

ML-Neuro Seminar Summer 2023: Kickoff

Anne-Marie Rickmann, Nuno Wolf, Morteza Ghahremani, Bailiang Jian, Fabian Bongratz, Prof. Dr. Christian Wachinger

Lab for Artificial Intelligence in Medical Imaging
Department of Radiology / Faculty of Informatics
Technical University of Munich

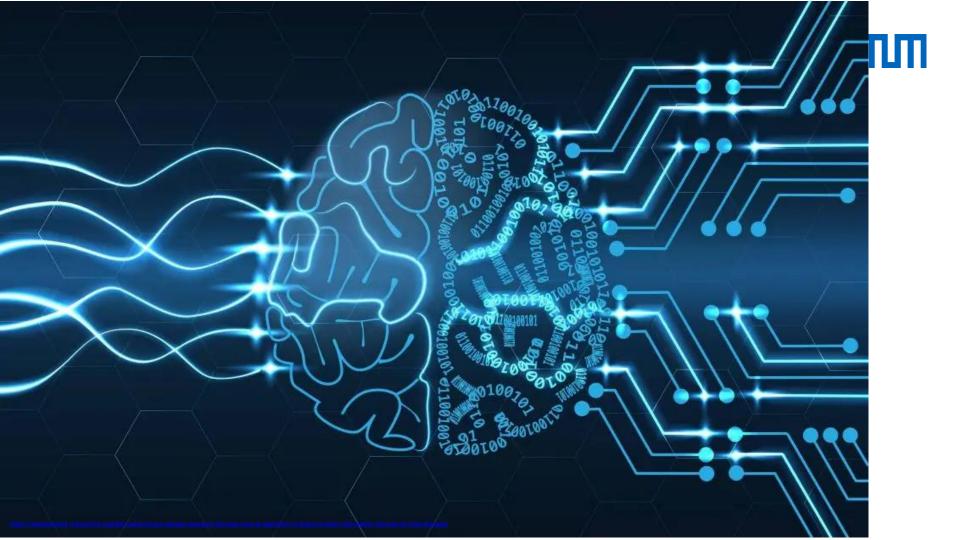
24 April 2023

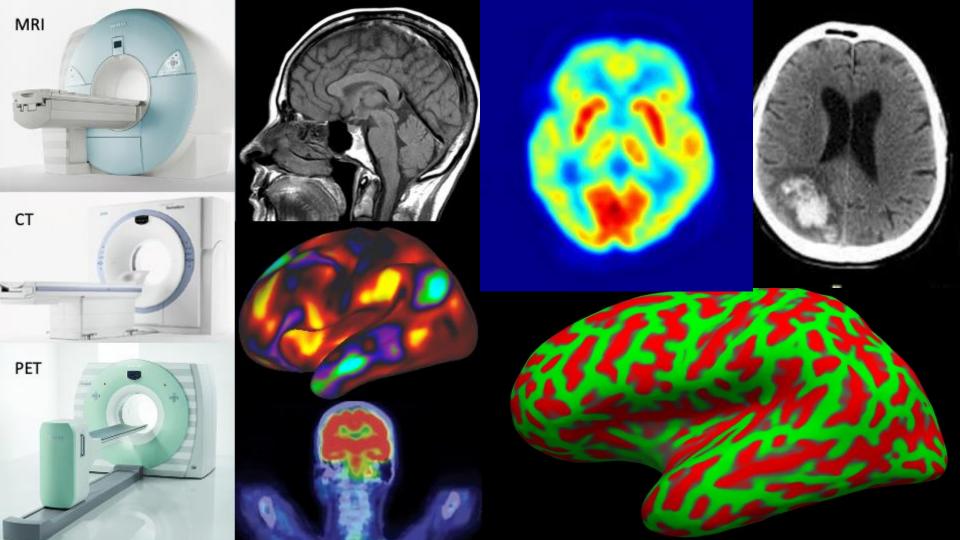
Agenda

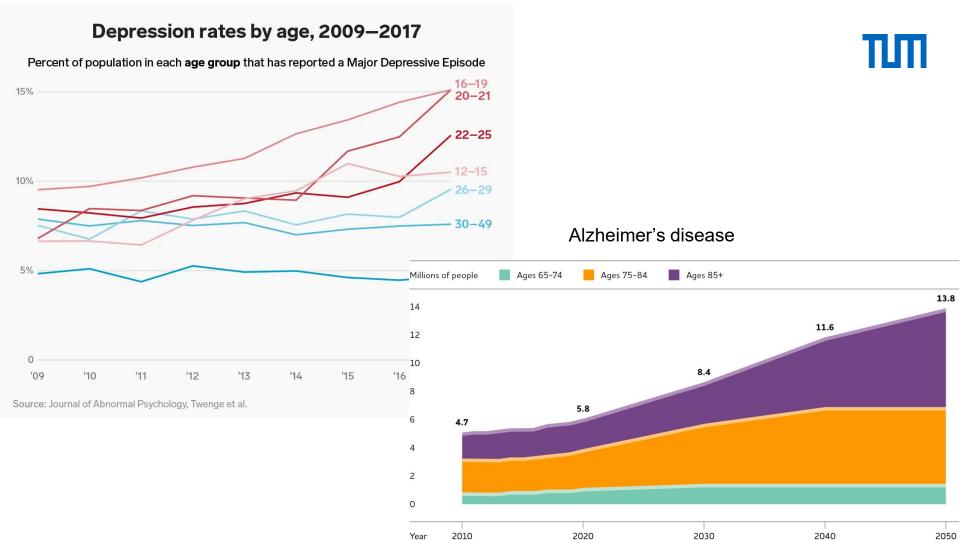
- Introduction
- Usage of ChatGPT
- Timeline
- Organization and expectations
- Distribution of papers
- Q & A

