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Motivation
Knowing airflow in the lung helps diagnose disease such as 
 COPD (Chronic Obstructive Pulmonary Disease), Asthma, lung 
cancer

Current DL method doesn’t reach an acceptable accuracy

Challenge : 
Large motion estimation of the lung between inhale and exhale

Presents a lightweight U - Net like architecture to predict large 
deformation displacement field that allows inhale to exhale CT scan 
registration 
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Method
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Preprocessing
Fixed Image (Inhale), Moving Image (Exhale)
1. Preprocess the image 
2. Sparse Keypoint extraction using Foerstner interest 

operator + max pooling 
3. Feature extraction using MIND (Modality Independent 

Neighbourhood Descriptor)
4. Cost tensor generation using the extracted features

p : keypoints , l : displacement locations
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GraphRegNet
GraphRegNet takes Cost tensor as input and generate 
displacement vector for each keypoints
U - Net - like architecture consisted of CNN - GNN - CNN
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GraphRegNet - Encoder

CNN
3 convolutional layers, instance normalization, leaky 
ReLU
Generate low dimensional displacement embedding
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GraphRegNet - GNN Predicted low dimensional displacement 
embeddings are concatenated with coordinates of 
respective keypoints

The concatenated output is distributed across kNN 
graph of keypoints (k = 15)

Perform three graph convolutions defined as

f : feature vector at point keypoint pi
h : inner product of parameters with the

keypoint fi and neighbourhood features fj-fi
Achieves spatial regularization
Helps with smoothing the image
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GraphRegNet - Decoder

CNN
Two Upconvolutions + single convolutional layer

Generates single channel feature map for each 
keypoint (Hp)
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GraphRegNet
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GraphRegNet - Sparse to Dense supervision
Final displacement vector (d) obtained by integrating the 
generated feature map (Hp) over the displacement search 
region (l)

The sparse displacement vector (d) is accumulated in a 
dense tensor at respective keypoints using trilinear 
extrapolation which yields final displacement field D
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GraphRegNet - Loss

Using the obtained displacement field D, 
warp the moving (exhale) image and 
compute the MSE loss with the fixed 
(inhale) features

Unsupervised warping loss
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Training

Dataset inhale / exhale lung CT scan datasets
○ DIR - Lab 4D CT

Normal resting breathing
○ COPD gene dataset

Breath - hold CT scans, have larger deformations

For training, additional dataset - Empire10, POPI - are added to have total of 45 
training pair
5 - fold cross validation used. First fold for hyperparameter tuning
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Evaluation
Evaluation metric
   ○ TRE (Target Registration Error) between expert - annotated landmarks
   ○ Jacobian determinants 
Evaluation
   ○ Compare the performance with recent DL approaches 

DLIR, Ep18, OSL, LRN, mlVN, BMRF, VM+, LapIRN, FE+, PDD+, MST
+ means the original architecture is modified to fit for both DIR and COPD 
dataset

   ○ Ablation studies
RW (Random Walk) Noreg (GNN removed) 
Coords (k = 1 in kNN graph) SI (no refinement stage)
Unif (uniformly sample keypoints, non - distinctive keypoints)
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Results - TRE Comparison
DIR - Lab 4D CT
Improves LRN by 13% (1.59→1.39)

COPD
Better performance in all cases 

GraphRegNet: Deep Graph Regularisation Networks on Sparse Keypoints for Dense Registration of 3D Lung CTs



Results - TRE Ablation studies
○ RW (Random walk)
~52% improved when using deep learning approach
○ Noreg (GNN removed)
~71% improvement when using GNN
○ Coords (k = 1 in kNN graph)
~67% improvement when exploiting neighborhood information
○ SI (no refinement stage)
~24% improvement with two level approach
○ Unif (non - distinctive keypoints , uniformly sampled)
~11% improvement when using distinctive keypoint
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Results Jacobian Determinant 
Fraction of negative values
Shows image foldings
4DCT : 0.02 - 0.21 %
COPD : 0.15 - 0.83%

Standard deviation 
Smoothness of the 
transformation
Closer to 0 : smooth 
transformation

Standard deviation of Jacobian determinant
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Results

○ Registration accuracy improves LungRegNet(LRN) by 13% 
but fails to reach the accuracy of Rühaak et al.

○ Shows good improvement with COPD gene dataset
○ Good U - Net like architecture design and keypoint based registration shows 
improvement in TRE by 70 %
○ Outstanding improvement in computation time 2s for single registration 

5min (Rühaak et al) → 2s
9 min for single scan pair, previously takes around 3h
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Take Home message & Personal Review
○ By using sparse keypoint, can decrease computation time 

○ GraphRegNet shows great potential of fast large deformation estimation 
algorithm

○ By adding a GNN, it helps with smooth transform and spatial 
regularization

○ Future research sounds promising, trying different keypoint/feature 
extraction might improve the accuracy with a fast registration time
○ Code are given on Github, well drawn diagram
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Discussion
Why is COPD performing better?
Is it a reliable comparison method of COPD since the architecture is changed?
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