
Game Idea Proposal: qubi

Team FünfKopf :

Felix Brendel

Jonas Helms

Van Minh Pham

November 2020

Contents

1 Game Description 2

1.1 Game design of Portal . 2
1.2 Game design of qubi . 3

1.2.1 2D vs 3D . 3
1.2.2 What kind of object should the player control? 3
1.2.3 What if only part of the �oor is slippery? . 3
1.2.4 What if the object could also unfold? . 3
1.2.5 Bringing it all together . 4

1.3 Setting of qubi . 5
1.4 Visual Design of qubi . 6
1.5 Audio Design of qubi . 6
1.6 Sample levels . 6

2 Technical Achievement 7

2.1 Introduction . 7
2.2 Motivation . 7
2.3 Game Engine . 7

2.3.1 Graphics pipeline . 7
2.3.2 Overhead reduction in the engine . 8
2.3.3 Resource Loading & Automatic Memory Management 8
2.3.4 Sound System . 8
2.3.5 Physics System . 8
2.3.6 Animation system . 9
2.3.7 Particle System . 9
2.3.8 Physically based rendering . 9

3 Big Idea Bullseye 9

4 Development Schedule 9

4.1 Layers of Development . 9
4.2 Task Distributions . 10

5 Assessment 11

1

1 Game Description

We as the team FünfKopf believe that great games build on simple concepts. A perfect example for such
a game is Portal (Valve, 2007). The game magazine GameStar even ranked it number one on the list of
the 250 best pc games of all time, which they published as the special edition issue 01/2020.

1.1 Game design of Portal

Portal builds on the concept of portals that connect two positions in the game world. When the players
enter one portal, they instantly appear at the location of the other portal. Using this, the game is divided
into levels, each with a speci�c starting point and target the players have to reach.

Just this basic concept � teleporting to another position � alone however, is not enough to create
an interesting game. Starting from the simple concept one can begin to shape the game mechanics by
exploring di�erent ideas. In the case of Portal they might have looked like this:

1. What if the players could place the portals themselves?

� Give the players a portal gun and let them shoot the walls to place portals on them

2. What if there are some surfaces, the players cannot place portals on?

� If players can place portals everywhere, it might be hard to create challenging levels, so also
use surfaces, where no portals can be placed on

3. What if some levels require the players to transport objects in the levels to solve them?

� Let players pick up and carry one object at a time. This also harmonizes with the Portal
mechanic, as players can carry objects through the portal, adding depth to the game design.

4. What if there are some barriers, that when moved through, destroy the carried object?

� Letting the players carry the objects freely through the level might make the levels too easy,
but barriers which limit the movment of the objects adds depth to the level design

It is interesting to note, that idea 2 and 4 seem to be direct responses to the ideas 1 and 3.

Figure 1: The explorative design decisions of the game Portal

2

https://en.wikipedia.org/wiki/Portal_(video_game)

1.2 Game design of qubi

Seeing this we also wanted to design our game in a similar fashion. Our game concept follows the given
theme wet and slippery : The players should slide around on a slippery �oor1. This is our main
mechanic.

We came to the conclusion that the most �tting gametype for this mechanic would be a puzzle game
where the player controls a simple object. After agreeing upon this as our starting point we will go over
our decision making process for the rest of the game design in the following section.

1.2.1 2D vs 3D

It was clear, that a 3D game would �t better to the setting of this practical course. However we also
really liked the idea of 3D puzzle games as it has the potential to emerse the player more into the game.

1.2.2 What kind of object should the player control?

A sphere There are some games that successfully use spheres as the player characters, however it
seemed that a sphere would not feel like slipping on the �oor, it would rather be a rolling motion.

A cube Could be a good option

A tetrahedron Could be a good option

Of course, as with Portal, we had to think about explorative questions to experiment with additional
mechanics.

1.2.3 What if only part of the �oor is slippery?

If there are some sections on the ground that are not slippery, we could make the cube �ip on it's side
when reaching a dry section of the map. We can make this a secondary game mechanic, where the sides
of the cubes are di�erent in some way � maybe they are colored di�erently, or have di�erent shapes on
them. An additional condition for �nishing a level could then be to match a speci�c side of the cube with
the target tile. This means that both the route and the orienation of the cube have to be considered by
the player resulting in another layer of gameplay depth.

