

On Explainability of Graph Neural Networks via Subgraph Explorations

Malika Sanhinova

GDLMA Seminar, Technische Universität München, Germany 10.05.2022

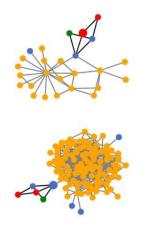
Content

- Motivation
- Methodology
- Experiments
- Comparison with other methods
- Take Home Message
- Discussion

Motivation

Explainability in medical applications:

- Prevent misdiagnosis
- Reason relationships behind predictions
- Understand underlying concepts of the data
- Interpret domain-specific results

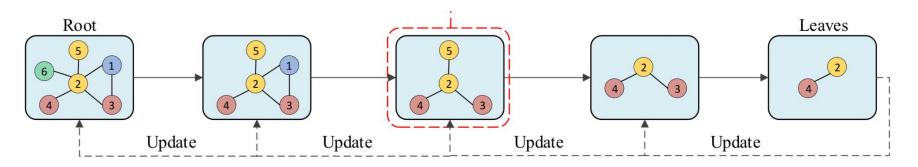

news.mit.edu

Motivation

Explainability of the GNNs:

- Consider important structural data
- Importance of the nodes does not directly imply importance of a subgraph
- Identify graph substructures directly
- Subgraphs explanations are more human-intelligible

General idea of the SubgraphX


Find the most important subgraph for the prediction y

Monte Carlo Tree Search: Explore different subgraphs Shapley Value: evaluate the importance of every subgraph

Methodology: SubgraphX

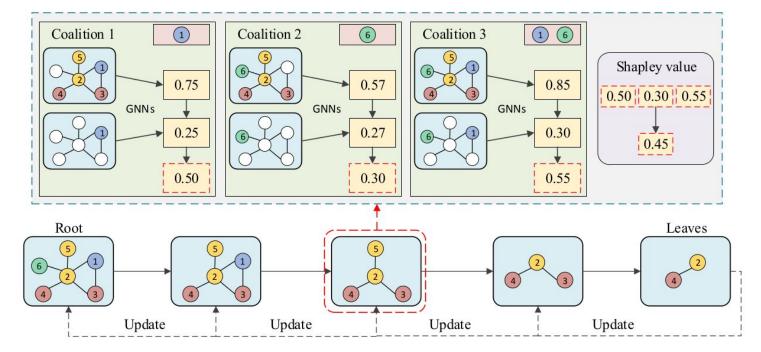
Monte Carlo Tree Search:

Methodology: SubgraphX

Shapley value: adaptation from game theory

- GNN predictions are the game gain
- Different subgraphs are players
- Each subgraph 'plays' against the other individual nodes
- While the nodes form all possible coalitions
- Guarantees correctness and fairness of the explanations

Difference of predictions **with** and **without** the coalition set S


7

8

Methodology: SubgraphX

Shapley value and coalition formation:

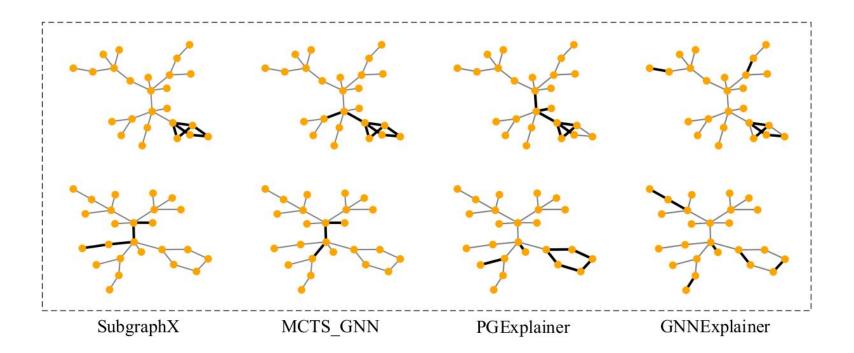
Methodology: SubgraphX

Problem: Shapley value enumerates all possible coalitions -> not efficient

Solution: Only consider the *neighbouring* nodes

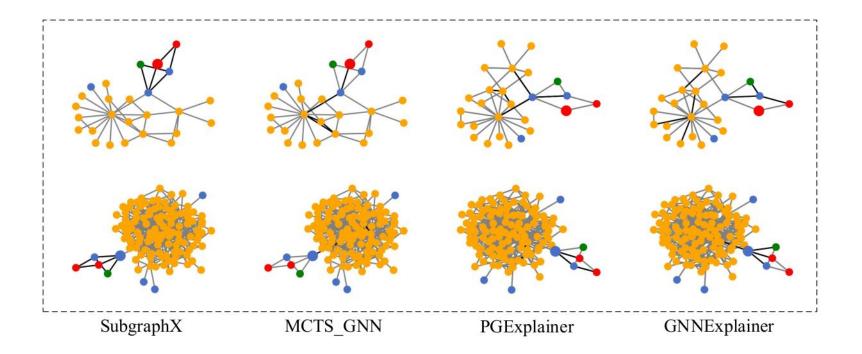
Problem: Different nodes have variable number of neighbours

Solution: Sampling!

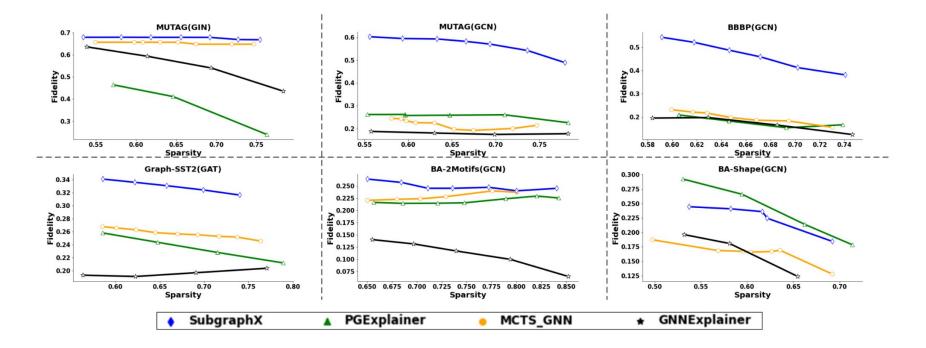

Namely, Monte Carlo sampling

$$\phi(\mathcal{G}_i) = \frac{1}{T} \sum_{t=1}^T (f(S_i \cup \{\mathcal{G}_i\}) - f(S_i))$$

On Explainability of Graph Neural Networks via Subgraph Explorations - Malika Sanhinova



Experimental results: graph classification



Experimental results: node classification

Experimental results: quantitative studies

Experimental results: computational efficiency

Method	MCTS*	MCTS [†]	SubgraphX	GNNExplainer	PGExplainer
TIME	>10 hours	$865.4 \pm 1.6 \mathrm{s}$	$77.8\pm3.8\mathrm{s}$	$16.2\pm0.2\mathrm{s}$	0.02s (Training 362s)
FIDELITY	N/A	0.53	0.55	0.19	0.18

Take Home Message

- Subgraph explanation is more intuitive and human-intelligible
- Subgraphs are more informative than individual nodes
- SubgraphX can be used for graph classification, node classification and link prediction
- SubgraphX treats GNN as a black box
- Efficiency is achieved by sampling the node space

Discussion

- Multiple disconnected subgraphs
- Relies only on visualization (e.g. not on features)
- Consider GNN to improve the accuracy?