

ML-Neuro Seminar Summer 2023: Kickoff

Fabian Bongratz, Yitong Li, Nuno Wolf, Bailiang Jian,

Prof. Dr. Christian Wachinger

Lab for Artificial Intelligence in Medical Imaging Department of Radiology / Faculty of Informatics Technical University of Munich

23 October 2023

Agenda

- Introduction
- Usage of ChatGPT
- Timeline
- Organization and expectations
- Brief introduction to Transformers
- Distribution of papers
- Q&A

Lab for AI in Medical Imaging

Prof. Dr. Christian Wachinger Professor for AI in Radiology

www.ai-med.de

Lab For AI in Medical Imaging

github.com/ai-med

Morteza Ghahremani Postdoc

Bailiang Jian PhD student

Tom Nuno Wolf PhD student

Anne-Marie Rickmann PhD student

Yitong Li PhD student

Fabian Bongratz PhD student

Depression rates by age, 2009–2017

Percent of population in each age group that has reported a Major Depressive Episode

ChatGPT

- Brainstorming: outlines, arguments
- Research assistance: additional supervisor (with a lot of time and patience :))
- Writing support
- Mention use of ChatGPT. Key ChatGPT prompts are to be listed at the end of the blog post.
- chatpdf.com
- Grading based on the quality (independent of using ChatGPT)

Warnings:

- Beware of hallucinations
- 10min discussion: ChatGPT cannot help you there. You need to understand the topic.

Platforms

<u>Wiki</u>

- <u>https://wiki.tum.de/display/mlneuro</u>
- · General information about the seminar
- Links to papers
- Additional material (e.g., exemplary blogs)

<u>Moodle</u>

- Platform for communication
- Questions & Discussion

- General introduction
- Distribution of topics

- · Individual work on the assigned topic / paper
- Meeting with supervisor
 - Optional but recommended
 - Discussion of current state, e.g., preliminary headlines, subsections, core messages

- Mandatory event
- Time: January 11, 13-17 & January 12, 9-14
- Location: Holbeinstrasse 11, third floor
- Presentations (live, in-person)
- Hand-in of blog post (two weeks after the seminar)

Expectations

- Being able to read a paper in a structured way
- Explanation of complex ideas in an understandable blog post
- Usage of modern AI tools (ChatGPT) in a deliberate way
- Presentation of research findings to a technical audience

What to deliver?

• Paper presentation

70% of final grade

Blog post (~4 pages DIN A4) about the selected paper, see <u>these</u> guidelines
30% of final grade

- 20 min. presentation, 10 min. discussion (will influence grade)
- Rule of thumb: 1–2 minutes per slide \rightarrow 10–20 slides
- In-person
- Talks are held in English
- Technical audience: use appropriate language
- Hand-in of slides via wiki (restricted access page) until 9 January 23:59
- Recommended structure:
- \circ Introduction
- o Overview / Outline
- o Method description
- Experiments and results
- o Personal comments
- o Summary

Blog post

- Written and posted in the wiki
- Approx. 4 pages
- Mostly non-technical language
- Primarily self-made figures!
- Published on wiki
- Deadline: **24 January 2023** (two weeks after presentations)

Blog post: be creative!

Figure 2: Two half steps vs. one full step in gradient descent and in Gingoog city

[Fig 5] The same DiNe-Filter can be used by applying it only on vertices that are still present in a lower resolution icosahedron (here orange, blue and red respectively) to achieve pooling.

Test blog 2

Writing the blog post

Blog post heading

The heading of the blog post should be in the following format to distinguish you (the authors of the blog post) from the authors of the paper:

<Blog post Title> Blog post written by: <Your name> Based on: <Paper citation (APA)>

Background: (Self-)Attention in NLP

OUTPUT

https://jalammar.github.io/illustrated-transformer/

Attention for Image Processing

Segmentation

Guha Roy, A. et al. QuickNAT: A Fully Convolutional Network for Quick and Accurate Segmentation of Neuroanatomy. NeuroImage 2018

Classification

Registration

G. Balakrishnan, et al. "VoxelMorph: A Learning Framework for Deformable Medical Image Registration," in *IEEE Transactions on Medical Imaging*, 2019

Generation

Sarasua, I et al. CASHformer: Cognition Aware SHape Transformer for Longitudinal Analysis. MICCAI 2022

Paper assignment: see wiki

Topics

Paper ID	Title	Published in	Link	Group/Supervisor	Student	Ad
1	UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation	Medical Image Analysis	https://aniv.org/abs/22/00-14378	Fabian Bongratz	Mehmet Celimli	
2	Unsupervised brain imaging 3D anomaly detection and segmentation with transformers	Medical Image Analysis	https://www.sciencedirect.com/science/article/pii/91361841822001220	Fabian Bongratz	Melisa Ankut	
3	Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis	CVPR	https://anxiv.org/abs/2111.14791	Fabian Bongratz	Petru-Georgian Sicoe	
4	One Model to Synthesize Them All: Multi-contrast Multi-scale Transformer for Missing Data Imputation	IEEE TMI	https://aniv.org/abs/2214.13738	Christian Wachinger	Thomas Sedimeyr	
5	PTNet3D: A 3D High-Resolution Longitudinal Infant Brain MRI Synthesizer Based on Transformers	IEEE TMI	https://www.ncbi.nlm.nlh.gov/pmc/articles/PMC06526647/	Christian Wachinger	Azza Jenane	
6	Towards Generalist Biomedical Al		https://aniv.org/abs/2307.14334	Christian Wachinger	Hui Cheng	Re <u>/at</u>
7	TransMorph: Transformer for unsupervised medical image registration	Medical Image Analysis	https://anxiv.org/abs/2111.10480	Bailiang Jian	Hakan Buğra Erentuğ	
8	Affine Medical Image Registration with Coarse-to-Fine Vision Transformer	CVPR	https://ankiv.org/abs/2203.15216	Bailiang Jian	Luis David Reyes Vargas	
9	Preserving Tumor Volumes for Unsupervised Medical Image Registration	ICCV	https://cpenaccess.thecvf.com/content/CCV2023/papers/Dong_Preserving_Turnor_Volumes_for_Unsupervised_Medical_image_Registration_ICCV_2023_paper.pdf	Bailiang Jian	Furkan Yakal	
10	Clinically-inspired Multi-Agent Transformers for Disease Trajectory Forecasting from Multimodal Data	IEEE TMI	https://eeespione.ieee.org/abstract/document/1024/2080	Yitong Li / Nuno Wolf	Yulia Zinkeieva	
11	MetaVIT. Metabolism-Aware Vision Transformer for Differential Diagnosis of Parkinsonism with 18F-FDG PET	IPMI	https://ink.springer.com/chapter/10.1007/978-3-031-34048-2_11	Yitong Li / Nuno Wolf	Ivan Stoyanov	
12	A Hybrid Multi-Scale Attention Convolution and Aging Transformer Network for Alzheimer's Disease Diagnosis	IEEE Journal of Biomedical and Health Informatics	https://eeeupione.ixee.org/abstract/document/10109788	Yitong Li / Nuno Wolf	Arda Hüseyinoglu	

Resources & Material

Giving talks	
Doing a TED Talk. The Full Story	
TED: Speaker Guide	
The secret structure of great tails	
How to Deliver a Great TED Talk	
Taik Use TED	

Questions?