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Distribution generalization



Observe: (X1,Y1), . . . , (Xn,Yn)
iid∼ Ptrain

Goal: Learn a function f̂ that accurately predicts Y from X on

shifted distribution Ptest, e.g.,

f̂ = argmin
f ∈F

Etest

[
(Y − f (X ))2

]

→ Requires relation between Ptrain and Ptest

training

(X1,Y1), . . . , (Xn,Yn)
iid∼ Ptrain

Ptrain

testing

Ptest = τ(Ptrain)

make predictions under Ptest

τ

distributional shift
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Worst-case optimal

Let P be a collection of potential test distributions and consider

sup
P∈P

EP [(Y − f̂ (X ))2] = inf
f ∈F

sup
P∈P

EP [(Y − f (X ))2].

Relevant if mistakes have potentially catastrophic conse-

quences! (Self driving cars, medical applications, ...)

4



Worst-case optimal

Let P be a collection of potential test distributions and consider

sup
P∈P

EP [(Y − f̂ (X ))2] = inf
f ∈F

sup
P∈P

EP [(Y − f (X ))2].

Relevant if mistakes have potentially catastrophic conse-

quences! (Self driving cars, medical applications, ...)

4



Existing (non-causal) approaches

• covariate shift e.g., Shimodaira et al. (2000), Sugiyama et al. (2005), ...

→ train and test have the same conditional Y |X, i.e.,

PY |X
train = PY |X

test

• distributional robustness e.g., Bagnell (2005), Abadeh et al. (2015), ...

→ given a metric d, test is small perturbation of training

d(Ptrain,Ptest) < ϵ

• maximin effects & DRO e.g., Meinshausen and Bühlmann (2015), Sagawa et al. (2019), ...

→ test lies in convex hull of training distributions

Ptest ∈ ConvexHull({P1
train, . . . ,Pm

train})
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How does causality help?
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A causal model describes the observational distribution and

a set of intervention distributions.
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Assume train and test are generated by a causal modelM with

Ptrain = PM (obs. distr.) and Ptest = PM(i) (int. distr.)

for some intervention i ∈ I.

Goal: Find f̂ ∈ F such that

sup
i∈I

EM(i)[(Y − f̂ (X ))2] = inf
f∈F

sup
i∈I

EM(i)[(Y − f (X ))2]

Invariance assumption:

∃f ∈ F such that

∀i ∈ I : PY−f (X )
M(i) = PY−f (X )

M

→ f is called invariant

Strategy:

argmin
f∈F invariant

EM
[
(Y − f (X ))2

]

→ Can we check invariance?

→ Is this solution minimax?
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IV-based models



M is a structural causal model over observed variables (Y ,X , I )

I ← ϵI

H ← ϵH

X ← g(I ,H, ϵX )

Y ← f0(X )︸ ︷︷ ︸
causal fct

+h(H, ϵY ) YX

H

I

f0

We can now look at two classes of interventions:

• II the set of all interventions on I

• IX the set of all interventions on X

What functions are invariant in each case?

Case 1 f is invariant wrt IX iff f = f0
→ generalization wrt IX requires identifiability of f0

Case 2 f is invariant wrt IZ iff Y − f (X ) ⊥⊥ Z under PM

→ generalization wrt IZ does not require identifiability of f0

8
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Identifiability of the causal function

Classical IV: For fixed basis η, f0 is called identifiable if{
f ∈ F | cov(η(I ),Y − f (X )) = 0

}
= {f0} (moment identif. cond.)

Can this be strengthened? Yes!

• Independence IV Imbens & Newey (2009), Torgovitsky (2015), Saengkyongam et al. (2022), ...{
f ∈ F | Y − f (X ) ⊥⊥ I

}
= {f0} (independence identif. cond.)

e.g., binary instruments can identify nonlinear effects

• Sparse causal effects IV (SpaceIV) NP & Peters (2022)

min
β∈B
∥β∥0 with B = {β | cov(I ,Y ) = cov(I ,X )β}

e.g., settings with many more X s than I s can be identifiable
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SpaceIV



Linear SCM with interventions:

X = BX + AI + h(H, εX )

Y = β∗
1X

1 + β∗
2X

2 + g(H, εY )

H

Y

X 1

X 2

I 1

I 2

(IV1) If I and Y are d-separated when removing X 1,X 2 → Y , then

(β1, β2) = (β∗
1 , β

∗
2 ) ⇒ cov

(
I ,Y − β1X

1 − β2X
2
)
= 0.

