
Interim Demo: qubi

Team FünfKopf :

Felix Brendel

Jonas Helms

Van Minh Pham

December 2020

Contents

1 Progress in Gameplay 2

2 Engine Work 2

2.1 Vulkan Initialization . 3
2.1.1 Validation Layers . 3
2.1.2 Loading the Vulkan Library . 3
2.1.3 Vulkan Instances & Extensions . 4
2.1.4 Creating a Vulkan instance . 4
2.1.5 Vulkan structs and use . 4
2.1.6 Physical Device . 4
2.1.7 Logical Device . 5
2.1.8 Queue . 5

2.2 Engine Structure . 5
2.2.1 Resource Allocation . 5
2.2.2 Bucket Allocator . 5

2.3 Scheduler . 6
2.4 Movement . 8
2.5 Game Logic . 8

2.5.1 Di�erent Tile Behaviors . 8
2.5.2 Level Loading . 8

3 Challenges & Design Revisions 9

1

1 Progress in Gameplay

For the interim demo we made the decision to focus on gameplay mechanics. As a lot of work went
into building our own engine from scratch, we left the visuals at a basic level for the time being. In the
following we elaborate on our progress so far.

In terms of gameplay we have been able �nish up layer 1 and 2 mentioned in our proposal. This
means that the player is able to move the cube on the �eld by using the W,A,S,D buttons. As intended
the cube slides on slippery tiles without changing its orientation until it hits an obstacle or a wall. The
main task then is to navigate the cube through the level in order to get to the �nish tile. Inputs can
further be bu�ered while the cube is moving. This makes the cube instantly move into that direction
when it arrives at a location.

Figure 1: Sample Level 1 including the movable cube, blue slippery tiles, the red �nish tile and brown
obstacle tiles

When moving onto a dry tile, the cube will �ip into that direction. In order to �nish these levels the
cube would have to reach the �nish tile in one of three speci�c orientations. For that we color-coded
the sides as red, green and blue with one color represented on two opposites sides of the cube. Thanks
to the angle of the camera the player can always observe all di�erent sides of the cube and plan ahead.
Furthermore depending on the level the �nish tile can be slippery or dry adding �exibility to level designs.

2 Engine Work

As the development of our own game engine makes up the major part of our project we will �rst go over
our current progress on the speci�c components that we have implemented so far and how they relate
to the layers of development. The engine was programmed in C++ while using the Vulkan Graphics API
for the render pipeline.

2

Figure 2: Sample Level 2 including the green dry tiles and red �nish with green circle that requires the
green side of the cube to be on top/bottom

2.1 Vulkan Initialization

The Vulkan Graphics API is a fairly young graphics API developed by the Khronos Group that was
developed with the intent of leaving a higher amount of control to the developer. In turn this low level
access means that the initialization and creation of the render pipeline is more extensive when compared
to high-level level API's like OpenGL. Before we could start with the initialization we had to install a
graphics driver that supports the Vulkan API. As Vulkan can be used on di�erent types of devices and
operating systems we had to some additional basic setup to use Vulkan in our engine beyond �nding a
driver that supports Vulkan and runs on our hardware.

2.1.1 Validation Layers

One one way for the Vulkan developers to increase the performance of the graphics API was to decrease
the amount of error checking done by the driver. The Vulkan driver is mostly a direct abstraction except
for cross platform functionalities of the hardware. As no type of error checking would mean that is very
di�cult to use this API the Khronos Group decided to allow the use of additional debugging layers called
"Validation Layers" that work right in between the user's application calls and the API. These Validation
layers are part of the SDK and allow validating parameters, validating texture and render target formats,
tracking Vulkan objects and their lifetime and much more. The validation capabilities that we use are
all packaged into a single layer called "VKLAYERLUNARGstandardvalidation". More layers can be added and
activated at the same time.

2.1.2 Loading the Vulkan Library

When you want your application to use the Vulkan API you have to use the vulkan loader which then
connects the Vulkan API calls to the appropriate graphics driver. The Vulkan Loader is a dynamic library
and is installed as part of the SDK provided by lunarg. To use the API functions in our engine we just

3

had to use the LoadLibrary() function on the .dll �le. After the library is loaded we can then use a
Vulkan-speci�c function that provides the addresses to all Vulkan API functions. These functions can be
divided into three levels: global, instance and device. Device level functions perform operations such as
drawing, creating shader modules and data copying. Instance level functions create a logical device but
before we can do that we �rst have to create an instance. To create a Vulkan instance we have to use a
global level function.

