
Alpha Release: qubi

Team FünfKopf :

Felix Brendel

Jonas Helms

Van Minh Pham

December 2020

Contents

1 Alpha Release Content 2

1.1 Gameplay Features . 2
1.2 Levels . 2
1.3 Music . 3
1.4 Sound e�ects . 3

2 Implementation changes 3

3 Engine Progress - Sound 5

3.1 irrKlang Sound Engine . 5
3.2 Additional work . 5

4 Outlook 6

1

1 Alpha Release Content

With the implementation of the last unfolding mechanic players now have a lot of options to approach
solving levels. In levels involving all major gameplay mechanics this may lead to a bit of uncertainty.
Despite this we look forward to how players experiment and play around with all the mechanics in these
levels.

1.1 Gameplay Features

In terms of gameplay features we are �nished. The cube can be moved freely and all tile types (slippery,
dry, �nishes) have been implemented. Finally players can now hold the space key in order to unfold the
cube. Letting go of the space key will have the cube refold on latest tile the cube moved onto. This adds
additional depth in gameplay options and level design, e.g. featuring multiple �nish tiles that the cube
has to be on at the same time. This feature is only accesible on dry tiles as it would make the game too
easy and impossible to create harder levels. Furthermore unfolding is exclusive to speci�c levels later on
as it may also trivialize earlier levels with dry tiles. Even then this mechanic may lead to unpredictable
situations in certain levels. But we believe that having a lot options to play around with will lead to a
more enjoyable experience as long these options do not get in the way of each other.
Should the player be stuck in a level and cannot progress, the 'R' key can be pressed to restart the entire
level. If the player wants undo one single move, pressing the 'U' key will achieve this.

1.2 Levels

Levels have been ordered the same way the three main gameplay mechanics have been added. So the
�rst part of the game only includes levels in which the player can merely slide on. This way players can
familiarize themselves with setting as well as controls. The number of these levels is rather low as there
is too little variety to work with. After this introduction levels include dry tiles as well as �nishes (dry
or slippery) that require a speci�c side of the cube to be on the bottom/top in order to �nish the level.
Lastly, with the highest amount of levels, we add the unfolding mechanic. These levels have the most
options to play with.

Figure 1: In order to beat this level the cube must be unfolded to get the red and blue segment to land
on the corresponding �nish tiles.

Designing such levels became a challenge as it was easy to lose a general view with the sheer amount of

2

options. As a result there is a good chance that players might �nd solutions in these levels that bypass
most of the level in a way we did not predict. But as long as these solutions were found only using the
provided gameplay mechanics, we do not see a problem in this.

This has led to a shift in terms of designing levels. Now the focus lies less in having levels maintain a
steady di�culty curve. It is more about o�ering players a healthy amount of freedom to play around
with all the gameplay mechanics. That being said we always make sure that levels are beatable.

1.3 Music

When thinking about the design of our game we had very speci�c criteria that we wanted our background
music to ful�ll. As we were designing a game based on spatial and geometric puzzles we wanted a slow
and soothing soundtrack that does not distract the player and o�ers the space to think about the
puzzles. This is also due our expectation to inhibit possible frustration that can occur in puzzle games
and especially in puzzle games in a subject of math that is considered di�cult for the general population.
At the same time the music should capture an ethereal feeling, inspired by the soundtrack of the 2D
platformer game "GRIS", which focuses on simple piano melodies in the early levels. The main loop for
our music also uses a simple repeating eletronic piano melody that tries to convey a light feeling and is
thus written to decrease distraction. The drum beat is oriented on typical Lo-Fi beats that are currently
very popular as a background music for studying (LoFi to relax and study). The kick, hihat and clap
for the drumbeat were chosen to provide a necessary amount of rhythmical texture for the otherwise
repetetive melody loop. The general music loop is with 2 minutes playtime quite long but this allowed
us to diversify the arrangement and spice up the composition with a sliding synth bass in between. The
ethereal component of the music was achieved by using a modular synthesizer plugin that in our opinion
�ts very well into settings of dreamy scenes and are very well suited to create a background layer similar to
the use of foley samples in modern producing. The melody from the modular synthesizer is a reoccuring
part of the music loop but is also the theme for the not yet created main menu screen. As the music in
the main menu it prepares the setting for the game and is due its lack of rhythm easily faded into the
main loop that starts to play once the �rst level is loaded.

1.4 Sound e�ects

Sound e�ects are very important in games as they can provide audio feedback that let the player dis-
tinguish their interactions with the game mechanics. In qubi sound e�ects mostly ful�ll this role but
there is also an addition to give an insight for the activation of an end tile which is used as a tutorial
tool. The rest of the sound e�ects like sliding and the knock that is played when the cube �ips work
like conformations similar to tactile feedback for keyboards but in the audio world. Sound e�ects can
also a�ect how humans interpret the displayed scene. In the �rst iterations of the �ip sound e�ect the
frequency spectrum of the sample was considerably lower which made the cube appear heavier then what
we had imagined for its feel in the game world. This was adjusted by decreasing the lower frequencies and
boosting the mids by using a multi-band compressor plugin. Something to note is that it was surprisingly
di�cult to �nd a sound sample for the slide that was also able to loop inde�nitely and still had the
satisfying sound e�ect that we imagined during the playtesting of the physical prototype.

