Chair for Computer Aided Medical Procedures (CAMP) Master Seminar on Graph Deep Learning for Medical Applications

Anees Kazi, Mahsa Ghorbani, Roger Mukul Prof. Dr. Nassir Navab

Chair for Computer Aided Medical Procedures & Augmented Reality

About tutors you will interact:

Computer Aided Medical Procedures

About me:

Computer Aided Medical Procedures

About me:

Computer Aided Medical Procedures

Team

Anees Kazi : Senior Research Scientist, anees.kazi@tum.de Research area: multi-modal data analysis, graph

deep learning for healthcare

Roger David Soberanis Mukul, Senior Research Scientist, roger.soberanis@tum.de Research area: CNN, GCN for medical applications, segmentation and localization

Mahsa Ghorbani, PhD Candidate: mahsa.ghorbani@tuml.de Research area: Disease prediction, representation learning, multi-layered graphs

Azade Farshad, PhD Candidate: azade.farshad@tum.de Research area: Meta-learning, Scene graphs, Generative Models

Ashkan Khakzar, PhD Candidate: ashkan.khakzar@tum.de Research area: Explainable Machine Learning, Representation Learning

Shahrooz Faghihroohi: shahrooz.faghihroohi@tum.de

Research area: Medical Image Reconstruction Spatio-Temporal Analysis, Generative Models

Shun-Cheng Wu: PhD Candidate, shuncheng.wu@tum.de Research area: semantic scene reconstruction and understanding.

Ario Sadafi, PhD Candidate::

ario.sadafi@helmholtz-muenchen.de Research area: Multiple instance learning, Active Learning, Single cell analysis

Yousef Yeganeh, PhD Candidate:

<u>y.yeganeh@tum.de</u> Research area: Transformers, Federated learning, OCT

Timo Löhr, PhD Candidate: timo.loehr@tum.de

Research area: longitudinal disease prediction, graph learning, spatio-temporal analysis

Mehrdad Salehi, PhD Candidate: mehrdad.salehi@tum.de

Research areas: Image-Guided Interventions, DL in medical applications, ultrasound imaging

Basic Info about the course

- Type: Master Seminar (IN2107)
- Language: English
- SWS: 2
- ECTS: 5 Credits
- Webpage:

http://campar.in.tum.de/Chair/TeachingSs21GDLM

- А
- Time:
 - <u>https://wiki.tum.de/display/gdlma/GDLMA+SoSe</u>
 - <u>21</u>
 - Every Tuesday 12:00 pm to 2:00 pm starting from 18.05.2021
- Location:
 - Virtual Meeting Room (Zoom)

Evaluation:

Presentation 45%

- 20 minutes + 10 minutes Q&A
- Slides (Powerpoint, Latex, see website for templates)
- They should cover all relevant aspects of the paper
 - Motivation
 - Methodology
 - Experimental results
 - Take Home Message
 - Discussion
- Self-contained (review of state of the art is necessary!)
- Presentation guidelines will be released later.
- All students are expected to attend all presentations and interact during Q&A

Blog Post (45%)

- Blog post explaining the main ideas of the paper.
 - Motivation + Contributions
 - Methodology
 - Results & Discussion
- 1000-1200 words paper summary + 200-300 words your own review
- Students will be requested to comment on each other's blog posts.
- The website where the posts will be uploaded is [1].
- You can later privately share your blog posts in other websites as well (eg Medium).
- Upload the blog post two weeks before presentation. There will be discussion until presentation

idance (10%

Computer Aided Medical Procedures

Why Graph Structured Data?

Chemistry

Point cloud segmentation

Telecommunication

Content

- 1. CNNs in a nutshell:
 - Working of CNN focusing on the input (grid structure), filters
- 2. Graphs
 - Graph structured data
 - Example of graph structured data
 - Problem in applying CNN to Graphs
 - Problems to be solved with GCNs
- 3. GCN in a nutshell
 - Block diagram of GCN
 - Type of GCNs
 - Explaining each block of GCN with the math
- 4. Drawbacks of GCNs
- 5. Applications of GCN
 - Computer vision
 - Medical
 - Brain
 - Chemistry
- 6. Challenges and future of GCNs

Convolution in a nutshell

Computer Aided Medical Procedures

Convolution in a nutshell

Computer Aided Medical Procedures

Convolution in a nutshell

- Regular grid structure
 - Each pixel has exactly 8 neighbors
 - Distance of each pixel from the central pixel is constant
 - Output is also a grid
- Filters:
 - Regular grid structure
- Output

Output

Regular grid

Unstructured Input?

How to Deal with Graph Structured Data?

