
Input:

- All Virtual Keys mapped
- Touch support
- User Interfaces
- Buttons with callbacks for clean implementation
- Wrapper for .Net class

Technische Universität München – Institut für Informatik

Our Engine

Gameplay:

The Universe comes to an end, the Dark Rip is close. Your crew tries to flee from the
inevitable. All thats left is your ship and the last place in the universe that still has mass – A
Black Hole. Your only chance is to enter the Black Hole and hope that something exists on
the other side.

Dark Rip is a short strategy game, you have to:

• Gather Science to safely enter the Black Hole

• Collect Asteroids to gain mass by changing your orbit

• Use Mass to move or construct buildings

• Enter your new universe!

0°0°

The engine is based on DX12

Dark Rip

Erik Franz, Moritz Kohr, Phillip Hohenester

Computer Games Laboratory
WS18/19 , Technische Universität München

Stages of Development

Target 1:

Orbit mechanics:

You may burn Retrograde (against your
movement direction) or Prograde (into your
movement direction).

Consider that you get higher if you burn
prograde, and higher orbits are slower
(meaning you actually slow down if you
accelerate)

Goal of the Game:

You have to collect 1800 Science within 15
minutes.

After you archived that goal you should
enter the Black Hole to avoid dying with the
Universe.

Concept Art Physical Prototype

Timeline Basic Engine

Basic Gameplay Released Game

Architecture:

- Based on DirectX 12
- Build on top of UWP
- Uses Entitiy-Component System

- GameObject as Entity
- Components as themself

- Split into Subengines:
- GraphicsEngine (everything that is printed on screen)
- PhysicsEngine (collisions)
- InputEngine (User Input, UI)
- GameMain (time, SceneGraph root, Gameloop)

- currently no sound, multithreading or networking

Graphics:

- Mesh loading from disc
- Simple Material System
- Postprocessing

- Bloom
- Antialiasing (MSSA)
- Render to texture (Orbits)
- User Interface

- Volumetrics
- Anchors for UI

Physics:

- Simple Sphere-Sphere Collision

Orbits:

- analytically solved (very stable)
- 2-Body Problem
- Boxed Orbits possible (still solved for 2-Body problem)
- Component-Based
- Markers for Player

Other:

- Transform Component optimized for performance
- Behaviour Base-Component for easy extension
- Events in all Components (OnStart, OnUpdate, …)

