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Causality and machine learning

Traditional causality ML
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Representation learning and generative models
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Methods for representation learning and generative models

Notations

Observed data x ∼ p∗ on X ⊆ Rd

Latent variable z ∼ pz on Z ⊆ Rk

Goal: to learn an encoder Eφ : X → Z and a generator Gθ : Z → X .
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Methods for representation learning and generative models

Notations

Observed data x ∼ p∗ on X ⊆ Rd

Latent variable z ∼ pz on Z ⊆ Rk

Goal: to learn an encoder Eφ : X → Z and a generator Gθ : Z → X .

Methods

VAE
max
φ,θ

Ex∼p∗ [ln qφ(z |x)− DKL(qφ(z |x), pz(z))] (1)

GAN

min
φ,θ

max
D

[Ex∼p∗,z∼qφ(z|x)(lnD(x , z)) + Ez∼pz ,x∼pθ(x |z)(1− lnD(x , z))]

(2)
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Disentanglement

Disentanglement: each dimension of the latent variable measures a
distinct generative factor of the data (Bengio et al., 2013).
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Previous work

β-VAE (Higgins et al., 2017)

max
φ,θ

Ex∼p∗ [ln qφ(z |x)− βDKL(qφ(z |x), pz(z))] (3)

with β > 1.
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Previous work

β-VAE (Higgins et al., 2017)

max
φ,θ

Ex∼p∗ [ln qφ(z |x)− βDKL(qφ(z |x), pz(z))] (3)

with β > 1.

Problems:

Independence assumption: the underlying factors are mutually indepen-
dent.
→ what if the true factors are causally related?
Unidentifiability of true latent variables
→ Locatello et al. (2019) showed that unsupervised learning of disen-
tangled representations is impossible.
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Causal disentanglement learning
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Model

Using a structural causal model (SCM) as the prior distribution of z .
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Prior distribution pβ(z), where parameter β includes the causal struc-
ture and structural equations.
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Formulation and algorithm

Formulation with weak supervision

min
θ,φ,β

!
DKL(qφ(x , z), pθ,β(x , z)) + λE[c(E (X ),Y )]

"

We adopt our proposed efficient GAN algorithm for optimization (Shen
et al., 2022).

Identifiability and statistical consistency.
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Experimental results
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Data sets

Synthesized dataset Pendulum (Yang et al., 2020)

pendulum
_angle(1)

light_ 
angle(2)

shadow_ 
position(4)

shadow_ 
length(3)

(a) (b)
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Data sets

CelebA (Liu et al., 2015)

Meta-data: some labeled binary attributes.

smile(0) gender(1)

narrow_
eye(4)chubby(5)

mouth_
open(3)

cheek-
bone(2)

(a) (b)
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Interventional generation

Standard traversals: direct causal effect

Do-interventions on causes, Pdo(zi=c)
β (z): total causal effects
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Interventional generation

Intervene on 
pendulum_angle

Intervene on 
light_angle

shadow_length&
position affected

shadow_length&
position affected

(c) Test data (d) Intervention on cause factors

(a) Traversal of S- -VAEβ (b) Traversal of DEAR
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Interventional generation

(c) Test data (d) Intervention on cause factors
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Structure learning (Pendulum)

(a) Epoch 0 (b) Epoch 100 (c) Epoch 200 (d) Epoch 500 (e) True
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Structure learning (CelebA)

(f) Epoch 0 (g) Epoch 5 (h) Epoch 50 (i) Epoch 150 (j) True
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Discussion on prediction based on causal disentanglement

Another important application is “better” prediction based on the causal
disentangled representations.

2Nonlinear prediction
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Discussion on prediction based on causal disentanglement
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Discussion on prediction based on causal disentanglement

Ambition: interpretability and robustness in a joint formulation
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Summary

Causality and machine learning

causal generative models and representation learning

Causal disentanglement learning

an SCM as the prior distribution for the latent variable
interventional generation

Trade-off between prediction and interpretability and robustness
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