

Soaper Duck

Game Design Document

1. Formal game proposal 3
1.1 Game description 3
1.2 Core gameplay elements 3
1.3 Features 4
1.4 Gameplay concept art 4
1.5 Character concept art 5
1.6 Big idea and technical achievement 5

1.6.1 Procedural level generation 5
1.6.2 Special effects 5

1.7 Development schedule & Timeline 5
1.7.1 Layered development schedule 5
1.7.2 Milestones and tasks 7
1.7.3 Timeline 9

1.8 Assessment 9

2. Physical Prototype 11
2.1 Prototype idea development 11
2.2 Prototype description 12
2.3 Prototype Gameplay 12

2.3.1 The Track 12
2.3.2 Turns 13
2.3.3 Basic Field Types 13
2.3.4 Special Obstacles 14
2.3.5 Water Shooting 14
2.3.6 Point Calculation 15

2.4 Prototype level 15
2.5 Next steps: from prototype to real game 16
2.6 What we learned from prototyping 16

1. Formal game proposal

1.1 Game description

Soaper Duck is a 3D endless runner where the player finds themself trying to
progress as fast and as much as possible while navigating on a soap resembling
vehicle. They have to successfully maneuver despite the low friction handicap that’s
put upon them.

1.2 Core gameplay elements
● 2.5D
● Main theme revolves around sliding on soap and water mechanics
● Endless level Generation
● Driving Controls

● Duck that can shoot water
● Triggers, Switches, Power ups
● Enemies

1.3 Features
1. Basic Features

a. Score
b. Soaps wears out
c. Power Ups
d. Terrain attributes, like wet ground having less friction
e. Procedurally generated levels become more difficult over time

2. Advanced features
a. Enemies
b. Toggles & Obstacles
c. Duck shoots water

1.4 Gameplay concept art

1.5 Character concept art

1.6 Big idea and technical achievement

1.6.1 Procedural level generation

Our procedural level generation is based on different types of building blocks that are
combined in different ways to form a playable level. Levels become longer and more
difficult over time by adding enemies, switches, triggers spawn at different locations
within the level.There will be random special events like a shark attack that the
player has to face.

1.6.2 Special effects

We might use metaballs for foam or other kinds of particle, shader effects to make
the game environment more immersive and realistic. The duck can use it’s water
shooting ability to make the floor in front wet, which will increase its speed.

1.7 Development schedule & Timeline

1.7.1 Layered development schedule

1. Functional minimum
○ Simple Player Character, that can move and jump
○ Start Platform
○ Playable Looping Test-Level
○ Game Over Screen
○ Input Manager (Controller/ Keyboard)
○ Simple models

2. Low Target:

○ Simple procedural Level Generation
○ Simple Menu UI
○ High Score (Points / Distance)
○ Restart Button
○ Visual Cues for Soap Mechanic
○ Scoreboard
○ Duck can shoot water

3. Desirable target:
○ At least 5 different spawnable obstacles in the procedural Level

Generation
○ Background Music & Sound effects
○ Duck model for the Player
○ Different properties for Soap Vehicle and/or Floor
○ Power ups
○ Interactable Objects

4. High Target:

○ Playable without crashing
○ Multiplayer
○ Different Models for the Player to choose from
○ Different Sets of Level kinds to choose from
○ Character Customization
○ Seeds for level generation

i. Ghost silhouette of previous runs for self competition
○ Save Replays
○ Watch Replays
○ Boss Fights

5. Extras:

○ Mobile Support
○ Twitch Chat Integration

1.7.2 Milestones and tasks

Milestone: Game Idea Pitch (18.11.2020)

Names Shortened as follows:

Albert Zach
Marco Grasso
Sahin Er
Sebastian Walchshäusl

Milestone: Physical Prototype (02.12.2020)

Milestone: Interim Results (23.12.2020)

Task Name Who Time (in Hours)

Brainstorming Everyone 2

Documentation start Everyone 3

Task Name: Who Time (in Hours)

Defining of Prototype Everyone 2

Creating a physical Prototype Everyone 4

Documentation & Presentation Everyone 5

Task Name: Who Time (in Hours)

Simple Player Script
→ Movement & Jump

Marco 6

Playable Looping Test-Level
→ Start Platform & Simple Track

Sebastian 6

Simple UI
→ Start Screen & Game Over Screen

Albert 6

Assets & Models
→ Duck & Soap model, track parts

Sahin 6

Controller Support Sahin 2

Milestone: Alpha Release (27.01.2021)

Milestone: Playtesting results (27.01.2021)

Milestone: Final release (24.02.2021)

Simple Procedural Track Generation
→ Simple track building blocks
(soap/bathroom styled)

Albert, Wacken,
Marco

24

Infinite generation Sahin 8

Documentation & Presentation Everyone 5

Task Name: Who Time (in Hours)

Duck model for the Player Albert 2

Soap model for the Vehicle Albert 2

Interactable Objects
→ Switches, Triggers, ...

