
Interim Report 
Interim Report 1 

Overall Progress 2 

Character 2 

Art 3 

Controls / (Local) Multiplayer 3 

Camera 3 

UI 3 

Physics 4 

Platform 4 

Buoyancy 4 

Destruction 5 

Character Physics 6 

Punching 6 

Jumping 6 

Swimming 6 

Events and their Effects 7 

Base structure 7 

Logic 7 

Event Behaviors 8 

Titanic 8 

Storm 8 

Spawner 8 

Lightning 9 

Snow 9 

Blending Subsystems 9 

Sky 9 

Wave 10 

Particles 10 

Rain Decals 10 

Integration 10 

Future Iterations 11 

Possible Improvements 11 

Known bugs at the time of the Interim Report 11 



Overall Progress 

Overall, we met most of our development goals for this milestone. The key missing factor would                               
be polish. A lot of things are working, and working well. But the core of the game in a cleaner                                       
UI and final touches of cleanliness regarding some interactions. Some design choices also have                           

not gotten enough playtesting yet. 

 

Character 

The character model was originally inspired by             
the Fall Guys characters with some more detail               
in textures and shape. The characters should             

look adorable and cute. The golem was modeled,               
uv unwrapped, textured and animated in blender.             
For animating the golem we used the rigify tool                 
which is a helpful tool to easy animate humanoid                 
characters. Having the issue that the Golem has               
no knee and only calfs and no thighs we wight                   
painted the whole leg to the calves of the rig                   
which worked quite nicely. The guidelines for             
the animations were similar to the modeling             
guidelines, it should look cute and adorable. We               
have the animations depicted to the right             
implemented. The implementation was done         

using the Unity animator, which is essentially a               
glorified state machine. The idle/run animation           
is determined by speed; the swimming is             
determined by a bool, and the other implemented               
animations use a trigger (i.e. punch, jump) 

 

All the animations in action 

https://youtu.be/JQ4A8x02aZ0 

 

 

 

The model textured in Unity 

 

https://youtu.be/JQ4A8x02aZ0


Art 

The art style is somewhere         
between cartoon style and       
looking realistic. We want       
to use the hdrp pipeline in           
unity to have very nice         
looking effects such as       
reflection and post     
processing features that     
really enhance the overall       

look of the game while         
keep some cartoon style to         
not have the need of modelling to high detailed models as well as keep some level of cuteness to                                     
the characters and world. The boat is a perfect example for this art style because it is very low                                     
poly modeled with only a view details but has some more advanced textures on it with cool                                 
looking reflections. For the future we plan to have also the tiles for the main island designed with                                   

this kind of art style and add more details as well as verticality to the level.  

 

Controls / (Local) Multiplayer 

The controls were implemented using Unity’s new Input System. This allowed for the development to be                               
much more focused on the integration of the physical controls into the actual movement and handling.                               

This extends to the multiplayer, as the new Input System is capable of seamlessly handling different user                                 
inputs and registering them to different playable characters. 

 

Camera 

As per our design, the camera does not move, but rather shows. That means that placement was key, but                                     

with some minimal testing, it’s clear that this would already be much improved if the camera had minor                                   

tracking that adjust the size and scale slightly to reframe the scene and keep all characters visible. 

 

UI 

The UI was more trouble than anticipated. We are well aware of the troubles that underestimating UI can                                   

bring, so it was already allotted its fair share of development time, but still it was quite unyielding, and                                     
often resulted in buggy behaviour. One of the biggest culprits was the “Start Game” button, which is                                 
technically a UI element, but due to how different it is (players can move around; the button for it is                                       
different than the default), we decided to handle it exceptionally to the other inputs, using a “virtual”                                 

button to trigger its OnClick method, rather than the UI’s built-in submit functionality. Once the very                               

rough bugs were worked out, the UI got to a fairly stable state and definitely should not be an issue now.  



Physics 
Platform 

The physics system for the game was mainly built on                   

the Unity physics engine, using simple colliders and               
rigidbodies (on the players) to support collisions,             
gravity, and physics-based movement. Other parts           
simulate buoyancy in slightly different ways (see             

buoyancy section below). ​In order to test the physics                 

and mechanics of the game, we needed to create a                   
simple platform. A flat cuboid was used to act as a                     
platform. This cuboid is built up of 10 by 10                   
smaller cuboids (we will refer to them as tiles). So                   
the tiles build up a flat surface that will be used as                       
the main platform of the game where characters               
will be spawned on and where the brawl will happen. Each tile on its own is breakable and has a                                       
certain physical material. This allows us to easily integrate the different ice and snow (physics)                             

materials (having different visuals and friction values) into individual tiles. 