1.2.4 What if the object could also unfold?

We wanted to add only one more mechanic to our game � one more action that the player has, that
will let us design more challenging and interesting puzzles. One of the �rst ideas we thought about was
the objects ability to fold open. By unfolding the players can bridge slippery tiles or unfold ontu slippery
tiles. By introducing the unfolding, we can also add multiple �nish tiles to the levels, which all have to
be satis�ed simultaniously by unfolding, for the level to count as solved.

The two shapes we already considered beforehand, cubes and tetrahedrons, can unfold onto a two
dimensional plane. For a cube the unfolded form would be located on a regular square grid, while a
tetrahedron unfolds to a regular triangle tiling. For this game we �rst decided on using the cube as a
base shape, as it allows for a simpler map structure and therefore shallower learning curve for the player.

1Of course the word slippery is a bit vague. We thought about what it means to us if something is "slippery" or "wet".

We came up with these simple de�nitions: Slippery is an attribut of a surface which implies that the surface friction is low

and the attribute slippery can only be observed when another object is touching and sliding on it. "Wet" on the other

hand is to us the sensation you feel when you touched a liquid. Usually it is connected to a reduced surface friction of wet

objects.

3

A sample unfolding can be seen in Figure 2.

Figure 2: The unfolding of the cube, following the player's inputs of up, right, right, up, right

Note also, that there is inherently a limited amount of valid unfoldings due to fundamental geometric
principles. An illustration of all possible unfoldings can be seen in Figure 3. This is the kind of complexity
in a puzzle game we really want to highlight. Everybody can imagine a cube �ipping over and think about
which side will be facing upwards or downwards, but using this complexity � which is really accessible to
everybody � we can then design levels that require the player to plan their movement, �ips and unfolds
ahead to �nish the level.

1.2.5 Bringing it all together

qubi is a tile-based puzzle game, where the players control a cube and try to make their way to the goal.
There are two di�erent surface categories: slippery and dry. On slippery sections, the player can give
the cube an impulse in one direction but then has to wait as the cube slides. The cube slides until it
hits an obstacle or reaches a dry spot and comes to a hold. While sliding the cube does not change its
orientation. If the cube moves from or to a dry tile, it �ips on its side. This is important because now
the cube will have a di�erent orientation and each level requires the cube to land with the right side up
on the �nish tile. As an additional mechanic, the players can unfold the cube as a method of movement
and overcoming otherwise impossible gaps in the levels.

The �rst levels will only feature the sliding mechanic as we want to let the player get used to the
fundamentals of the game. And only then we will introduce dry surfaces and force the player to make
smart use of both the sliding and �ipping mechanic. Lastly for the last few levels we will let the player
unfold the cube and open the possibilities for the most strategic use of all three mechanics. With this
approach we hope to archieve a steady learning curve, that keeps the players motivated.

4

Figure 3: All possible unfoldings of the cube starting on the white side and �rst unfolding onto the
green tile; all other possible onfoldings are permutations of the colors and rotationary symmetries

Compared to the desing decisions of Portal from Figure 1, the tree main design questions for qubi
can be seen in Figure 4.

Figure 4: The explorative design decisions of qubi

1.3 Setting of qubi

At �rst glance an ice setting of some kind would seem to be the most obvious choice given the theme of
wet and slippery. For the slippery tiles ice surfaces can be used while for "dry" tiles snow surfaces seem
appropriate. Additionally we have made the decision to widen the spectrum of settings to more nature
themes such as setting levels in a jungle with water on the slippery tiles. With levels being structured in
chapters new nature settings can be used for di�erent chapters, e.g. whenever a new gameplay mechanics
is introduced.
qubi is a rather abstract game as it revolves around moving a cube in order to solve arbitrary puzzles.
Not being bound to anything except the theme of nature and wet and slippery allows us to be more

5

creative with the settings for di�erent chapters perhaps even giving the opportunity for a desert setting.

1.4 Visual Design of qubi

The focus of qubi is solving puzzles and therefore we try not to be intrusive with our visual design
decisions. To introduce the controls of the game, we might only show a picture of the buttons the
players can press to move the cube2. A puzzle should never be hard to solve because something was
hard to see.

1.5 Audio Design of qubi

The gameplay of qubi will be enriched with a calm background music that let's the players focus on
solving the puzzles. It won't have a strong rythm or a fast tempo, to not build any pressure on the player
and let them solve the puzzles in their own pace � the player should feel cozy when playing the game.
To convey this feeling the soundtrack will be mainly composed of ethereal sounding synths, plucks, bells
and string instruments. We also want to accompany the music with sound e�ects for the movements of
the cube: sliding, �ipping, unfolding, hitting obstacles. These sound e�ects should be crisp and convey
the nature of the movement.