Sahin 4

Hair Dryer that blows player to the side Sahin 1

Holes the player needs to jump over Sahin 1

Power ups Marco 2

Collectibles Marco 1

Music & Sound Sebastian 6

Advanced Procedural Track Generation
→ Include Obstacles & Collectibles

Marco 4

Different properties for the Soap Vehicle
and/or the Floor

Sebastian 4

Documentation & Presentation Everyone 2

Task Name: Who Time (in Hours)

Testing and evaluation Everyone 10

Bug fixing Everyone 4

Implement Feedback Everyone 8

Documentation & Presentation Everyone 2

1.7.3 Timeline

1.8 Assessment
Tell us what the main strength of the game will be.
A challenge to beat your highscore and high skill ceiling.

What part is going to be the most cool?
Sliding as a rubber duck on a soap bar, while sniping targets with a beam of water.

Who might want to play this game?

Task Name: Who Time (in Hours)

Defining of Prototype Everyone 2

Creating a physical Prototype Everyone 4

Documentation & Presentation Everyone 2

Everyone who needs a little distraction, while having to wait. People in public transit,
children during breaks, etc.

What do they do in the game?
Trying to get as far as possible and gain a higher score.

What virtual world should the system simulate?
A world where an innocent duck escapes the burden of humanity by gliding on a
soap to it’s freedom.

What criteria should be used to judge whether your design is a success or not?
If players want to play just one more round. Players don’t get bored after a few
minutes.

2. Physical Prototype

2.1 Prototype idea development

The goal of the physical prototype was to show the core mechanic to the user, or
viewer in this case. Since an actual physical playtest is not possible we thought
about how to properly show the mechanics involved. The gameplay in itself is
simple. You play a duck on a piece of soap. You slide, you dodge projectiles in a
never ending fashion.

The original idea was to simply do what with the physical prototype and record it in a
video to show it, expecting that this would provide sufficient insight on how the
gameplay is supposed to feel like while keeping a small comedic touch.

However upon more thinking within the team and some research on physical
prototypes we came to the conclusion that it is possible to cover the main aspects in
a more gameplay related manner, while still keeping the core aspects intact.

So the idea we came up for the prototype that is going to be built is a turn based
“racing-styled” game.

2.2 Prototype description

The prototype is made out of cardboard, because it is cheap and can be cut into
same sized blocks. Apart from cardboard, a player piece, paper for notes, indicator
tokens for water and some pencils are used in our prototype. Race track building
blocks are simulated by having multiple cardboard pieces with track parts such as
straight lines and curves.
The tracks are divided into 6 lanes which consist of steps. The player starts at a
bottom field and needs to stay on track as long as possible. Water is indicated by
blue tokens on the track. Obstacles and power ups are drawn onto the tracks in
different colors. The track pieces can be combined in different ways and reused
several times to simulate the infinite procedural track generation that will be included
in the digital version.

2.3 Prototype Gameplay
Materials:

● Player piece
● Multiple set size track pieces
● Indicator tokens for wet floor
● Paper
● Pencils

Since the physical prototype is going to be quite different from the real game, some
further explanation is required.
First of all the goal of the game remains basically the same. While in the real game
the player has to survive as long as possible while also maintaining a high score.
The real time component in this case is going to be replaced by a turn counter, while
the high score will also be simply calculable by using for example a field crossed
counter with some bonus points for clearing certain objectives.

2.3.1 The Track

Two track elements are always in play. Namely the one the player is on and the next
one in movement direction. Whenever the player leaves a track part that one is
removed from the track and added back to the track part pool. Then the player has to
blindly draw the next part from the pool. The new part is added to the track so that
the red arrows point in the same direction.

2.3.2 Turns

Instead of real time reactions, the main gameplay has also been changed to a turn
based play style, with the player being able to make decisions every turn.

A turn consists of the following steps:

● Move forward according to your speed
● In the meantime apply all effects of fields you pass
● You may move one field left or right
● If no water field was passed this turn you lose one speed
● You may shoot water at a field
● Calculate your points for this round

The game continues until the player collides with an obstacle, falls of the track or has
a speed of zero.

