Graph Deep Learning for Medical Applications Improving Graph Neural Networks with Simple Architecture Design

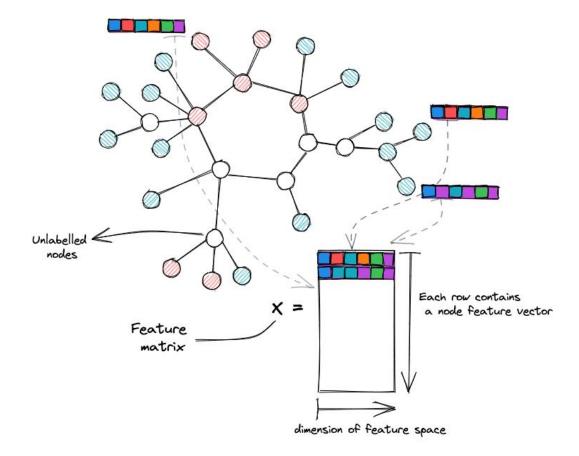
Sunil Kumar Maurya, Xin Liu, Tsuyoshi Murata

Student: Berfin Elif Erdogan Tutor: Franz Rieger 03.05.2022

Introduction

Graph NN

Graph with two classes 0 and 1



[1]*Theaisummer.com*, 2022. [Online]. Available: https://theaisummer.com/Graph_Neural_Networks/.

Motivation

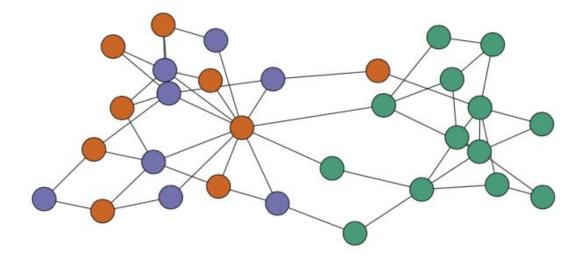
CHALLANGES

- Importance of features
- Expressiveness of Neural Network Layers

TO OVERCOME

- Unique mapping of features
- Feature selection
- Hop-Normalization

Homophily vs Heterophily



[2][2]J. Zhu, "Revisiting the problem of heterophily for GNNs", *Jiong Zhu*, 2022. [Online]. Available: https://www.jiongzhu.net/revisiting-heterophily-GNNs/. [Accessed: 03- May- 2022].

Current State of the Art and related work

Neighbor Sampling Approaches

- GraphSAGE [3]
- FastGCN [4]

Improve Feature Propagation

- APPNP [6]
- JK [7]
- Geom-GCN [8]

Attention mechanism

• GAT [5]

Deep GNN

- DropEdge [9]
- GCNII [10]

(a) Chern et al. FastColk: Representation learning on large graphs. In the outport et al., equiliars. International Conference on Learning Representations, Feb. 15, 2018. (b) P. Velickovic et al. Graph attention networks. AXX, abs/ 1710.1990, 2017. (c) J. Kingers et al. Predict. International Conference on Learning Representations, Feb. 15, 2018. (c) K. Xu et al. Representation learning on graphs with jumping knowledge networks. In International Conference on Machine Learning, pages 5453–5462. PMLR, July 3, 2018. ISSN: 2640-3498. (c) K. Yu et al. Representation learning on graphs with jumping knowledge networks. In International Conference on Machine Learning. International Conference on Machine Learning, pages 5453–5462. PMLR, July 3, 2018. ISSN: 2640-3498. (c) K. Yu et al. Representation learning on graphs with jumping knowledge networks. International Conference on Machine Learning. International Conference on Machine Learning, pages 5453–5462. PMLR, July 3, 2018. ISSN: 2640-3498. (c) K. Yu et al. Representation deep graph convolutional networks. ICDR, 2020. (c) Y. Rong et al. DropEdge: towards deep graph convolutional networks. ICDR, 2020.

Methodology

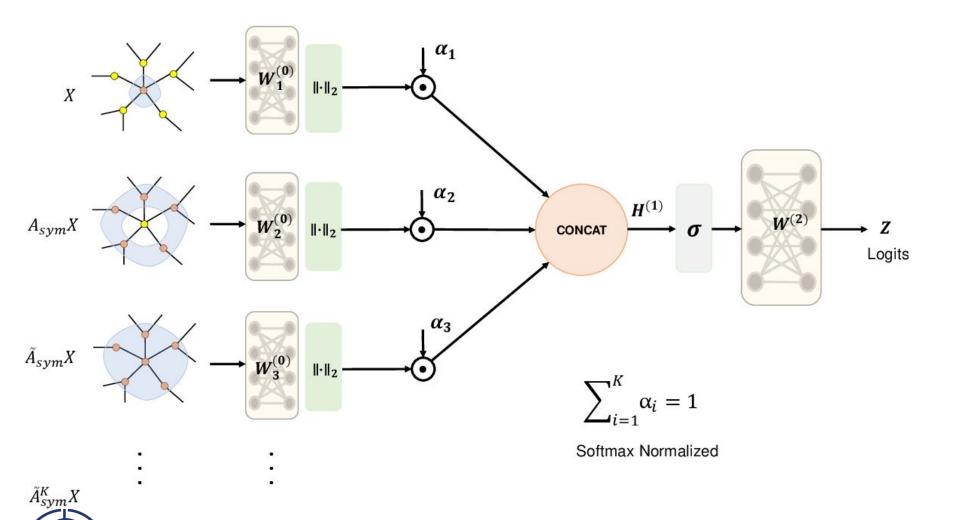
$$H^{(i+1)} = \sigma(\tilde{A}_{sym}H^{(i)}W^{(i)})$$