(IV2) If, in addition, cov(I ,X ) is col-full rank, then

(β1, β2) = (β∗
1 , β

∗
2 ) ⇔ cov

(
I ,Y − β1X

1 − β2X
2
)
= 0.

Anderson and Rubin 1949, Theil 1953, Mendelian Randomization...

If there are more covariates than instruments, the causal function

is not identifiable. Can we exploit sparsity of the effect?
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Is the causal function identifiable?
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Include sparsity

Consider the solution space

B := {β ∈ Rd | cov(I ,Y ) = cov(I ,X )β}

and

argmin
β∈B

∥β∥0.

When is this equal to β∗?

12



An important quantity is

Cij := total causal effect from I i to X j .

YX 1 X 2

X 31 2

2

1 -1

1-2

1

-3

Then

C =

(
2 2 0

−2 −5 1

)
.

For Lasso “restricted nullspace property of X”, here the

intervention subspace needs to behave nicely...
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(A1) Non-degenerate: It holds that rankCPA(Y ) = |PA(Y )|.
(A2) No cancellation: For all S ⊆ {1, . . . , d} it holds that

rank(CS) ≤ rank(CPA(Y ))

and im(CS) ̸= im(CPA(Y ))

}
⇒
{
∀w ∈ R|S| : CSw ̸= CPA(Y )β

∗
PA(Y ) .

(This is implied by random coefficients.)

(A3) Uniqueness: For all S ⊆ {1, . . . , d} with |S | = |PA(Y )| and
S ̸= PA(Y ) we have im(CS) ̸= im(CPA(Y )).

Theorem (Identifiability of sparse causal parameters)

• If (A1) and (A2) hold, then β∗ ∈ argminβ∈B ∥β∥0.
• If additionally (A3) holds, then β∗ is unique solution.

14
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An example violating (A2):

Y
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X 3
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3

1

2

1

2
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What does this mean graphically?

(B1) There are at least |PA(Y )| disjoint directed paths (not

sharing any node) from I to PA(Y ).

(B2) Random coefficients.

(B3) For all S ⊆ {1, . . . , d} with |S | = |PA(Y )| and S ̸= PA(Y ) at
least one of the following conditions is satisfied

(i) ANI [S ] ̸= ANI [PA(Y )].

(ii) The smallest set T of nodes such that all directed paths from

I to PA(Y ) and from I to S go through T is of size at least

|PA(Y )|+ 1.

Theorem:

(B1)–(B3) imply (A1)–(A3).

16



Is the causal function identifiable?
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Conclusions

• Causal models can be used to formalize distributional shifts.

• IV-type models offer a rich class of practically relevant models on

which distribution generalization is possible.

• Two types of generalizations:

(1) Interventions on X : requires identifiability

(2) Interventions on Z : possible even in the non-identifiable case

• Sparse causal effects may lead to identifiability and hence

generalization to interventions on X .

NP, J. Peters: Identifiability of Sparse Causal Effects using Instrumental Variables. In Proceedings of the 38th

Annual Conference on Uncertainty in Artificial Intelligence (UAI).

S. Saengkyongam, L. Henckel, NP, J. Peters: Exploiting Independent Instruments: Identification and Distribution

Generalization. In Proceedings of the 39th International Conference on Machine Learning (ICML).

R. Christiansen, NP, M. Jakobsen, N. Gnecco, J. Peters: A Causal Framework for Distribution Generalization. IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Thank you!
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Additional slides...
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Simulations

Simulation setup:

• Generate 2000 random linear SCMs with d = 20 predictors and m = 10

interventions.

• For each model generate a data set of n = 1600 iid observations of

(X ,Y , I ).

• For each model check which assumptions A1 and A3 are satisfied (A2 is

true by construction).

• Compute prediction error (root mean squared error) and estimated

probability that the correct sparsity level was selected.

Comparison methods:

• OLS-sparse: Goes over all subsets of size 3, fits linear OLS and selects

model using AIC.

• oracle-PA: Uses the correct parent set and fits an IV estimator.

• oracle-|PA|: Goes over all subsets of size 2, fits IV estimator and selects

model with smallest squared moment condition loss.
20



Prediction error
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Estimation of sparsity

• Only includes

random models
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Validating assumptions

• Fixed sample

size n = 1600

• Prediction error
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