2.3.3 Basic Field Types

There are several types of fields that have different effects while passing over them:

● X: Obstacles end the game immediately on collision.
● H: Holes end the game if you stop on them. Moving over them has no effect.
● W or fields marked with a water token: Add one speed point and let the player

slide to the next field along direction arrows.
● R: Refill the water reservoir completely.
● T: Targets that grant a permanent multiplier if shot with water. They also count

as obstacles.
● P: Powerups grant one additional field of movement to the sides for this turn.

The following image demonstrates the effect of the water fields:

2.3.4 Special Obstacles
Special Obstacles are obstacles for which the player needs to do something other
than dodge to overcome them. For this prototype we created one track part with a
special obstacle, a hair dryer that pushes you off the track if you don’t deactivate it
first. To deactivate it you need to hit at least one of the special targets with water.

2.3.5 Water Shooting
The player has a reservoir that holds up to three charges of water. To shoot water
the player needs at least one water charge in the reservoir. Water can be shot on
any field in the five by three rectangle in front of the player.

Water shot at a non empty field has no effect except if it’s a target field. Targets get
activated if they are not already activated yet. Water shot at an empty field creates a
puddle starting from the field.

2.3.6 Point Calculation
Points are calculated per turn and added together at the end of the game. Every turn
the player gets points equal to their speed. This number is multiplied by the number
of targets shot up to that point.

2.4 Prototype level
This is an example of how a track could look.

2.5 Next steps: from prototype to real game
Since our main game is more reaction and racing based it was impossible to truly
recreate the main concepts into a board game. Instead we ended up going for a turn
based game to keep the main mechanics the same. This allows for a close enough
experience while still

For example, we have some obstacles and fields that get randomly placed by rolling
a die. This is done to diminish the repetitiveness of placing the objects manually.
Instead of repeating tracks one could also consider randomizing obstacles inside the
randomized track pieces.

Via the prototype we tried balancing the secondary mechanics, which are not
dependent on real time. We thought about how the speed-up works exactly, how the
objects should interact with the player, how the high score is calculated, how to
manage the water level and where to shoot it and how powerups should work and be
interacted with conceptually.

2.6 What we learned from prototyping

Prototyping is a valuable method for testing different game ideas. It gives fast
feedback, if a certain idea is valuable and should be considered further, following the
principle of “fail faster”. This is not only valuable for testing game concepts, but also
quite useful for testing certain mechanics of a game.

Nintendo has a popular Philosophy of Designing games, especially the Super Mario
games, by having a Prototype with only the player (in unity often just a sphere). In
this extremely limited environment they try to make the movement as fun as
possible, which is the core mechanic of the game. After using this core mechanic,
you can increase the scope with interesting additions, which change up or
complement the core mechanic.

Most Prototypes are and should be throwaway. The reason for this is that you will
not try to write good code, but fast code. And even more important, you should not
already start with bad code, which destroys a codebase the longer you work on it
without serious and time wasting refactoring.

A Physical Prototype is another kind of Prototype. This kind of prototype is fast to
develop, especially if you are an unexperienced game developer. Another advantage
is that you can’t adapt a bad code base, because there is none. A Physical Prototype
is especially useful for any kind of strategic, tactic or puzzle game. Turn based

games are the most fitting kind of game. For These Complex games, a Physical
Prototype is often prefered, because coding takes much longer. Other fitting games
are adventure games, story driven games and card games.

In other cases, like Action games, racing games, fps, Jump and runs and every other
fast-pace game, Physical Prototypes often fall flat. The core mechanic of these kinds
of games is almost always movement based, instead of methodical or combinatorial
like in puzzle games. It’s extraordinarily difficult to test any kind of movement based
mechanic with a physical prototype. These kinds of mechanics are best tested by
playing around with them and getting a feel for the movement. This is impossible for
physical prototypes.

Therefore a physical prototype has to be severely adapted to use and transform the
secondary mechanics into a scheme, to make it testable in a more turn-based,
methodical way. This is an interesting way to explore these secondary mechanics
and can almost be developed in its own game. However the core mechanic will not
be tested in a fitting manner to make it possible to make a decision, how the
mechanic should be adapted or if you should drop it entirely.

It is also a bit more difficult to work on a prototype in collaboration. Usually you are
dependent on other people, available material, time and location, which is not the
case, if you use some collaborative workflow tool like git. This is especially difficult in
a Lockdown phase, because most collaboration has to be at the same place at the
same time.