2.1.3 Vulkan Instances & Extensions

A Vulkan instance is an object that gathers the state of the an application and allow us to create a
logical device. Information that is part of the instance is the application name, name of the engine used
to create an application and the enabled instance level extension and layers. Extensions are needed to
allow extra functionality for the instance that they are enabled on but have to be hardware compatible.
Example of extensions that we use are swapchain related extensions and to create an OS level window
for our application. Extension can be enabled on the instance or the device level.

2.1.4 Creating a Vulkan instance

After preparing the application info, the number of extensions and the list of extensions we then save
these values in the InstanceCreateInfo struct. The Vulkan function vkCreateInstance then just receives the
adress to this struct in which all the needed information is stored. The other arguments for the instance
creation are the address of the instance handle we want to create and an argement for allocation callback
functions which we have not used so far. The function then returns a enum of type vkResult which
provides feedback whether the function call was able to be resolved correctly. In general, all vulkan
functions that can fail return a vkResult. We wrote a small macro that checks if the returned vkResult
signals success and if not triggers a breakpoint.

vk_check_error vkCreateInstance(&instance_create_info, nullptr, &instance);

2.1.5 Vulkan structs and use

To create an instance we have to provde the aforementioned application info, extensions and validation
layers we want to enable to the Instance CreateInfo struct. The application info is also saved as a struct
which means that we use nested structs to incorporate all the info for the instance. This also represents
the general philosophy used in Vulkan. All information that determines the functionality of your use of
the Vulkan API is stored in structs. For better identi�cation and to improve readability the �rst attribute
of the Vulkan structs is always reserved to identify which information the struct stores.

2.1.6 Physical Device

After creating a Vulkan instance we can then use instance level functions to gather information about
the physical devices (the GPU) available on the hardware. A Vulkan application can be run on many
di�erent devices which can each incorporate wildly di�erent hardware that have di�erent perfomances
and di�erent capabilities. In order of making sure to chose the correct hardware (onboard GPU and stand
alone GPU card) and to check if the available hardware is capable of running our application we �rst
gather information about it and con�rm that all features are supported. To do this Vulkan provide three
functions: EnumeratePhysicalDevices() which stores a representation of all available physical devices,
vkGetPhysicalDeviceFeatures which stores the available features , and vkGetPhysicalDeviceProperties
which stores general information about the physical device. We can then use this information to choose
a suitable phyiscal and then create a logical device from it.

4

2.1.7 Logical Device

Logical devices perform most of the work in Vulkan: we can create resources, manage memory, record
command bu�ers, submit commands for processing ect. Bottom line is that they include all the func-
tionality we need to create a render pipeline. A logical device represents a physical device (GPU) but it
is including all the features and extension we have previously activated and the information about the
queues that can be requested from it.

2.1.8 Queue

The control of the hardware in Vulkan is implemented through queues. Commands to a queue are
processed in the order they are submitted but there are di�erent types of queues which are processed
independently. Di�erent types of Queues are not only for di�erent functionality, not all operations are
allowed to be performed on all queues.

2.2 Engine Structure

Obviously the graphics pipeline is only part of the engine. Every game engine needs to handle the games
resources such as the scenes, game objects, etc. During the development a high importance was given
to make the engine work as e�cient as possible aswell as. In the following we will explain which systems
are already in place and how they were implemented.

2.2.1 Resource Allocation

To increase the performance of the engine we want to make sure that the loading of resources such as
a texture map or a mesh is never done redundantly, which is likely the case in a puzzle game as key
components are similar between di�erent scenes. In order to implement this we allocate bu�ers upfront
to store all our resources and a hashmap that maps the �le paths of the loaded resources to their pointers
in memory. If a resource becomes necessary in a scene, we can cross check whether the �le path has
already been loaded and then reuse the already loaded �le instead of reloading it. This means that we will
only load the di�erence between two levels which will reduce load times and create a smoother gameplay
experience for the player. The Hashmaps also provide further advantage for the memory management as
we can free the memory and GPU memory for the texture resources by iterating over the hashmap and
can incorporate this in the scene load/unloading process.