1.6 Sample levels

The layout of a simple sliding level can be seen in Figure 5. This is a rather simple level as it does not
leave much room for the players to make mistakes.

Figure 5: Example level that makes use of the sliding mechanic. The red tile marks the start and the
green tile the �nish. Gray blocks are obstacles. The numbers indicate a possible path the players can
take to solve the level.

An example puzzle layout that also makes use of dry tiles can be seen in Figure 6. Note that taking
di�erent routes on the dry tiles impact the resulting cube orientation on the �nish tile.

2controls

6

Figure 6: Example level where the user has to make use of both sliding and and �ipping to reach the
�nish in a certain orientation. If another path is taken, the orientation when landing on the �nish will be
di�erent.

2 Technical Achievement

2.1 Introduction

The central secondary big bullseye idea for our project is to develop our game idea in our own game
engine. Our group always wanted to build their own game engine from scratch and we thought that
this practical provided the perfect opportunity to put this into reality. The fact that we can use the
second mandatory practical course to further expand on the engine only a�rmed this notion as we are
then able to segment the development of the engine over two semesters and can leave more focus to the
development of the game and it's optimization.

2.2 Motivation

The main motivation to build our own engine stems from the fact that we believe that we can reduce the
overhead and therefore provide better optimization for our games on all levels of the engine, from the
graphics pipeline to resource allocation and automatic memory management. Furthermore we believe
that building a game engine from the ground up presents a perfect learning opportunity, especially when
trying to �nd suitable optimizations that �t our design philosophy.

2.3 Game Engine

In the following sections we will provide a small overview of the components of the game engine that
we want to develop for this semesters project and how we try to optimize these. Furthermore we will go
over the features of the game engine that we will most likely tackle in the follow-up project and how we
solve the interim solutions for this semesters game.

2.3.1 Graphics pipeline

The game engine will use the Vulkan Graphics API to implement a rendering pipeline. Vulkan is a
relatively new API developed by the Khronos Group (maintainer of OpenGL) with a focus on overhead
reduction and was released in 2016. Vulkan provides a low-level control over the rendering process when

7

compared to other Graphics APIs and has several advantages that also align with our overall philosophy
in the design of the engine:

� The ability to run on all operating systems and devices

� Explicit control over memory management

� Decreased CPU workload due to reduced driver overhead and batching

� Making use of the driver independent Vulkan Loader to access Vulkan API entry points

The Vulkan Loader is responsible for transmitting Vulkan API calls to the appropriate graphcis driver.
This means that we just have to connect to the Vulkan loader in our engine and do not have to worry
about drivers. Furthermore we can pre-compile our shaders into the SPIR-V binary format instead of
compiling the shaders at runtime. This allows the use of a larger number of di�erent shaders per scene
and reduces application load times. We want to utilise the ability to use a high amount of di�erent
shaders and put this feature into to Extras for the game development (Layer 5) but we will most likely
�rst employ this in the follow-up project.

2.3.2 Overhead reduction in the engine

The game engine is developed in the C++ language that all of our team members are familiar with due
to our TUM Bachelor courses such as Game Engine Design. We have also taken further steps into the
direction of our core concept of overhead reduction by omitting the C++ standard library.

2.3.3 Resource Loading & Automatic Memory Management

To increase the performance of the engine we want to make sure that the loading of resources such as
a texture map or a mesh is never done redundantly, which is likely the case in a puzzle game as key
components are similar between di�erent scenes. In order to implement this we allocate bu�ers upfront
to store all our resources and a hashmap that maps the �le paths of the loaded resources to their pointers
in memory. If a resource becomes necessary in a scene, we can cross check whether the �le path has
already been loaded and then reuse the already loaded �le instead of reloading it. This means that we will
only load the di�erence between two levels which will reduce load times and create a smoother gameplay
experience for the player. The Hashmaps also provide further advantage for the memory management as
we can free the memory and GPU memory for the texture resources by iterating over the hashmap and
can incorporate this in the scene load/unloading process.

2.3.4 Sound System

Sound is very important to our design goal of creating a casual and cozy puzzle game as we believe that
it has a relaxing or even focusing e�ect on the player. We will try to implement our own sound system
for the engine but are also considering using an API for example OpenAL if we realize that it would take
up too much time of the development process.