$$H^{(i+1)} = \sigma(A_{sym}H^{(i)}W^{(i)})$$

$$Z = \tilde{A}_{sym} \sigma(\tilde{A}_{sym} X W^{(0)}) W^{(1)}$$

FSGNN

CAMP



Experimental Setup

Datasets

Datasets	Hom. Ratio	Nodes	Edges	Features	Classes
Cora	0.81	2,708	5,429	1,433	7
Citeseer	0.74	3,327	4,732	3,703	6
Pubmed	0.80	19,717	44,338	500	3
Chameleon	0.23	2,277	36,101	2,325	4
Wisconsin	0.21	251	499	1,703	5
Texas	0.11	183	309	1,703	5
Cornell	0.30	183	295	1,703	5
Squirrel	0.22	5,201	198,353	2,089	5
Actor	0.22	7,600	26,659	932	5
ogbn-papers100M		111,059,956	1,615,685,872	128	172

Experimental Results

~	Cora	Citeseer	Pubmed	Chameleon	Wisconsin	Texas	Cornell	Squirrel	Actor
GCN	87.28 ± 1.26	76.68 ± 1.64	87.38 ± 0.66	59.82±2.58	59.80 ± 6.99	59.46 ± 5.25	57.03 ± 4.67	36.89 ± 1.34	30.26 ± 0.79
GAT	82.68 ± 1.80	75.46 ± 1.72	84.68 ± 0.44	54.69 ± 1.95	55.29 ± 8.71	58.38 ± 4.45	58.92 ± 3.32	30.62 ± 2.11	26.28 ± 1.73
GraphSAGE	86.90 ± 1.04	76.04 ± 1.30	88.45 ± 0.50	58.73 ± 1.68	81.18 ± 5.56	82.43 ± 6.14	75.95 ± 5.01	41.61 ± 0.74	34.23 ± 0.99
Cheby+JK	85.49 ± 1.27	74.98 ± 1.18	89.07 ± 0.30	63.79 ± 2.27	82.55 ± 4.57	78.38 ± 6.37	74.59 ± 7.87	45.03 ± 1.73	35.14 ± 1.37
MixHop	87.61 ± 0.85	76.26 ± 1.33	85.31 ± 0.61	60.50 ± 2.53	75.88 ± 4.90	77.84 ± 7.73	73.51 ± 6.34	43.80 ± 1.48	32.22 ± 2.34
GEOM-GCN	85.27	77.99	90.05	60.90	64.12	67.57	60.81	38.14	31.63
GCNII	$88.01{\pm}1.33$	77.13 ± 1.38	$90.30{\pm}0.37$	62.48 ± 2.74	81.57 ± 4.98	77.84 ± 5.64	76.49 ± 4.37	N/A	N/A
H2GCN-1	86.92 ± 1.37	77.07 ± 1.64	89.40 ± 0.34	57.11 ± 1.58	86.67 ± 4.69	84.86 ± 6.77	82.16 ± 4.80	36.42 ± 1.89	$35.86{\pm}1.03$
Ours(3-hop)	87.73 ± 1.36	77.19 ± 1.35	89.73±0.39	78.14±1.25	88.43 ± 3.22	$87.30{\pm}5.55$	87.03 ± 5.77	73.48 ± 2.13	35.67 ± 0.69
Ours(8-hop)	87.93 ± 1.00	77.40 ± 1.93	89.75±0.39	78.27 ± 1.28	87.84±3.37	$87.30{\pm}5.28$	87.84±6.19	$74.10{\pm}1.89$	35.75 ± 0.96

Discussion

Ablation Studies

	Cora	Citeseer	Pubmed	Chameleon	Wisconsin	Texas	Cornell	Squirrel	Actor
Proposed	83.68±2.22	74.48 ± 1.44	89.24 ± 0.27	$72.48 {\pm} 4.16$	81.48 ± 5.62	$78.80{\pm}5.88$	78.09±2.22	63.57 ± 6.83	33.54 ± 1.21
Without soft-selection	87.07 ± 0.26	76.45 ± 0.27	89.09 ± 0.39	72.27 ± 1.34	78.03 ± 6.55	76.28 ± 6.72	74.32 ± 6.54	61.73 ± 4.15	34.15 ± 0.64
Common weight $(W^{(0)})$	83.19 ± 1.41	72.15 ± 1.02	88.96 ± 0.28	68.24 ± 6.03	70.56 ± 10.94	68.45 ± 7.65	68.18 ± 9.13	56.63 ± 8.54	32.73 ± 1.48
Without Hop-normalization	77.12 ± 3.49	71.40 ± 10.01	87.72 ± 0.77	53.06 ± 6.18	$82.60{\pm}2.68$	76.33 ± 3.87	76.18 ± 3.43	32.60 ± 6.38	36.66±0.5

Model Scalability

Method	Accuracy			
SGC	63.29±0.19			
Node2Vec	58.07 ± 0.28			
SIGN	65.11 ± 0.14			
FSGNN	67.17±0.14			

Personal Review and Take-Home Message

Personal Review

Strengths

- Interesting novel concept of using homophily and heterophily datasets
- Outperforming the current state of the art GNN models on the node classification task
- Scalability
- Code is available on Github

Weaknesses

- Repeats itself
- Sometimes difficult to understand
- Insufficient description of the figures

Take-Home Message

- New architecture for node classification
 - Old methods in homophily datasets, proposed architecture in heterophily datasets performs well.
- Hyperparameter tuning is an important step

Thank you for your attention! Questions?