2.2.2 Bucket Allocator

Meshes, textures, scenes all need to live in memory somewhere. But instead of heap allocating them
all separately, we wrote an allocator to keep them together. The bucket allocator is basically a dynamic
array of buckets, which are �xed-sized arrays. On startup the bucket allocator allocates itself a chunk of
memory to hold the initial amout of buckets. When later all buckets are full, it allocates more buckets.
No entries need to be copied, the only thing that needs to be updated is the dynamic array that holds
the pointers to the buckets. Since no elements will ever move, it is safe to store and use pointers to them
everywhere. When elements are freed, they are added to a free list, where they will be reused on the
next allocation. The bucket allocator also provides functionality to iterate over all allocated elements.
Bucket allocators are used for:

� Textures

� Meshes

5

� Scenes

� Materials

� Scheduler

2.3 Scheduler

The scheduler manages active animations and scheduled actions.
Animations are given by a start time, an end time, an aribitrary interpolant and an interpolation type.

We can animate any variable in memory. One example for this animated �eld of view of the camera
when �nishing a level. It would also be possible to animate single vertices or material parameters but
this is not in use at the moment.

The currently supported interpolant types are:

� vectors

� quarternions

� �oating point numbers

More can be added later if the need arises. The basic interpolation functions where the ease functions
just manipulate the variable t ∈ [0; 1] are:

type adjustment for t

linear interpolation (also spherical)
quadratic ease-in t = t*t;
quadratic ease-out t = -(t*(t-2));
quadratic ease-in and ease-out t = (t<0.5) ? (2*t*t) : (-2*(t*(t-2))-1);

With this functionality, you can schedule even chains of animations in advance and continue with
your game loop, as the scheduler will update the interpolants for all active animations every frame.

As an example, if you would want to animate a jump, where the horizontal movement is linear, while
the vertical is quadratic you could split up the animations in three parts which are scheduled together:

� The upward movement, which is interpolated with ease-out

� The downward movement, which is interpolated with ease-in

� The horizontal movement, which is interpolated with linear interpolation

f32 from_z = qubi.transform.position.z;
f32 to_z = qubi.transform.position.z + 1;
f32 from_x = qubi.transform.position.x;
f32 to_x = qubi.transform.position.x + 2;

Scheduler::schedule_animation({ // upward movement
.seconds_to_start = 0,
.seconds_to_end = 0.6,
.interpolant = &qubi.transform.position.z,
.interpolant_type = Interpolant_Type::F32,
.from = &from_z,

6

.to = &to_z,

.interpolation_type = Interpolation_Type::Ease_Out,
});
Scheduler::schedule_animation({ // downward movement

.seconds_to_start = 0.6,

.seconds_to_end = 1.2,

.interpolant = &qubi.transform.position.z,

.interpolant_type = Interpolant_Type::F32,

.from = &to_z,

.to = &from_z,

.interpolation_type = Interpolation_Type::Ease_In,
});
Scheduler::schedule_animation({ // horizontal movement

.seconds_to_start = 0,

.seconds_to_end = 1.2,

.interpolant = &qubi.transform.position.x,

.interpolant_type = Interpolant_Type::F32,

.from = &from_x,

.to = &to_x,

.interpolation_type = Interpolation_Type::Lerp,
});

With this capability, it is easy to procedurally generate the animations that we need for our game.
Of course in our case, the cube does not jump, but for more complex scenarios, like when �ipping from
dry tiles onto ice, start sliding and �ip back on a dry tile, it is possible now to deterministically compute
the resulting game state after every key input, and schedule the animations that lead to it.

If course, during the animations � so while the cube is sliding or �ipping � player inputs should not
impact it's trajectory. For that you can give the scheduler a "lock" which is just a pointer to a boolean
for now, which will be set to true as soon as the animation is scheduled, and which will be set to false
as soon as the animation �nished. For now this is good enough as we expect to run the animation code
on the same thread as the user input code. So with this we have a animation_locked boolean variable
whaich we can check on user input, to check if we actually want to compute a player movement, or just
keep the button in the player's input bu�er, so it will be used as soon as animation_locked becomes
false again.

Another thing that need to happen, is to check if the player �nished the level as soon as the movement
�nishes. To do this, we don't check every frame for the �nish condition, but rather schedule an action
that checks for the �nish condition on the exact time the animation �nishes. Actions basically consist of
a timer when they should run, and a functionpointer that will be called at that time; and since captureless
lambdas kann be cast to function pointers we can even write them inline.

Scheduler::schedule_action({
.seconds_to_run = animation_end_time,
.lambda = [](){

// check for finish condition
}

});

C++ closures cannot be used as an action, as their size in memory varies, and thus cannot neatly
be arranged in the bucket allocator holding all the actions (unless you use more levels of abstraction,

7

like with std::function which themself heap allocate memory). On occasions we would need variable
capture, actions have a �xed amount of space that can be used to store parameters to the function that
should be scheduled.