Computer Aided Medical Procedures

Lets find out the input setting

Notations:

Graph: $G: \{V, A, W\}$ Node: $v_i \ v_j \in V$ Edge: $a_{ij} \in A$ A: Affinity matrix V: Set of nodes W: Weight matrix x_i : Node feature vector

What could be the possible outputs?

C 4 M B

What could be the possible outputs?

Input

Computer Aided Medical Procedures

Types of GCNs

Computer Aided Medical Procedures

GCN- spectral approach

Regular image

Σ

Computer Aided Medical Procedures

GCN- spectral approach

- Step 1: Compute normalized graph Laplacian
- Step 2: Eigen value decomposition
- Step 3: Convert node signals to spectral domain
- Step 4: Filtering
- Step 5: Inverse Fourier transform

Two main components in the input setting

- 1. Graphs $G \rightarrow A$
- 2. Node features x_i

Mathematical background Step 1: $L = I_N - D^{\frac{1}{2}}AD^{-\frac{1}{2}}$ Where, *L* is the normalized graph Laplacian. I_N is the identity showing the self loop and $L \in \mathbb{R}^{N \times N}$ D is the diagonal degree matrix, $D_{ii} = \sum_j A_{ij}$ and $D \in \mathbb{R}^{N \times N}$ Step 2: Eigen value decomposition: $L = U\Lambda U^T$ where, $\Lambda = diag(\lambda_0, \lambda_1, ..., \lambda_{N-1}) \in \mathbb{R}^{N \times N}$

Fourier transform of signal x	Inverse Fourier transform of signal
$\widehat{x} = U^T x \in \mathbb{R}^{N}$	$\mathbf{x} \qquad x = U\widehat{x} \in \mathbb{R}^N$

Let us define a function g_{θ} which brings learnable filters.

 $y = g_{\Theta}(L)x$

$$y = g_{\Theta}(L)x$$

$$y = g_{\Theta}(U\Lambda U^T)x$$

$$= Ug_{\Theta}(\Lambda)U^Tx$$

Step 3: Fourier Transform of x

Analogy Regular image

Spectral domain

Fourier Transform

Computer Aided Medical Procedures

$$y = g_{\Theta}(L)x$$

$$y = g_{\Theta}(U\Lambda U^T)x$$

$$= Ug_{\Theta}(\Lambda)U^Tx$$

Step 4: Filtering of *x* in Fourier domain

Analogy Regular image

Σ

Computer Aided Medical Procedures

$$y = g_{\Theta}(L)x$$

$$y = g_{\Theta}(U\Lambda U^{T})x$$

$$= Ug_{\Theta}(\Lambda)U^{T}x$$

Step 5: Inverse Fourier Transform of *x*

Analogy Regular image

$$y = g_{\Theta}(L)x$$

$$y = g_{\Theta}(U\Lambda U^{T})x$$

$$= Ug_{\Theta}(\Lambda)U^{T}x$$

- Computationally expensive
- Not localized

$$y = g_{\Theta}(L)x$$

$$y = g_{\Theta}(U\Lambda U^{T})x$$

$$= \underbrace{Ug_{\Theta}(\Lambda)U^{T}x}_{\bullet}$$

. Computationally expansion

- Computationally expensive
- Not localized

So, polynomial parameterization over Lambda.

$$g_{\theta}(\Lambda) = \sum_{r=0}^{k} \theta_{r} T_{r}(\Lambda)$$
$$g_{\theta} * x = \sum_{r=0}^{k} \theta_{r} T_{r}(L) * x$$

Fig. 1 Chebyshev Polynomials of the first kind [1]

[1] https://www.researchgate.net/figure/Chebyshev-Polynomials-of-the-first-kind_fig1_287367586

Σ

Example with Fourier series

کم ک

[1] Replicate the Fourier transform time-frequency domains correspondence illustration using TikZ

Spatial GCN

- 1. Sample neighborhood
- 2. Aggregate feature information from neighbors
- 3. Predict graph context and label using aggregated information

sampling the namber, with k being the hops

$$h_{i}^{(l+1)} = \sigma \left(h_{i}^{(l)} w_{0}^{(l)} + \sum_{j \in \eta} \frac{1}{c_{ij}} w_{(l)}^{1} h_{j}^{(l)} \right)$$

- 1. A GCN trained on one graph will not work on another graph structured data.
- 2. Spectral versions require predefined graph.
- 3. At all levels in this network, the filters are limited to 3x3 in size (which in it self is still OK) and are also essentially **fixed to be the same kernel across** all layers and all units in entire network, up to a constant multiplier.
- 4. Graph construction is critical.
- 5. Graph learning is still an open challenge.

