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About tutors you will interact:
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About me:

Students
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About me:
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tutors
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Basic Info about the course

• Type: Master Seminar (IN2107)

• Language: English

• SWS: 2 

• ECTS: 5 Credits

• Webpage: 

http://campar.in.tum.de/Chair/TeachingSs21GDLM

A

• Time:

– https://wiki.tum.de/display/gdlma/GDLMA+SoSe

21

– Every Tuesday 12:00 pm to 2:00 pm starting 

from 18.05.2021

• Location:

– Virtual Meeting Room (Zoom)
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https://wiki.tum.de/display/gdlma/GDLMA+SoSe21


Evaluation: 

Presentation 45%

• 20 minutes + 10 minutes Q&A

• Slides (Powerpoint, Latex, see website for 

templates)

• They should cover all relevant aspects of the 

paper

– Motivation

– Methodology

– Experimental results

– Take Home Message

– Discussion

• Self-contained (review of state of the art is 

necessary!)

• Presentation guidelines will be released later.

• All students are expected to attend all 

presentations and interact during Q&A
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Blog Post (45%)

• Blog post explaining the main ideas of the 

paper. 

– Motivation + Contributions 

– Methodology 

– Results & Discussion 

• 1000-1200 words paper summary + 200-300 

words your own review

• Students will be requested to comment on 

each other's blog posts.

• The website where the posts will be 

uploaded is [1].

• You can later privately share your blog posts 

in other websites as well (eg Medium). 

• Upload the blog post two weeks before 

presentation. There will be discussion until 

presentation

Attendance (10%)
Attendance (10%)
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Graph Convolutional Networks

Convolutional Filters OutputInput
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Brain connection Social network 

TelecommunicationChemistry 

Shape analysis

Point cloud 
segmentation 

Why Graph Structured Data?
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1. CNNs in a nutshell: 
• Working of CNN focusing on the input (grid structure), filters

2. Graphs
• Graph structured data
• Example of graph structured data
• Problem in applying CNN to Graphs
• Problems to be solved with GCNs 

3. GCN in a nutshell
• Block diagram of GCN
• Type of GCNs
• Explaining each block of GCN with the math

4. Drawbacks of GCNs
5. Applications of GCN

• Computer vision
• Medical 
• Brain
• Chemistry 

6. Challenges and future of GCNs

Content
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Image Filter Output

Convolution in a nutshell
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Image Filter Output

Convolution in a nutshell
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Image Filter Output

Convolution in a nutshell

• Regular grid structure
• Each pixel has exactly 8 

neighbors 
• Distance of each pixel 

from the central pixel is 
constant

• Output is also a grid
• Filters:

• Regular grid structure
• Output

• Regular grid
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Will the grid 
shaped filter 
work?

Will the output be 
a grid?

• No grid
• Number of neighbors are not fixed 
• Distance between the nodes is not 

fixed

Unstructured Input?
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Black box: 
To process such data

Input
Output

How to Deal with Graph Structured Data?
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Edge:

Node: 

Notations:

Lets find out the input setting
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Black box: 
To process such data

Classify each node

Classify whole graph

Cluster the nodes

And many more!

Input

What could be the possible outputs?
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Black box: 
To process such data

Classify each node

Classify whole graph

Cluster the nodes

And many more!

GCN

Input

What could be the possible outputs?
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Edge:

Node: 

Notations:

GCN

Clustering 

Full pipeline

Training node

Test node
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GCN

Spectral Spatial 

Types of GCNs
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Spectral 
domain

Spatial 
domain

Spectral 
representation 

of graph

Filter

Training node

Test node

GCN- spectral approach
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Spectral 
domain

Spatial 
domain

Spectral 
representation 

of graph

Filter

Fourier Transform

Spatial domain

Global effect

Regular image

Spectral domain

Filter

GCN- spectral approach
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Spectral 
domain

Spatial 
domain

Spectral 
representation 

of graph

Filter

Training node

Test node

Step 1: Compute normalized graph Laplacian 
Step 2: Eigen value decomposition  
Step 3: Convert node signals to spectral domain
Step 4: Filtering
Step 5: Inverse Fourier transform

GCN- spectral approach
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Two main components in the input setting

1. Graphs G→ A
2. Node features
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Where,
L is the normalized graph Laplacian. IN is the identity matrix
showing the self loop and
D is the diagonal degree matrix, and
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Eigen value decomposition:

where,

Fourier transform of signal x Inverse Fourier transform of signal 
x

Mathematical background

Step 1: 

Step 2: 



November 5, 2020 Slide 27Computer Aided Medical Procedures

Mathematical background

Fourier Transform

Regular image

Spectral domain

Analogy
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Mathematical background

Fourier Transform

Regular image

Spectral domain

Filter

Analogy
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Mathematical background

Fourier Transform

Spatial domain

Global effect

Regular image

Spectral domain

Filter

Analogy
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November 5, 2020 Slide 
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• Computationally expensive
• Not localized

Mathematical background
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• Computationally expensive
• Not localized

So, polynomial parameterization over Lambda. 