 

Buoyancy 

Since the platform will be placed on water, we                 

needed to simulate buoyancy to it. At first, to                 
achieve this, generic buoyancy scripts were           
used. But the result of these scripts were not                 
good enough, as they caused the flat platform               
to be easily flippable and out-of-control. This             
behaviour, although can be realistic in some             
way, could be very frustrating for players as               
they can fall off easily from the platform and                 
lose the game. So another mechanic was used               
in order to simulate the buoyancy of the platform. This mechanic aims to make the platform not                                 
flippable but at the same time would have realistic floating movement that would give the                             
desired difficulty of control. The idea of this mechanic is that instead of applying buoyancy to                               
the platform as a whole with respect to its center of mass, we just add several forces to the                                     

corners of the platform to simulate the buoyancy. These forces act as thrusters that keep the                               
platform a float with respect to the ocean level (which is dynamically changing), and these                             
thrusters will only push the platform at their positions when they become below ocean level. The                               



positions and directions of the thrusting forces are represented by the red arrows in the next                               

image. 

Destruction 

As mentioned in the Platform subsection, the platform is built up of 10 by 10 tiles. These tiles are                                     
breakable, and they should be broken by certain events in the game. In order to implement the                                 
tile destruction mechanics, first a procedural mesh destroyer script was used. This script would                           
randomly split the tile to a specific number of pieces that will be created as new meshes in the                                     
game. This mechanic was dynamic and gave random results which looked acceptable, but it                           
proved to be very performance intensive which could result in frame drops when breaking                           
several tiles at the same time. Instead of doing so, we used predefined broken mesh which was                                 

created using a 3D modelling tool.  

 

  

 

As seen above, there are two states to the tile, the original one and a broken version which is split                                       
to multiple meshes. Upon activating the destruction of the tile, it is replaced with the broken                               
version. After that a rigidbody component is added to each piece and an explosion force is                               
applied on them to make them scatter away. In further iterations, we intend to have more                               
intermediate meshes to indicate the damage level to players. Currently, it internally registers a set                             
number of damage levels (without showing any indications of damage to the player) before                           

suddenly exploding. 

 

   



Character Physics 

The character supports physics through a collider as well as a rigidbody. This allows access to all                                 
of the needed physics functionality. For the collider, a simple capsule collider was adjusted to the                               
player’s avatar; this is in contrast to a more complex collider as this allows us to save                                 
computations where they’re unneeded (the physics we should be using resources to compute is                           
actually outside the player model!). The rotations in the X and Z directions were frozen for the                                 

rigid body to allow movement through physical forces, without the ‘capsule’ toppling over. 

Punching 

An additional object that stores the player’s punch location is stored, and, when the player                             
punches, the C# code dynamically checks a radius in front of the ‘punch’, and applies a scaled                                 

impulse along the vector of the punch to the hit player.  

 

Jumping 

The jumping implementation is fairly straight forward. The player receives an impulse in their                           
upward vector direction, and can not jump again until a collision is detected. At the moment, the                                 
ground does not have a proper tag set (look at known bugs section below), but it’s unclear                                 
whether it would be better with just the ground refresh the jump, or any collision (needs                               

playtesting maybe) 

 

Swimming 

Swimming for the player works very similarly to the platform; using the same buoyancy script                             
(with different values), the player is kept afloat, wherein an upward force constantly acts upon                             
the player to keep them at water level. One of the issues we faced was that the water has no real                                         
friction so where moving could simply apply a forward force to the player that is stopped by                                 
friction with the ground, this was no longer feasible for swimming, so we had to devise a new                                   
system wherein a velocity is ‘forcibly’ maintained as long as the user is ‘moving’ (through the                               

controller). This could probably be improved. 

   



Events and their Effects 
Base structure 

The Events system has multiple subsystems and has one interface to the main Event Controller 
provided to the Game Controller. The interface provides starting and stopping the Events 
transition logic. The interface has access to the Events Switcher which handles the subsystems 
Sky, Wave, and Particles. Each manages their own states independently which are set by the 
Switcher dependent on the current Event. Also, the Switcher enables the current Event 
Behavior subsystem. Each Behavior subsystem is playable and stoppable by the Switcher. 
 

 
 

Logic 

The main logic of the Events is as follows: 

 
We most probably need to balance the event and transition duration and their probabilities, so 
they need to be easily adjustable. Also, we plan to change them over time which is why we also 
need to define the time after which the logic changes ends. For that, we use AnimationCurves 
as parameters so we can easily adjust the probabilities and durations over time. 
 