Internally the Scheduler just consists of two bucket allocators, one for animations and one for actions.
The scheduler gets called once per frame to update the animations and call the actions that are due.

The timestamps are stored as performance counters, since the easiest way to get a high resolution
clock seems to be by calling QueryPerformanceCounter on Windows, and we wrote a similar function
for linux.

2.4 Movement

Having a deterministic animation system is important for the player's movement, as our game is a puzzle
game, where movements have to be exact. In our case, the game world consists of 2 tile types the player
can be on: slippery and dry tiles.

We calculate the future gamestate for every input the user gives. This can be an iterative process,
since one movement forces the cube into another one. This happens for example when standing on a
dry tile and moving onto a slippery tile: The cube will �ip onto the slippery ground and then immidiately
start sliding in the same direction. So while simulating the future game state iteratively, we also at the
same time generate and schedule the animations which manifest the movements to reach the calculated
game state. This only works because we can calculate the start and end time of each movement and
schedule the animations precisely to these times.

2.5 Game Logic

For the Game Objects that make up our scene we have right now implemented the following categories
'start pos', '�nish' and 'obstacles' and 'slippery tiles'. All tiles have a speci�c corresponding movement
(sequence of animations) connected to them.

2.5.1 Di�erent Tile Behaviors

Slippery tiles are the fundamental part of the game. When the cube reaches a slippery tile it will slide
until it reaches an obstacle. The sliding animation is computed using the Lerp function on the position
values of the transform matrix.

When moving on or onto a dry tile the cube �ips over the bottom edge that corresponds to the
direction that was input by the user.

When coming to a hold on a �nish tile the camera will zoom out. Right after that, the next level is
loaded. We further gave �nish tiles di�erent additional types. So a �nish tile can either be slippery or
dry. In levels in which the cube can �ip, the �nish tile also has a distinction depending on which of the
three sides of the cube needs to be on top/bottom.

Hitting an obstacle leads to the cube stopping right in front of it. No further animation was necessary
here.

2.5.2 Level Loading

A early Layer 3 goal for our project was the ability to load levels from a text �le so we can streamline the
level creation process that will be a major part for the alpha release milestone. The object and structure
coordinates in the text �le are grouped into categories and designated with 'begin category' and 'end
category' which the map loader will then use to create a scene objects. Additionally the �nish tiles have

8

a extra keyword that determines whether they are slippery or dry and which color condition of the cube
has to be ful�lled to �nish the level. The rest of the tiles are automatically set to slippery.

3 Challenges & Design Revisions

When implementing the gameplay mechanics we encountered mostly minor issues which were resolved
rather quickly. The win condition as well as the di�erent behaviors of the cube when reaching speci�c
tiles in itself were not our biggest challenges either. Our main concerns were all in regards to the
implementation of the engine to make sure it runs smoothly.

� We spent a lot of time understanding theway to bind resources to the graphics pipeline and as a
whole all the concepts and entities involved when rendering a scene on the gpu.

� Additionally we realized quickly that something like quaternions are really necessary if we do not
want to keep track of the �ips that occured, rotations are obviously not commutative.

However some concerns about our own goals arose:

� When we implemented input bu�ering, we noticed that once an animation is started, on the next
frame the key will most likely still be pressed, and thus the key press would land in the input bu�er,
to be processed once the animation is �nished. This is of course not as we envisioned. We made
it necessary for the button to be be reset before it is eligible for the input bu�er.

� And even though we implemented a method for loading levels from text �les, we think for our
purposes now, implemening them in C++ might actually have more bene�ts, as common aspects
of the scene can easily be made default arguments or stuct members. With C++, there is the
expressive power of a programming language to setup the scene, so that the C++ implementation
is both more simple and concise. An advantage of loading levels at runtime however, is that you
can edit the level while the game is running and just reload the level to instantly see the changes
you made to the scene.

9

	Progress in Gameplay
	Engine Work
	Vulkan Initialization
	Validation Layers
	Loading the Vulkan Library
	Vulkan Instances & Extensions
	Creating a Vulkan instance
	Vulkan structs and use
	Physical Device
	Logical Device
	Queue

	Engine Structure
	Resource Allocation
	Bucket Allocator

	Scheduler
	Movement
	Game Logic
	Different Tile Behaviors
	Level Loading

	Challenges & Design Revisions