Lab for Artificial Intelligence in Medical Imaging

- **@TUM Informatics**
- @Klinikum rechts der Isar, Department of Radiology
- @LMU Department of Child and Adolescent Psychiatry


ai-med.de


github.com/ai-med



ML-Neuro

Neuroscience

Machine learning

Neuroimaging data

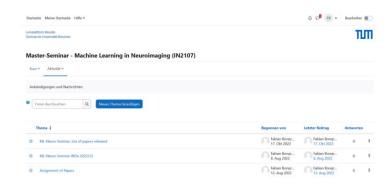
ChatGPT

- Brainstorming: outlines, arguments
- Research assistance: additional supervisor (with a lot of time and patience:))
- Writing support
- Mention use of chatGPT. Key chatGPT prompts are to be listed at the end of the blog post.
- chatpdf.com
- Grading based on the quality (independent of using chatGPT)

Warnings:

- Beware of hallucinations
- 10min discussion: ChatGPT cannot help you there. You need to understand the topic.

Platforms


<u>Wiki</u>

- https://wiki.tum.de/display/mlneuro
- General information about the seminar
- Links to papers
- Additional material (e.g., exemplary blogs)

<u>Moodle</u>

- Platform for communication
- Questions & Discussion

- General introduction
- Distribution of topics

- Individual work on the assigned topic / paper
- Meeting with supervisor
 - Optional but recommended
 - Discussion of current state, e.g., preliminary headlines, subsections, core messages

- Presentations (live, in-person)
- Hand-in of blog post (two weeks after the seminar)

Expectations

- Being able to read a paper in a structured way
- Explanation of complex ideas in an understandable blog post
- Usage of modern AI tools (ChatGPT) in a deliberate way
- Presentation of research findings to a technical audience

What to deliver?

- Paper presentation
 - 70% of final grade
- Blog post (~4 pages DIN A4) about the selected paper, see these guidelines
 30% of final grade

Paper presentation

- 20 min. presentation, 10 min. discussion (will influence grade)
- Rule of thumb: 1–2 minutes per slide → 10–20 slides
- In-person
- Talks are held in English
- Technical audience: use appropriate language
- Hand-in of slides via wiki (restricted access page) until 12 June 23:59
- Recommended structure:
- Introduction
- o Overview / Outline
- Method description
- Experiments and results
- Personal comments
- Summary

Blog post

- Written and posted in the wiki
- Approx. 4 pages
- Mostly non-technical language
- Primarily self-made figures!
- Published on wiki
- Deadline: 28 June 2023 (two weeks after presentations)

Paper assignment: see wiki

Paper ID	Title	Published in	Link	Additional material	Supervisor	Student
1	Local Spatiotemporal Representation Learning for Longitudinally- consistent Neuroimage Analysis	NeurIPS	https://proceedings.neurips.co/paper_files /paper/2022/file /57da08da25d0ce77e0129b246f358851- Paper-Conference.pdf		Christian Wachinger	Smaranda- Daria-Maria Bogoi
2	Forecasting individual progression trajectories in Alzheimer's disease	Nature communications	https://www.nature.com/articles /s41467-022-35712-5		Christian Wachinger	Danya Liu
3	A multidimensional ODE-based model of Alzheimer's disease progression	Nature scientific reports	https://www.nature.com/articles /s41598-023-29383-5		Fabian Bongratz	Barış Sözüdoğru
4	A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer's disease severity	NeuroImage: Clinical	https://www.sciencedirect.com/science /article/pii/S2213158218300938		Fabian Bongratz	Ina Dempel
5	Brain Age Estimation From MRI Using Cascade Networks With Ranking Loss	NeuroImage	https://ieeexplore.ieee.org/document /9446871?denied=		Morteza Ghahremani	Zaid Efraij
8	Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images	Journal of Healthcare Engineering	https://www.hindawi.com/journals/jhe/2022 /3264367/		Morteza Ghahremani	Christian Pesch
7	FastSurferVINN: Building resolution- independence into deep learning segmentation methods—A solution for HighRes brain MRI	NeuroImage	https://www.sciencedirect.com/science/article/pii/S1053811922000823		Fabian Bongratz	Mücahit Umut Onat
8	SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining	Medical Image Analysis	https://www.sciencedirect.com/science /article/pii/S1361841523000506		Anne Rickmann	Milan Cupac
9	Toward a unified framework for interpreting machine-learning models in neuroimaging	Nature protocols	https://cocoanlab.github.io /pdfs/Kohoutova2020.pdf		Christian Wachinger	Marwa Trigui
10	Deep Structural Causal Shape Models	ECCV	https://link.springer.com/chapter/10.1007 /978-3-031-25075-0_28		Nuno Wolf	Xin Zhou
11	Diffusion Models for Medical Image Analysis: A Comprehensive Survey	Antiv	https://anciv.org/abs/2211.07804		Nuno Wolf	Yusuf Emre Geno
12	Hyper-convolutions via implicit kernels for medical image analysis	Medical Image Analysis	https://anxiv.org/abs/2202.02701		Anne Rickmann	Markus Karmann
13	HAMMER: Hierarchical Attribute Matching Mechanism for Elastic Registration	IEEE Transactions on Medical Imaging	https://ieeexplore.ieee.org/abstract /document/1175091		Bailiang Jian	Zeynep Yetistiren
14	4D-HAMMER Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping	Neurolmage	https://www.cbica.upenn.edu/sbia/papers /122.pdf		Bailiang Jian	Johannes Kirmayr
15	ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks	Transactions on Pattern Analysis and Machine Intelligence	https://arxiv.org/abs/2102.07951		Bailiang Jian	Tim Dang

Questions?