   



Event Behaviors 

The Behaviors are enabled by the Switcher if their respective Event is called and the transition 
to that Event is over. At the end of the current Event, the Switcher also reset the behavior again. 
Titanic 

The behavior of the ship depends on the player positions. The spawn point is set on a circle 
around the center of all players. The ship movement direction is set to the center and moves 
continuously in that direction. The speed is dependent on the current Event duration given by 
the Switcher. The destruction behavior is not yet merged with the Tile behavior. For now, the 
ship sinks when Switcher calls the reset. 
 

 
 
Storm 

Spawner 

The behavior of the storm also depends on the player positions. It spawns Lightning objects out 
of the object pool within the circle around the center of the players. The amount of Lightning 
Strikes over the Event is currently constant, but a dynamic spawn amount will be added to be 
more flexible. 

 
   



Lightning 

The Lightning has three phases during its lifetime. Their duration can be adjusted: 
1. Ribbon: Indicates the Lightning Strike position on the water surface. Is made with the 

Ribbon feature of the Shuriken particle system. 
2. Fall: Using Shuriken, multiple Lightning Trails fall from the sky onto the strike position. A 

script was needed in order to move all the particles to the point. The way they move until 
the strike can be adjusted. 

3. Strike: A single Lightning Line Renderer pops up and the collider that hits the player is 
enabled for a short period of time. After that, the Lightning deactivates and is available 
again in the object pool. 

 

 
Snow 

Currently, only a collider is enabled during the Event. What is to be done, is also fixing the tiles 
and regenerating. 
 
Blending Subsystems 

All the subsystems Switcher, Sky, Wave, and Particles have states that transition smoothly 
between them. That is why all of their scripts inherit the abstract class BlendState.cs. This class 
defines the smooth transition between states. The inherited classes only need to define what is 
to be modified and the State Profiles for each state. The State Profile is a scriptable object that 
describes the properties, so we can adjust them easily on the asset. 

 
Sky 

Intensity of the sun, exposure, and indirect lighting are modified in this subsystem. There is no 
need of an actual sky box since our view is rotated downwards. 



Wave 

This subsystem handles the Ocean behavior. We use the asset ​Ocean Crest​ by ​Wave 
Harmonics​ that we are provided by the NGO ​Cyan Planet​. This asset creates an ocean surface 
with height displacement whose waves property are modified by our Wave subsystem on 
runtime. The asset also provides a sampler to determine the wave height on a specific position, 
which we have adjusted for our purpose. 
Particles 

This subsystem changes the emission rate of two particle systems Rain and Snow. 
Rain Decals 

This feature is actually an Extra feature but has been implemented anyway out of technical 
curiosity. The challenge here was to spawn decals where a particle hits the ocean with good 
performance. As a result, we track all particles every [x] frames and check if their position is 
within a specified range around the current ocean height. If that’s the case, a Decal Projector is 
spawned out of a limited object pool. The decal scales up over lifetime and despawns after that. 

 
 

Integration 
The integration was quite simple. As we proceeded with development, every feature (or set                           
thereof) had its own scene, and for most features, when it was done, it could simply be saved as a                                       
prefab. We had a rolling main scene that we could then just load the prefabs into and attach the                                     
components as needed. For a lot of the singleton scripts (GameController, LobbyBehaviour,                       
etc..), no references needed to be held as they used static functions that could simply be called                                 

as-is without reference. 

   



Future Iterations 
Possible Improvements 

- Camera could move/scale slightly to make sure all players are kept in-frame as much as                             
possible. Currently players can go  

- UI as a whole still needs actual images and text; currently using Unity defaults 

- Lobby UI should be more explicit (“show” an actual lobby) 
- Pause Menu UI should be more explicit 

- UI behaviour can still be more stable 
- Determine clear jump refresh behaviour 

- Currently refreshes off any collision 
- End-game behaviour needs a fair amount of work 

- Consider feedback regarding finality of death 
- Currently players do not can respawn instantly when they die 

- A feature not a bug? 

- No way of restarting game or going back to lobby 

Known bugs at the time of the Interim Report 

- Jumping does not properly damage ground tiles 
- This is due to the structure of the collider/triggers in the children/parents of the                           

platform which does not correctly recognize the OnCollision Unity functions 
- Swimming is fairly buggy 

- Currently no friction to provide real physics-based movement like on the ground 
- Players can respawn right away after dying and no state is held to indicate this 

- This is a problem if there are more than 2 players in the game. Then the end-game                                 
condition of 0-1 players alive is never reached and the game continues                       
indefinitely 

- No damage indication on the floor tiles 

- This can make the game almost unplayable as seemingly perfect tiles will                       
suddenly collapse under the players without any visual queues 

- Light effects have some shading and illumination bugs 