Mathematical background

Fig. 1 Chebyshev Polynomials of the first kind [1]

[1] https://www.researchgate.net/figure/Chebyshev-Polynomials-of-the-first-kind_fig1_287367586



Example with Fourier series 
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[1] Replicate the Fourier transform time-frequency domains correspondence illustration using TikZ

Original signal

Component n
Component 1

https://tex.stackexchange.com/questions/127375/replicate-the-fourier-transform-time-frequency-domains-correspondence-illustrati
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Spatial GCN

sampling the 
namber, with 
k being the 
hops
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1. A GCN trained on one graph will not work on another graph structured
data.

2. Spectral versions require predefined graph.
3. At all levels in this network, the filters are limited to 3x3 in size (which in it

self is still OK) and are also essentially fixed to be the same kernel across

all layers and all units in entire network, up to a constant multiplier.

4. Graph construction is critical.

5. Graph learning is still an open challenge.

Drawbacks of GCNs



Methodological advancements:

Graph attention networks [1] Matrix completion [2]

Encoder DecoderA A’

Graph auto encoders [4] Capsule Graph Neural Networks [5]

[1] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. and Bengio, Y., 2017. Graph attention networks ICLR 2018.

[2] Monti, F., Bronstein, M. and Bresson, X., 2017. Geometric matrix completion with recurrent multi-graph neural networks. In Advances in Neural Information Processing 

Systems (pp. 3697-3707).

[3] Klicpera, J., Bojchevski, A. and Günnemann, S., 2018. Predict then Propagate: Graph Neural Networks meet Personalized PageRank, ICLR 2019.

[4] Kipf, T.N. and Welling, M., 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.

[5 Verma, S. and Zhang, Z.L., 2018. Graph capsule convolutional neural networks. ICLR 2019]



Application based advancements

• Medical

Brain surface analysis [1]

[1] Gopinath, K., Desrosiers, C. and Lombaert, H., Adaptive Graph Convolution Pooling for Brain Surface Analysis. Accepted in IPMI 2019.
[2] Ktena, S.I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B. and Rueckert, D., 2018. Metric learning with spectral graph convolutions on brain connectivity 
networks. NeuroImage, 169, pp.431-442.
[3] Anirudh, R. and Thiagarajan, J.J., 2019, April. Bootstrapping graph convolutional neural networks for autism spectrum disorder classification. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3197-3201). IEEE.
[4] Ma, T., Xiao, C., Zhou, J. and Wang, F., 2018. Drug similarity integration through attentive multi-view graph auto-encoders. arXiv preprint arXiv:1804.10850.
[5] Zhang, X., He, L., Chen, K., Luo, Y., Zhou, J. and Wang, F., 2018. Multi-view graph convolutional network and its applications on neuroimage analysis for 
parkinson’s disease. In AMIA Annual Symposium Proceedings (Vol. 2018, p. 1147). American Medical Informatics Association.

Metric Learning for brain connectivity analysis [2]

Drug similarity integration [4] Multi-view GCN for [5]



Works from CAMP!

1) Matrix completion

2) Multiple graph scenario 

3) Personalised medicine 

4) Graph learning

5) CNN GAT

6) inceptionGCN



State of the art of CAMP

Handling class imbalance in GNNs [2]

[1] Roger  D.  Soberanis-Mukul,  Nassir Navab,  and  Shadi Albarqouni. An Uncertainty-Driven GCN Refinement Strategy for Organ 

Segmentation. MELBA ,2020

[2]Ghorbani, Mahsa, et al. "RA-GCN: Graph Convolutional Network for Disease Prediction Problems with Imbalanced Data." arXiv 

preprint arXiv:2103.00221 (2021).

[3] Ghorbani, Mahsa, et al. "GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent Inference." arXiv preprint 

arXiv:2104.03597 (2021).