Methodological advancements:

Graph auto encoders [4]

Capsule Graph Neural Networks [5]

[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks ICLR 2018.

[2] Monti, F., Bronstein, M. and Bresson, X., 2017. Geometric matrix completion with recurrent multi-graph neural networks. In Advances in Neural Information Processing Systems (pp. 3697-3707).

[3] Klicpera, J., Bojchevski, A. and Günnemann, S., 2018. Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019.

[4] Kipf, T.N. and Welling, M., 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.

[5 Verma, S. and Zhang, Z.L., 2018. Graph capsule convolutional neural networks. ICLR 2019]

Application based advancements

Medical

Brain surface analysis [1]

٤

Metric Learning for brain connectivity analysis [2]

Multi-view GCN for [5]

[1] Gopinath, K., Desrosiers, C. and Lombaert, H., Adaptive Graph Convolution Pooling for Brain Surface Analysis. Accepted in IPMI 2019.

[2] Ktena, S.I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B. and Rueckert, D., 2018. Metric learning with spectral graph convolutions on brain connectivity networks. *NeuroImage*, *169*, pp.431-442.

[3] Anirudh, R. and Thiagarajan, J.J., 2019, April. Bootstrapping graph convolutional neural networks for autism spectrum disorder classification. In *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)* (pp. 3197-3201). IEEE.

[4] Ma, T., Xiao, C., Zhou, J. and Wang, F., 2018. Drug similarity integration through attentive multi-view graph auto-encoders. arXiv preprint arXiv:1804.10850.
 [5] Zhang, X., He, L., Chen, K., Luo, Y., Zhou, J. and Wang, F., 2018. Multi-view graph convolutional network and its applications on neuroimage analysis for parkinson's disease. In AMIA Annual Symposium Proceedings (Vol. 2018, p. 1147). American Medical Informatics Association.

Works from CAMP!

1) Matrix completion

2) Multiple graph scenario

6) inceptionGCN

State of the art of CAMP

[1] Roger D. Soberanis-Mukul, Nassir Navab, and Shadi Albarqouni. An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation. MELBA ,2020

[2]Ghorbani, Mahsa, et al. "RA-GCN: Graph Convolutional Network for Disease Prediction Problems with Imbalanced Data." *arXiv* preprint arXiv:2103.00221 (2021).

-[3] Ghorbani, Mahsa, et al. "GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent Inference." arXiv preprint arXiv:2104.03597 (2021).

Future challenges

- 1. Scalability in spectral.
- 2. Modeling dynamic, temporal graphs
- 3. Robustness
- 4. Interpretability

Interesting tutorials to get some hand on!

• <u>https://github.com/tkipf/gcn</u>

Inductive:

- The method works **directly on the graph** and learns the important relations based on the feature representations
- An extension to new samples is therefore possible without retraining the network
- The method is scalable because it can be trained **successively on different parts** of the graph structure (batchwise approach)

General idea:

Feature representation of one node gets updated by surrounding nodes

Node 1 with feature representation v₁ has connections to five corresponding neighbors

Computer Aided Medical Procedures

July 22, 2020 Slide 42

General idea:

Feature representation of one node gets updated by surrounding nodes

Node 1 with feature representation v₁ has connections to five corresponding neighbors Surrounding nodes features are aggregated and result in new representation v'₁

Example 1: GraphSage

General idea:

Feature representation of one node gets updated by surrounding nodes

- 2. Aggregate feature information from neighbors
- 3. Predict graph context and label using aggregated information

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Concept steps for each node:

July 22, 2020 Slide 45

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Concept steps for each node:

1. Collect all nodes which are in the **direct neighborhood** of the node of interest

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Concept steps for each node:

- 1. Collect all nodes which are in the **direct neighborhood** of the node of interest
- 2. Aggregate these nodes using an aggregation function (averaging, pooling, ...)

 $\begin{array}{l|l} \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V}; \\ \mathbf{2} \ \ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \mathbf{3} & | \ \ \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \\ \mathbf{4} & | \ \ \ \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \mathrm{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ \mathbf{5} & | \ \ \ \mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \overline{\mathrm{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})}\right) \\ \mathbf{6} & | \ \ \mathbf{end} \\ \mathbf{7} & | \ \ \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k}/\|\mathbf{h}_{v}^{k}\|_{2}, \forall v \in \mathcal{V} \\ \mathbf{8} \ \mathbf{end} \\ \mathbf{9} \ \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V} \end{array}$

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Concept steps for each node:

- 1. Collect all nodes which are in the **direct neighborhood** of the node of interest
- 2. Aggregate these nodes using an aggregation function (averaging, pooling, ...)
- 3. Concatenate the aggregated feature representation with the features of the central node

