 ± 1.91
split 3	89.12 ± 1.38	92.60 ± 1.25	95.00 ± 0.29
Avg	86.86	89.09	90.41

Personal Review and Take-Home Message

Personal Review

Strengths:

- Leverage the LSAE for data augmentation
- LSAE as a approach to disentangle chest CXRs into structure and texture representations

Weakness:

- GAN loss usage was not explained in fully manner
- Lack of comparison to other competitive methods

Take-Home Message

- LSAE to disentangle texture from structure
- Data augmentation technique
- Code is available on: <u>https://github.com/cvlab-stonybrook/LSAE</u>

Discussion

Thank you for your attention! Questions?