[

Graph-independent inference [3]

Graph-based Refinement [1]



Future challenges
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1. Scalability in spectral.
2. Modeling dynamic, temporal graphs
3. Robustness
4. Interpretability



Interesting tutorials to get some hand on!
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● https://github.com/tkipf/gcn

https://github.com/tkipf/gcn


July 22, 2020 Slide 41Computer Aided Medical Procedures

Difference between transductive and inductive methods

Inductive:
- The method works directly on the graph and learns the important relations based on

the feature representations
- An extension to new samples is therefore possible without retraining the network
- The method is scalable because it can be trained successively on different parts of

the graph structure (batchwise approach)



July 22, 2020 Slide 42Computer Aided Medical Procedures

General idea:
Feature representation of one node gets updated by surrounding nodes

General idea of inductive graph approach

v1

v4

v3

v5

v6

v2

Node 1 with feature 
representation v1 has 
connections to five 
corresponding neighbors
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General idea of inductive graph approach

v1

v4

v3

v5

v6

v2

v1

v4

v3

v5

v6

v2

‘

General idea:
Feature representation of one node gets updated by surrounding nodes

Node 1 with feature 
representation v1 has 
connections to five 
corresponding neighbors

Surrounding nodes features 
are aggregated and result in 
new representation v’1
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Example 1: GraphSage

General idea:
Feature representation of one node gets updated by surrounding nodes

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 1: GraphSage

Mathematical realization: Parameters
:

Concept steps for each node:

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 1: GraphSage

Mathematical realization: Parameters
:

Concept steps for each node:
1. Collect all nodes which are in the direct neighborhood of the node of interest

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 1: GraphSage

Mathematical realization: Parameters
:

Concept steps for each node:
1. Collect all nodes which are in the direct neighborhood of the node of interest
2. Aggregate these nodes using an aggregation function (averaging, pooling, …)

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 1: GraphSage

Mathematical realization: Parameters
:

Concept steps for each node:
1. Collect all nodes which are in the direct neighborhood of the node of interest
2. Aggregate these nodes using an aggregation function (averaging, pooling, …)
3. Concatenate the aggregated feature representation with the features of the central

node

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017



July 22, 2020 Slide 49Computer Aided Medical Procedures

Example 1: GraphSage

Mathematical realization: Parameters
:

Concept steps for each node:
1. Collect all nodes which are in the direct neighborhood of the node of interest
2. Aggregate these nodes using an aggregation function (averaging, pooling, …)
3. Concatenate the aggregated feature representation with the features of the central

node
4. Perform a linear transformation of the concatenated vector to receive the new

representation

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 1: GraphSage

Mathematical realization: Parameters
:

Concept steps for each node:
1. Collect all nodes which are in the direct neighborhood of the node of interest
2. Aggregate these nodes using an aggregation function (averaging, pooling, …)
3. Concatenate the aggregated feature representation with the features of the central

node
4. Perform a linear transformation of the concatenated vector to receive the new

representation
5. Activate and normalize the new representation

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 1: GraphSage

Mathematical realization: Parameters
:

Properties:
1. The amount of samples and neighborhood size can be varied, batchwise training is

possible
2. The trained network is applicable also for new samples that were not part of the

training
3. But: The network does not select which neighbors are the most important ones for an

update

[1] W. L. Hamilton, R. Ying, J. Leskovec, Inductive Representation Learning on Large Graphs, NIPS 2017
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Example 2: Graph Attention Network (GAT)

General idea:
Network learns which neighbors are the most important for the update (attention
mechanism)

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018
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Example 2: Graph Attention Network (GAT)

Mathematical realization:

An attention coefficient is calculated for 
each connection between a node j and 
the central node i using a shared linear 
transformation W and an attention 
function a:

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018
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Example 2: Graph Attention Network (GAT)

Mathematical realization:

For GAT, this attention function a is just another linear transformation a. The resulting
coefficient reflects the importance of node j for the update of node i. A softmax function
is used to normalize all coefficients:

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018

An attention coefficient is calculated for 
each connection between a node j and 
the central node i using a shared linear 
transformation W and an attention 
function a:
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Example 2: Graph Attention Network (GAT)

Mathematical realization:

For GAT, this attention function a is just another linear transformation a. The resulting
coefficient reflects the importance of node j for the update of node i. A softmax function
is used to normalize all coefficients:

The calculated attention coefficients are now used to aggregate the neighborhood of
node i for the update of its feature representation:

[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018

Single head

An attention coefficient is calculated for 
each connection between a node j and 
the central node i using a shared linear 
transformation W and an attention 
function a:
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Example 2: Graph Attention Network (GAT)

Mathematical realization:

For GAT, this attention function a is just another linear transformation a. The resulting
coefficient reflects the importance of node j for the update of node i. A softmax function
is used to normalize all coefficients:

The calculated attention coefficients are now used to aggregate the neighborhood of
node i for the update of its feature representation:

Single head Multi-head
[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio and Y. Bengio, 2017. Graph attention networks ICLR 2018

An attention coefficient is calculated for 
each connection between a node j and 
the central node i using a shared linear 
transformation W and an attention 
function a:
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Thank you!
Looking forward to the state of the art in this course! All the best!
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