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Concept steps for each node:

- 1. Collect all nodes which are in the **direct neighborhood** of the node of interest
- 2. Aggregate these nodes using an **aggregation function** (averaging, pooling, ...)
- 3. Concatenate the aggregated feature representation with the features of the central node
- 4. Perform a linear transformation of the concatenated vector to receive the new representation

 $\begin{array}{lll} \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V}; \\ \mathbf{2} \ \ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \mathbf{3} & | \ \ \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \\ \mathbf{4} & | \ \ \ \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \mathrm{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ \mathbf{5} & | \ \ \ \mathbf{h}_{v}^{k} \leftarrow \sigma \Big(\mathbf{W}^{k} \cdot \mathrm{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\Big) \Big) \\ \mathbf{6} & | \ \ \mathbf{end} \\ \mathbf{7} & | \ \ \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k}/||\mathbf{h}_{v}^{k}||_{2}, \forall v \in \mathcal{V} \\ \mathbf{8} \ \ \mathbf{end} \\ \mathbf{9} \ \ \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V} \end{array}$

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Concept steps for each node:

- 1. Collect all nodes which are in the **direct neighborhood** of the node of interest
- 2. Aggregate these nodes using an **aggregation function** (averaging, pooling, ...)
- 3. Concatenate the aggregated feature representation with the features of the central node
- 4. Perform a linear transformation of the concatenated vector to receive the new representation

Activate and normalize the new representation [1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017

 $\begin{array}{lll} \mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V} ; \\ \mathbf{2} \ \ \mathbf{for} \ k = 1...K \ \mathbf{do} \\ \mathbf{3} & | \ \ \mathbf{for} \ v \in \mathcal{V} \ \mathbf{do} \\ \mathbf{4} & | \ \ \ \mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \mathrm{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\}); \\ \mathbf{5} & | \ \ \ \mathbf{h}_{v}^{k} \leftarrow \sigma \Big(\mathbf{W}^{k} \cdot \mathrm{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\Big) \Big) \\ \mathbf{6} & | \ \ \mathbf{end} \\ \mathbf{7} & | \ \ \mathbf{h}_{v}^{k} \leftarrow \mathbf{h}_{v}^{k}/||\mathbf{h}_{v}^{k}||_{2}, \forall v \in \mathcal{V} \\ \mathbf{8} \ \mathbf{end} \\ \mathbf{9} \ \mathbf{z}_{v} \leftarrow \mathbf{h}_{v}^{K}, \forall v \in \mathcal{V} \end{array}$

Parameters

Graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ weight matrices $\mathbf{W}^k, \forall k \in \{1, ..., K\}$ input features $\{\mathbf{x}_v, \forall v \in \mathcal{V}\}$ depth K

Properties:

- 1. The amount of samples and neighborhood size can be varied, batchwise training is possible
- 2. The trained network is applicable also for new samples that were not part of the training
- 3. But: The network does not select which neighbors are the most important ones for an _____update

General idea:

Network learns which neighbors are the most important for the update (attention mechanism)

Example 2: Graph Attention Network (GAT)

Mathematical realization:

An attention coefficient is calculated for each connection between a node j and the central node i using a shared linear transformation **W** and an attention function a:

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

An attention coefficient is calculated for each connection between a node j and the central node i using a shared linear transformation **W** and an attention function a:

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

For GAT, this attention function *a* is just another linear transformation *a*. The resulting coefficient reflects the importance of node j for the update of node i. A softmax function is used to normalize all coefficients:

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018

An attention coefficient is calculated for each connection between a node j and the central node i using a shared linear transformation W and an attention function a:

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

For GAT, this attention function *a* is just another linear transformation *a*. The resulting coefficient reflects the importance of node j for the update of node i. A softmax function is used to normalize all coefficients:

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

The calculated attention coefficients are now used to aggregate the neighborhood of node i for the update of its feature representation:

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018

An attention coefficient is calculated for each connection between a node j and the central node i using a shared linear transformation W and an attention function a:

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

iviuiti-nead

For GAT, this attention function *a* is just another linear transformation *a*. The resulting coefficient reflects the importance of node j for the update of node i. A softmax function is used to normalize all coefficients:

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

The calculated attention coefficients are now used to aggregate the neighborhood of node i for the update of its feature representation:

$$\vec{h}'_i = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right) \qquad \qquad \vec{h}'_i = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018

Single nead

July 22, 2020 Slide 56

Thank you!

Looking forward to the state of the art in this course! All the best!

Anees Kazi anees.kazi@tum.de Roger David Soberanis Mukul, roger.soberanis@tum.de Mahsa Ghorbani, m.ghorbani1991@gmail.com