2 Implementation changes

The �rst step towards the implementation of the undolding mechanic, was splitting the cube into its 6
segments. Until then we just used a primitive cube mesh, but to allow for unfolding, we made a single

3

mesh for a cube segment and instantiate it for each of the cube sides, with the di�erent materials. This
of course made the movement logic a bit more complicated as now all segments have to be moved in
sync. This is archieved, by parenting them all to an empty object, animating the empty object and then
unparenting them again. While parenting and unparenting we calculate the new local transformation,
so the object does not move in world spce when parenting or unparenting. Furthermore the parenting,
animation and unparenting are scheduled as soon as the user presses a button, to avoid any simulation
inaccuracies during the animation.

With these capabilities in place we could start to implement the unfolding. When unfolding, instead of
�ipping the whole cube, only �ip the active segments and every segment that faces downwards becomes
passive. Like this it became possible to unfold the cube. Of course we had to limit the directions that
can be unfolded to, as not all directions are always possible, limited by the geometry of the cube. A
possible unfolding con�guration can be seen in Figure 2.

Figure 2: The resulting unfolding con�guration following the input directions Up - Up - Right starting
from the (0, 1) tile

To make the cube be able to refold, we additionally store the passive segments in a list, ordered by the
time they became passive. So when it comes time to refold, we refold the segments in the same order, for
them to reach the "head" position � the position where the player stopped the unfolding process. The
refolding then works by �rst making all segments passive except the �rst placed segement. Determine
in which direction it should �ip, depending on where the next places segment is, because it should fold
onto that. Then create an empty object at the appropriate edge, parent the segment to it, animate the
empty to fold the segment, and unparent the segment again. This process continues, always additionally
making the next segment active so all segments fold back together to the cube. Also all these actions
and animations are scheduled as soon as the player decides to refold the cube, again to be able to produce
a reliable and exact animation.

We discovered, that for some legal unfolding schemes, the refolding alogithm would produce an animation,
in which geometry of the cube would penetrate itself. We found six unfolding con�gurations (disregarding
all symmetries) in which an impossible refolding is generated. We then wrote code to detect each of
the six cases and then add more animations to the chain for each case in such a way, that the geometry
does not penetrate itself anymore. An example refolding which would penetrate itself, together with the

4

handwritten �x can be seen in Figure 3. The challenge here was to be able to detect the con�gurations
and all ther symmetries in all directions reliably and also make the additional handwritten animations
work for all of them.

Figure 3: Left: The animation the default refolding algorithm produces can lead to geometry penetrating
another part of the cube. Right: The handwritten animation for this speci�c unfolding scheme opens up
the cube, so the segments do not collide

With unfolding and refolding in place we could then implement levels with multiple �nishes onto which
the player will have to unfold to activate them all. We extended the already existing finish_check
routine to iterate over all the �nishes in the level and check for each if the �nish condition is satis�ed.
We also moved away from storing levels in a hashmap with their name as the key, as we want the levels
to be loaded in order as the player plays through them. So now we just store them in an array list.

3 Engine Progress - Sound

We think that sound, especially in puzzle games is a major contributor to the overall feel of the game.
As mentioned in the other project notebook chapters (e.g. Physical Prototype) one major focus for our
development was to capture the correct feeling of our vision as succinctly as possible so implementing
a sound system was a high priority after the initial engine was work �nished (even thought we forgot to
add it to the layers of development in the �rst chapter).

3.1 irrKlang Sound Engine

For the sound eninge in this project we chose to use the irrKlang sound library. IrrKlang is a object
oriented interface designed for games and supports all current sound formats such as .wav .�ac and
.mp3. It is able to run on Linux and Windows which was an important aspect to consider to ensure our
cross platform compability.

3.2 Additional work

Most of the basic function that irrKlang provides were enough for this game because our use for now will
not exceed simple sound e�ects and background music. The only work on top of the irrKlang functions
that was needed was the timing of the e�ects using the scheduling system of the engine. One additional
interesting fact to note was the possibility to skip the use of a random number generator for choosing
a random sound e�ect. We thought that this would be necessary as playing the same sound e�ect
repeatedly for an action such as sliding is very repetetive. Instead we tried to use a longer sound sample

5

of a slide and continously loop through it which worked much better than we initially expected and
sounds realistic and varied. A function to chose a random sample from a group of will still be necessary
for the future but the possibility of implementing the sliding sound e�ect in such a way is something to
take not of especially due to the �ckleness of sound loops in general.

4 Outlook

Regrettably we are still behind in terms of visuals as these are still on a rudimentary level. This means
while we have a stable enough version of qubi that we could use for playtesting, we will have to focus
on working on the visuals in the meantime as well. We will further have to add a UI system to provide
an options menu.

Basic instructions on how to play the game will have to be added as well as an indicator showing which
level the player is in.

6

	Alpha Release Content
	Gameplay Features
	Levels
	Music
	Sound effects

	Implementation changes
	Engine Progress - Sound
	irrKlang Sound Engine
	Additional work

	Outlook