2.3.5 Physics System

The current point of view in our team is that we will not implement a physics engine as part of this
semesters project as it would exceed the scope of the engine building aspect. We will instead use keyframe
animations and bake the limited number of physics interactions directly into the animations or generate
them procedurally. This also comes with the advantage of having a tighter control over the cube behavior

8

as we want the players to struggle with the puzzles instead of controls of the cube. Further expanding
the engine by implementing a physics engine is something that may be tackled in the follow up project.

2.3.6 Animation system

The animation system will be a very important part of the engine as it will substitute our physics
interactions and help to increase the graphical �delity of the game. Implementation of the animation
system will start very early on and the core functionality of keyframe animation will be �nished for the
interim demo.

2.3.7 Particle System

A robust particle system would be a nice addition but we currently assume that we might have to
substitute it using keyframe animations aswell. Current status is that we will develop a particle system
if there is time left over after �nishing our High Target goals (Layer 4) of the development.

2.3.8 Physically based rendering

One goal of the High Target of our project (Layer 4) is to increase the graphical �delity of our game by
implementating a physically based rendering system. The term "physically based renderer" is purpously
left ambiguous as we want to check out how many components of a physically based renderer we can
implement while still keeping a smooth performance.

3 Big Idea Bullseye

4 Development Schedule

4.1 Layers of Development

1. Functional Minimum:

9

� One basic level(including start and �nish tiles)

� movement of cube

� slippery �oor type

� Engine Goals: Graphics pipeline, loading meshes, textures, animation system, interface, par-
ticle system, tangent space normals

2. Low Target:

� �oors with grip

� have sides di�erently colored

� �nish condition: cube must land on a speci�c side on the �nish tile

� Load Levels from .txt �le

3. Desirable Target:

� cube can be folded open

� multiple �nish tiles

4. High Target:

� di�erent worlds

� implementation of physically based rendering

5. Extras:

� have players set �oors to �oor types themselves

� make use of hight amount of di�erent shader

� implement particle system in the engine

4.2 Task Distributions

For every milestone we schedule the following:

Task Member Spent hours

Project documentation All 3

Presentation All 2

In general the tasks are distributed as such:

10

Components Tasks Member(s) Planned hours

Brainstorming All 3

Prototyping All 10

Engine Work Implementation of the All 200
3D graphics engine for
loading meshes, Animation System
. . .

Inputs Ensure movement of cube Minh 20
through buttons presses

Gameplay - Cube can be moved Minh 23
- Cube can be folded open Felix

Win Condition Cube has to land on �nish Minh 30
tile Felix
- on a speci�c side
- on multiple �nish tiles
at the same time (by folding
open)

Level Design Designing puzzles, Felix 40
challenges Jonas

Animations Ensure di�erent movement All 20
behavior on di�erent tiles

Art Felix 60
- Environmnet Meshes&Textures Jonas
- Particle e�ects
- Original music

UI - Convey basic information Jonas 10
to player
- Keep it rather simplistic

Playtesting Testing and �xing All 10

Trailer All 30

Additional - Di�erent world designs All leftover time
Content - Players setting �oors to

speci�c type themselves
. . .

The exact timeline can be observed in timeline.pdf (which will be updated regularly).

5 Assessment

qubi is designed to be a cozy and fun puzzle game for people to enjoy regardless of prior experiences of
puzzle games or even video games in general. To achieve that, the game will have to be easily accessible
not requiring a lot of prior knowledge. Initially players will merely have the cube slide on slippery tiles in
order to get to the end of the levels. Levels in later chapters will add more and more mechanics which
e�ectively raises the di�culty level. We hope to keep players invested that way. The di�culty curve in
form of the levels provides one of the biggest challenges in the development as a sudden di�culty spike
can lead to a lot of frustration while a low curve may bore players.

11

Although we intend to provide players with healthy challenges along the levels, we generally want
qubi to be a relaxing game to be played from time to time.

12

	Game Description
	Game design of Portal
	Game design of qubi
	2D vs 3D
	What kind of object should the player control?
	What if only part of the floor is slippery?
	What if the object could also unfold?
	Bringing it all together

	Setting of qubi
	Visual Design of qubi
	Audio Design of qubi
	Sample levels

	Technical Achievement
	Introduction
	Motivation
	Game Engine
	Graphics pipeline
	Overhead reduction in the engine
	Resource Loading & Automatic Memory Management
	Sound System
	Physics System
	Animation system
	Particle System
	Physically based rendering

	Big Idea Bullseye
	Development Schedule
	Layers of Development
	Task Distributions

	Assessment

